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1. Introduction

1.1 Background

The association function is one of the most critical for the stability of a wireless protocol since it’s the only one that by necessity is sent under contention between competing client devices. At the same time, problems with state machine synchronization during the association function will lead to non-recoverable problems for the associating device at the best, and for the entire network at worst.

The method proposed in 802.15.3 is not an optimal solution, which will be proven later in chapter 2. of  this document.  A prototype association solution from XtremeSpectrum will be offered for comparison in chapter 3. Last, a hybrid model containing the best of both in chapter 4. Pros and cons with all of them will be discussed.

In this chapter I will introduce the methods used to verify the integrity of protocols, a sample system used to simulate and verify the association function and the theory  upon which the different design approaches are based.

This document doesn’t only serve to solve the association function as an isolated issue, but also brings up a discussion about protocol verification methods in general. We will show what kind of methods we use at XtremeSpectrum, so that the reader can make a generalized assessment about the methodology behind all the proposals from us and what kind of steps we have taken before considering a proposed protocol verified.

1.2  Method and tools

For all protocol analysis we have used ITU-T Z.100 Specification and Description Language (SDL). Simulation traces are presented using ITU-T Z.120 Message Sequence Charts (MSC). Both languages are standardized and defined in a set of  formal semantics from ITU-T.

The use of formal methods is crucial in protocol verification to assure that an implementation and platform independent verification is done of both the state machines in the individual modules and also of the global system state machine. The formal language allows tool vendors to create tools that can analyze all possible system states (Exhaustive State Space Exploration) and find possible dynamic errors such as dead locks, lost signals, unreachable states and many more.

We have chosen to use Telelogic Tau SDL Suite for our analysis, being the most established vendor of tools for protocol design with SDL. For more information about methods, languages and tools, please refer to http://www.telelogic.com
1.2.1 SDL syntax

A complete introduction to SDL is beyond the scope of this document. Below you will find the legend to the different SDL symbols and a few comments to AID in the understanding of the rest of this document.

1.2.1.1 SDL Architecture

Table 1 Basic SDL Architectural Elements

	
	Block. A static entity representing a design module (protocol layer, device, functionality). Blocks contains processes.

	
[image: image1.wmf]
	Process. An executing unit, such as a real-time OS task or a Unix process. Processes execute concurrently. The process contains the Finite State Machine flow-chart. The processes are scheduled according to rules defined in ITU-T Z.100.

	
	Channel (sometimes called route or gate). A medium of communication between different blocks or processes. The channel is constrained to certain defined signals.

	SIGNAL
	Signals are asynchronous events that will trigger a transitions if received in a state where the signal can be consumed. In SDL, signals can carry parameters, to for instance represent a data frame being sent with a payload.


1.2.1.2 SDL Flowchart

Table 2 Basic SDL Flowchart Symbols

	
[image: image2.wmf]
	State. When a state is reached, execution in a process is halted until one of the signals or timers that are declared as accepted in the current state is received. A process flow chart always begins with a start state, which has a slightly different symbol shape.

	
[image: image3.wmf]
	Signal Input. Used also for timer expiration. Defines which signal is accepted in which state.

	
[image: image4.wmf]
	Signal Output. At this point a signal is sent to another process, either directly or via a channel, depending on if the receiving process is known at the time of sending.

	
[image: image5.wmf]
	Decision. Corresponds to an if or switch statement in C. The path taken depends on the result of the conditional statement.
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	Task. Sequential program code, such as arithmetic operations.


1.2.1.3 Sample Flowchart

This is a sample system to show the SDL syntax.
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Figure 1 Sample SDL FlowChart

Once in state A nothing can happen until the signal T is received.

Once T is received we send the signal S to ourselves carrying the number 0. Sending to “Self”, meaning the same process, is legal SDL semantics.

When S is received the first time, we compare the parameter x to 2. Since 0 is not greater than 2, we take the right branch , increment x and sending it back to ourselves. After sending the signal S we go back to the same state A and wait for the signal to be received. This will happen 3 times, until x becomes 3 and the conditional statement becomes true. At that time we go to state B (not defined here) and wait for another set of signals.

In a real system a process rarely sends signals to itself, it rather sends it to other processes in the system. It is then important that the system is designed in such a way that the other process is in a state where the signal can be received. Imagine for a moment that the signals S and T in the example above comes from a trigger process, and the output signal S goes to a third process. If this third process is expecting to get the signal S before the trigger process has sent the signal T to this process, the system is not going to behave as intended. This is an exact replication of issues one has to consider in real protocol design, and shows why it is so important to verify that the design doesn’t contain any “surprises”.

1.2.2 Message Sequence Chart (MSC) Syntax

The easiest way to describe signal interchanges between different parts of a system is to use a Message Sequence Chart. It looks similar to UML sequence diagrams, but in stead of showing synchronous function calls, it shows asynchronous signals being sent. MSC is useful both for specification (use cases), tracing (do all signals come in the right order, does a timer expire before a signal can be received?) and verification (does the system fill the original requirement, even after additions and redesigns?)

1.2.2.1 MSC Symbols

Table 3 Fundamental MSC Symbols
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	Instance head and timeline. The instance head represents a block or a process that communicates with another block or process. In our examples the instance heads will always be processes. The objects are put on the timeline in the chronological order in which they occurred.
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	Signal transmission. Arrow head indicates who is sending and who is receiving. Signal name above line and signal parameters (if any) below.
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	Signal that never reached its intended receiver. The signal is lost.
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	Timer. Timer expires and triggers a transition. The timer was set to 1.0 time units (default seconds).
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	Timer. The timer is reset by some event before it expired.
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	State. Shows the current state of the process represented by the instance head.


1.2.2.2 Sample MSC
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Figure 2 Example Association MSC

An example close to our hearts:

The PNC sets a timer to expire once per second. At every timer expiration it sends a beacon.

The client sets its own timer for when it expects to receive a beacon. If a beacon is not received within this time it will regard its contact with the PNC as lost.

In this example, the client receives the first beacon, but for some reason it didn’t receive the second.

Note that the MSC serves perfectly as a requirement specification. Here it states what the associated device should do for the two cases where it (1) receives a beacon and (2) doesn’t receive a beacon. It also specifies how often the beacons should be sent, who should send them and how long an associated device should wait for a beacon.

The other way around, it also serves perfectly as a trace of a simulation. Why did the client device end up in the “lost” state? Aha! It missed a beacon. (And of course, why did it miss a beacon…?)

Needless to say, in a real implementation we would probably except more than one missed beacon before determining the association lost.

1.3 Test system
This is a basic model of a simple piconet. It consists of one associating device, called client, and one PNC. The PNC is always started first (no selection). 
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Figure 3 Test System SDL Architecture

Left side is client, right side is PNC. XVR contains low level transmission and reception functions, emulating the TDMA part of the MAC layer. MLME contains all management functions. No distinction is made between MLME and DME functionality. The exact splitting point between XVR and MLME is implementation dependent, but in general XVR contains timing critical parts and will in most cases be implemented in hardware, while MLME contains less time critical functions and may be implemented in software. One could also say that the MLME acts on user events, while XVR acts on the TDMA scheduling. A real MAC implementation is likely to have many more blocks, but the shown test system refers to a bare minimum. This model contains no queuing, i.e. only one management frame can be handled at a time.
1.3.1 XVR

SDL model for the transceiver part, basic layout
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Figure 4 Initialization of Transceiver (XVR) Process SDL State Machine

Continuing on next page…
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Figure 5 XVR Process SDL State Machine continued
This implementation does not reflect the actual TDMA handling. It just forwards signals from its own MLME to the radio channel and vice versa. The model shown is used for the basic simulations of the 802.15.3 protocol. When management time slots (MTS)s are introduced there will be some extra state machines to reflect this. All the model is standard SDL except the “OUTPUT TO other AssociationID (aid)” part. Strict SDL has no way of sending a signal directly to a particular process instance unless this instance is previously known by the sender. The “other(aid)” concept is a workaround that will allow direct transmission immediately from system startup, to emulate the conditions of sending a frame over the media. This workaround will only work on the used tool set and should not be seen as a recommended practice.

1.3.2 MLME

To simplify the example, only one primitive exists from DME; START.rq. If the first boolean parameter is True, the MLME shall start a PNC, otherwise it shall start a client and initiate the association sequence.

The confirm signal, START.cf carries the new AssociationID (AID) of the device. If the AID is still 0xFE (UNASSIGNED) the association has failed.

The main purpose of the simulation is to make sure that client and PNC end up in corresponding states. If the association is successful, the end state of the client will be “client” state, and the PNC will end up in the “pnc” state. If either one of the parties regards the association as failed, they will end up in the “wSTART” state. If one party regards the association as successful and the other as failed, this indicates a protocol failure. The state machines can temporarily be out of sync, as long as there is a proven path to get the two parties back in agreement again.

Every model is run both as a positive test, where all signals are received and acknowledged, and as a negative test, where acknowledgements are not sent.

The models shown below shows the setup for chapter [2.3], “Using beacon to synchronize state machine”. The choice of timer values and the choice of how may signals are handled in the same state (alternative or sequential transitions). All designs shown are the simplest possible designs to illustrate protocol problems caused by out-of-sequence signals or transitions,  timing problems caused by the XVR always handling events quicker than MLME (remember, XVR is the TDMA real-time part!), and problems caused by forcing dependencies between the client and PNC MLME that cannot be easily resolved (one device cannot guess the state of another).

1.3.2.1 MLME Common
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Figure 6 Initialization of the MLME Process SDL State Machine

Continued on next page…
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Figure 7 MLME Process SDL State Machine continued
This model shows how the MLME layer is used to start a PNC or a client. It is simplified from the real 802.15.3 in the aspect that there is no scanning or synchronization primitives, and that association is done by using the START primitive with a boolean parameter indicating that we’re not starting a PNC. Please note that this simplified model is only built to verify one single function out of the entire protocol.

1.3.2.2 MLME PNC side
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Figure 8 PNC MLME Process State Machine
The PNC is always started first. One can see the transitions modeled after the IEEE 802.15.3 assoc-request -> assoc-response -> directed frame interchange. In this model there is an additional requirement that a beacon announcement must be made before the client is associated. Note that every simulation listed means that this model is slightly changed, however only this one model is shown in this document for your reference.

1.3.2.3 MLME Client Side
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Figure 9 Client MLME Process State Machine

For the sake of simplicity the same state wASSOC is used for all frames from the PNC. The SDL knowledgeable may see that there are flaws in the design, for example that the PNC cannot send a beacon until we try to associate. Again, we’re only trying to prove or disprove the 802.15.3 association function and nothing else!

In the depicted design only the PNC may retry the response signal, but the client MLME cannot retry the request. We have tried all kinds of settings for this in different simulations.

1.4
Theory: Association and other synchronous requests.
Section 1.4 is the basic theory behind synchronous and asynchronous request sequences. The main problem in all distributed state machines is to keep both nodes synchronized in their states. Many protocols worry only about increasing the probability of the successful deliver of a frame, but forgets about the even more important issue that the client and the server nodes needs to be in agreement if an interaction has succeeded or failed.

This documents shows how a guaranteed synchronization can be achieved, both with and without contention. The last chapter shows the procedure for asynchronous requests, when synchronization is not desired, but a guaranteed affirmative response should come within some reasonable time.

4.1.1 1.4.1
Fail proof “request – response” interaction

This simple sequence guarantees state synchronization between requestor and PNC:
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Figure 10 Request-Response Interaction MSC
The request is sent to PNC with or without acknowledgement. The acknowledgement here is not crucial, since the management entity of the requestor will wait for a response. If the response doesn’t come within a stipulated time, the request is assumed to have failed. If the protocol allows it, the request may be repeated at the  MLME level.

The response must be sent as a directed frame so that the requestor can send an acknowledgement. This is crucial, since only by receiving the ack can the PNC be sure that the requestor has received the response.

Finally, in the case of a positive response, a result indicator is needed in a following beacon. The reason for this is that the PNC will fail a request if the response is not acknowledged. The requestor may get the response, but has no way of knowing if its ack reached the PNC. The beacon announcement leaves no ambiguities.

Rule:

It is absolutely crucial that the last frame is directed towards the requestor. The reason is that if the requestor never gets the frame, it may not use resources that has been allocated. If the last frame is directed towards the server, it may very well happen that the requestor starts using resources that have never been allocated. The latter is catastrophic because the server may allocate these resources to another client, causing unrecoverable contention. The former is not catastrophic. While wasting resources, it doesn’t allow any other client to cause user collisions. The protocol should have suitable “garbage collection” routines to free up unused resources. Later in this document, whenever the phrase “guaranteed synchronization of the global state machine” is used, it refers to the safe interpretation that a client will never try to use unallocated resources, but it is theoretically possible that resources may be allocated that are never used.

4.1.2 1.4.2
Request sent under contention

The main difference between association and all other management functions is that the association request is always sent during contention. No AID and no MTSs are assigned.

The requestor uses the UNASSIGNED AID, 0xFE as its temporary DEVID. Since it’s possible that more than one device tried to associate at the same time and the PNC only heard one of them, it is necessary that the reply signal contains a unique identifier. In our case the 48 bit MAC address serves as this identifier. 
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Figure 11 Association Request/Response MSC
During Association, the passing of the 48 bit address  in the Association Request assures that the reply will be handled by only one device, even if several devices each sent a request.

The purpose of the beacon announcement is to confirm that the PNC received an acknowledgement of the response frame and will finalize the complete procedure. At this time it’s only necessary to send an information element with the AID of the associated device, since only one device has gotten a response signal associating its MAC address with this AID. The reason we put the MACaddress/AID in the beacon is to inform other participants in the network about the new association. Other devices may opt to listen to such announcements to build their address resolution tables. This, however, is not required. The announcement is sent in one or more beacons following  the response signal.
1.4.3
Possible failure scenarios and their resolution

There are two possible scenarios for two contending devices:

[image: image24.wmf]dev1

PNC

dev2

association request

association request


Figure 12 The Equal Signal Strength Scenario

The request frame will be garbled and thus CRC check in the PNC will fail. The PNC will not reply to the message. Both dev1 and dev2 need to try again. It’s important to impose a randomness in the retry time so that the two devices don’t keep colliding forever.

[image: image25.wmf]dev1

PNC

dev2

association request

association request


Figure 13 The Near-Far Scenario

PNC only hears the request from dev1. DEV-1 will be associated since the PNC never received a request from DEV-2. DEV-2 will receive the response message from the PNC. DEV-2 MLME will notice that the MAC address in the association response is for another device and regard its association attempt as failed.

1.4.3.1
Resolution to all possible combinations of contention:

The only example we have to be concerned with is the Near/Far problem, since the PNC will not respond to a garbled request as in the Equal Signal Strength example.

Problem:

· both DEV-1 and DEV-2 hear the response frame. The response frame is sent to the UNASSIGNED DEV-ID with the ACK policy bit set. Both devices will send an acknowledgement frame. This is done in the MAC receiver  XVR before the MLME can determine if it’s a response to its own request.

Resolutions:

· Since we have a near/far problem the PNC will only get the acknowledgement from DEV-1. The ack has the same range as the original request frame. PNC, DEV-1 and DEV-2 will be in agreement on MLME level that DEV-1 got the association.

· If only one request reached the PNC due to temporary distortions, but at the time to send acknowledgement both devices have the same signal strength at the PNC, the ACK will be garbled (failed HCS) and no device will be announced in a following beacon. Both PNC and the 
two contenders will regard the association attempt as failed.

· If only one request reached the PNC due to temporary distortions, but at the time to send acknowledgement DEV-2 is received stronger than DEV-1, the PNC will receive the ACK from DEV-2 but not hear the ACK from DEV-1. Since all devices at this point use the unassigned DEV-ID it doesn’t matter who sent the ACK. Once the MLME processes the association response, DEV-1 will know that it got the association and DEV-2 that it failed. The beacon announcement will confirm this. DEV-1, DEV-2 and PNC will be in agreement that DEV-1 got the association response.

Problem:

· a new DEV-3 sends an association request during a contention management time slot (CMTS) after DEV-1 has sent its request but before the PNC has sent its response. Both DEV-1 and DEV-3 will now be waiting for a response. Both devices listen for the unassigned DEV-ID.

Resolution:

· If both devices ACK and are at the same distance from the PNC, the ACK will be garbled and neither of them will be associated. There will be no beacon announcement. Consequently, DEV-1, DEV-3 and the PNC are in agreement that the association attempt failed.

· As proven in the previous problem description, regardless if the PNC gets an ACK from DEV-1 or DEV-3, the MLME MAC address comparison will unambiguously determine that DEV-1 got the association.

1.4.3.2
Resolution to problems receiving announcement beacon

Since only one or a few beacon(s) are sent with the new association as an information element, there is a certain possibility that an associating device misses the beacon and regards the association procedure as failed, even though the PNC regards it as successful.

Problem:

· If the client device misses the beacon with the announcement, it may retry the association, in which case the PNC would determine that the same MAC address already has an assigned AID and just do a normal affirmative response sequence. 

· If the client device misses the beacon and doesn’t retry the association, normal garbage collection routines (Association Timeout Period) in the PNC will eventually disassociate this device. 

NOTE: Desynchronization is only catastrophic if the client uses unassigned resources, not if the server allocates resources that are not used!

1.4.5
Other request – response frames

It turns out that the association request/response – ack – beacon sequence is universally useful for all synchronous requests (e.g. Remote Procedure Call format). 

1.4.5.1
When the [request/response – ack – beacon] sequence is useful

In the case of a channel time allocation (CTA) request for a stream, the PNC will only allocate channel time (CT) if it gets an acknowledgement on the CTA response frame.

In the same manner, the requestor will only regard the request as successful if it receives a beacon with the CT allocated.

There is no contention for CTA request frames, so the DA of the response frame is always unique. If the problem occurs that the requestor misses the beacons with the CTA within its timeout, it may retry the request. In this case there is no way for the PNC to know if the request is a repetition or a new request. To solve this problem 802.15.3 has added a requestIDNumber (RQID) to the CTA request. The RQID is locally assigned by the client device. The PNC stores the RQID for every CTA request it has approved. When a new request is received, the PNC compares the new RQID against previous requests.

1.4.5.2
When the [request/response – ack – beacon] sequence is not useful

The exception to this scheme is a CTA request for asynchronous data on stream 0. There is no particular timeout for asynchronous data CTA requests. Rather, it’s the data frame itself that gets timed out by the asynchronous data transmission queue aging function. Consequently the problem of synchronizing the state machines in the device and the PNC is one  making sure the device is being provided tranmission opportunities to send its queued asynchronous data before the device’s aging function purges its asynchronous data transmission queue. 

1.4.6
Asynchronous requests
As mentioned in 1.4.5.2 there are times when the synchronous request, or the RPC call is not suitable.

This is the case for asynchronous data CTA requests. The request will be granted, sooner or later.  Consequently, the client must set a reasonable timeout before regarding the operation as failed.

There is no state change in the client, so there is no requirement that the client wait for completion of the request transaction before starting the operation. It’s rather that it already has a queued asynchronous operation and is waiting for the go-ahead signal to execute it.

The typical asynchronous request looks like this:
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Figure 14 Asynchronous Data CTA Request-ACK-Beacon MSC
To further emphasize the difference between isochronous and asynchronous CTA requests:

· The [request – response – ack –beacon] sequence is used when a synchronized state must be reached between PNC and client device before any further activity can be taken. The request may be approved or denied.

· The [request-ack – beacon] is used when the PNC should continuously offer a service to the client device until its used or the device revokes the request. All exceptions are handled by timeouts. A low level acknowledgement/retry utility is used to make sure the PNC gets the request. Once the PNC has gotten the request, the confirming allotment is guaranteed to come sooner or later.

2. 802.15.3 Association

2.1 The lost association response

This MSC illustrates a “successful” 802.15.3 association procedure as specified in clauses 7.5.2 and 8.3.2 of draft D09  .
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Figure 15 802.15.3 Association Request/Response MSC
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Figure 16 802.15.3 Association Request/Response MSC continued
We can see that the association is successful and that the integrity of the global system state is intact since the client ends up in the client state and the PNC in the pnc state.

There is one inefficiency however.

Initially the new client sets its receiver to listen for frames addressed to the UNASSIGNEDAID (0xFE). At (A the PNC sends its first association response to the UNASSIGNED AID.

This is the currently set DEVID in the receiver and the frame is passed to the client MLME. Immediately following the association request the PNC will send a directed frame to the client ((B). At the same time the client MLME will instruct its receiver to listen for frames containing the newly assigned AID it received in the association response frame ((C). We now have a classic race condition, but in this case, the race will always end up in the transceiver losing, because the address filter will reject the frame directed to the new AID before the XVR has a chance to ACK. If the PNC sends the directed frame immediately after the association response, this rule will have no exceptions.

Consequently the PNC will regard the association as failed at ((D) and send a new association response addressed to 0xFE at ((E). This one will always be lost, because the receiver filter is no longer set to listen for frames containing the unassigned AID: 0xFE. Finally,  at ((F) a directed frame will be sent to the new AID. Consequently, the directed frame will be acknowledged ((G) and the association is complete.

One possible solution to this problem,  is to let the PNC wait “a while” between sending the association response and the subsequent directed frame. Unfortunately this doesn’t work.  For it would prevent the PNC from handling other requests during the wait time. Besides,  it means that the PNC must draw conclusions about the internal states and their timing in the client MLME.  A task that is impossible. Finally, in any client-server interaction using a remote procedure call, or synchronized request, approach, one wants to make sure that a minimum of latency is caused in the server. The clients can wait since they only handle one task at a time, but the server must have a constant  flow in its activities.
2.2 Desynchronization of client and PNC association state machines

This MSC illustrates 802.15.3 association procedure as specified in clauses 7.5.2 and 8.3.2, where the client regards the association as successful but the PNC regards the association a failure.
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Figure 17 Desynchronized 802.15.3 Association State Machines
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Figure 18 Desynchronized 802.15.3 Association State Machines continued
This is the same sequence as in 2.1, with the exception that the acknowledgment of the directed frame never reached PNC ((A). The situation simulates a frame dropped due to bad media conditions.

The client has no way of knowing that the PNC never received its ACK-frame. Even if the PNC were to retry a 3rd time, it would be too late. As soon as all state machine requirements for a successful association were reached in the client it would report success to its DME ((B). At the same time the PNC would regard the interaction as failed and not associate the client ((C).

The consequence is the worst imaginable in protocol design; a server denial while the client is ready to start using never allocated resources. Worst case the PNC may decide to associate another device using the  AID the client believes is assigned to it.

This problem has a remedy, and we can take it out of the theory in 1.4.1. Using an information element in a following beacon, the client can get a final indication of the result of the association. This sequence is listed in 2.3

2.3 Using the PNC beacon to synchronize the client state machine

The MSC below shows the positive case. In the case that the acknowledgement doesn’t reach the PNC, a confirmation element will never be sent in any following beacon and the client will hence know that the association failed.
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Figure 19 802.15.3 Association Request/Response with Beacon Synchronization
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Figure 20 802.15.3 Association Request/Response with Beacon Synchronization continued
In this version there are no ambiguities about the result of the association. When the PNC receives confirmation that the directed frame was sent, it will put an association status info element in the beacon confirming the association at ((A). As a side benefit, all other associated devices will now know about the new peer.

If the client never receives the beacon, there is no harm done.  If the client tries to associate again, the PNC will recognize the  client MAC address as already associated. The PNC will then continue with a positive response and subsequent message sequence.  If the client doesn’t try again, normal PNC garbage collection routines will eventually purge the association resources belonging to the client.

The PNC should keep the association status info element in the beacon for a enough time so that the client will see it even if the client  misses one or more beacons. At the same time, the association status infor element shouldn’t be kept in the beacon forever, since the information element will be needed for other associating devices. It will be the implementer’s choice to keep the association confirmation for a suitable time, but as a guideline we have found that minimum 3 beacons until another device wants to associate will cover all needs.

3. Alternate association protocol proposal-1

Alternate association protocol proposal-1 uses the theories described in clause 1.4 and the association request sequence described in clause 1.4.2. The proof provided in clause 1.4.3 indicates there are no conditions that can lead to an illegal system state for either the PNC or client during this association process.

3.1 Proposal-1 Association request.
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Figure 21 Alternate Association Protocol Proposal-1

The association request is sent at ((A) with our without acknowledgement (it doesn’t matter since the client MLME will receive an association response which will prove whether the association request was successfully sent). The response, on the other hand, must be sent with acknowledgement, since that is the only way PNC can know whether the response reached the requestor ((B). 

[image: image34.emf]PNC_xvrPNC_mlmeClient_xvrClient_mlmeenv_0wAssocidle

pncidle

wAssocidleidle

idle

idleclient

CMT(1.9900)

START.cf

(01)

associnfo

((. true, 01, 4012 .))

beacon

((. 00, FE, false .), (. true, 01 .), (. false, 00, 0 .))

up_beacon

((. 00, FE, false .), (. true, 01 .), (. false, 00, 0 .))

BCNT(0.4800)

beacon

((. 00, FE, false .), (. true, FE .), (. true, 01, 4012 .))

up_beacon

((. 00, FE, false .), (. true, FE .), (. true, 01, 4012 .))

env_0Client_mlmeClient_xvrPNC_mlmePNC_xvr


Figure 22 Alternate Association Protocol Proposal continued

Finally, the beacon confirmation proves to the requestor that the PNC got the acknowledgement of the association response ((C).

As mentioned in 1.4.3, the only thing that in theory can happen, is that the ACK of the association response comes from the wrong contender. Even though the probability of this happening is negligible (devices won’t change positions that rapidly) it is not impossible. In 1.4.3 it’s proven why such a mistake will not fail the protocol. In Chapter 4 we will introduce a sequence that is identical to the sequence of alternate association protocol proposal-1, but which will solve the (almost im)possible ACK ambiguity.

4. Alternate Association protocol proposal-2: A Hybrid Approach

The main problem with the IEEE 802.15.3 association protocol is that the normal message interaction sequence between client and server is broken. Instead of letting the receiver of a frame tell the sender whether it received the frame or not, the sender is required to send a second frame to ask the receiver if it received the first frame. Aside from being a very unusual concept in protocol design, it creates a number of timing problems as noted in chapter 2.

The problem the 802.15.3 Association protocol attempted to solve was the problem of what to do if a frame is sent to a group of devices, where there is a slim chance that the wrong device might be sending the acknowledgement. Specifically this is true for association response, which is sent to the contention group address 0xFE. While alternate association protocol proposal-1 solves all timing and state machine synchronization issues, it does not eliminate the “wrong ACK problem”.

In this chapter we will describe a hybrid  association protocol model which solves both problems, and analyze what the consequences of such a model would be.

4.2  Changes in the SDL model

Since the client is supposed to send a second association request using its new AID, the PNC must allocate an MTS for the new device before responding. This MTS will be revoked if the association fails.

4.2.1 XVR process: beacon generation SDL modifications

First we have to simulate the dynamic allocation and deallocation of an MTS for the client device. This model is simplified so that there is only room for one associating device with an AID of 1. 
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Figure 23 Association Protocol Proposal-2: XVR SDL Modifications
This page shows the new XVR beacon generator (compare 1.3). The PNC MLME will tell the beacon generator when to start and stop sending MTSs for DEV-1. It will also tell the beacon generator when to insert the association information field for the successfully associated device. As long as there is an MTS for AID-1, the beacon generator will alternate between the contention MTS and the MTS-1 beacons. This is to simulate timing issues when the client has to wait for the right MTS. In this simplified version,  the PNC is allowed to send its management frames at any time without using MTS slots. The difference between this and a real implementation is longer worst case latencies because the PNC may have to wait for an MTS down.

4.2.2 PNC MLME

On the PNC side, the MLME is set up to expect two association requests, first one from the UNASSIGNED DEVID, then one from the AID that was assigned. The PNC uses the MAC address in the association request to make sure that the two requests come from the same device. Again, this implementation only allows one device to associate. In a real implementation, the PNC has to handle any combination of first and second association requests, and their repetitions (see comment on client side), from any number of devices.
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Figure 24 Association Protocol Proposal-2: PNC MLME SDL modifications

After the first association request,  the PNC opens up an MTS for the new client. It will then expect a new association request to confirm that the client received the association response. To verify that the PNC received the second association response, an association status information element is inserted into the beacon. In this example, this field remains in the beacon forever, while in a real implementation it would be put there only for enough time to ensure that the client  received a beacon with this field. If the PNC doesn’t receive a second association request within the stipulated time, it may revoke the MTS for DEV-1.

MLME Client Side

On the client side the MLME will compare the MAC address in the response to verify that the response is for itself. If so, it will set its XVR to handle frames to and from the new AID. After that it will send a new association request using its new AID as SA, and wait for a beacon to confirm the association.
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Figure 25 Association Protocol Proposal-2: Client MLME SDL Modifications

If an association reply is not received within the max wait time, the client may retry the association request. If a response is received, but no beacon with the confirmation element, there may be several reasons for this. The PNC maybe never received the client’s second association request. The client maybe never received the beacon or beacons. In either case, the client must assume that the PNC refused the association and revoked the MTS for the new AID. If the MTS was revoked, the device will never get a chance to repeat the association request using the new AID. Therefore all repetitions should always be initialized with an association request from the UNASSIGNED AID, which will be sent in a contention MTS. It’s the responsibility of the PNC to make sure that there is always a reasonable allocation of MTS for contention.

Association protocol proposal-2 MSC
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Figure 26 Association Protocol Proposal-2 MSC
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Figure 27 Association Protocol Proposal-2 MSC continued

The associating device sends an association request from the UNASSIGNED SA in an MTS assigned to the UNASSIGNED AID (= contention MTS) ((A). When received by the PNC, the PNC assigns an AID, opens up a new MTS for this AID ((B) and sends an association response to the UNASSIGNED address (to all competing devices) ((C). The association response is received by the device who won the association. This device sets its XVR to listen to frames for the new AID and sends a second association request using the new AID as SA ((D). When PNC receives this ((E) it knows that the correct device has received its new AID and confirms the successful association in a following beacon ((F). When the associating device has received this beacon, the association is complete ((G).

The interesting difference from chapter 1 and 3 is that the response frame from the PNC is not acknowledged. This is not needed since a second association request will confirm that the response frame reached the client. The “wrong ack problem” is thereby solved. At the same time there are no timing dependencies between the state machines in the PNC and the client, like in chapter 2. The beacon confirmation, being essential for all synchronized request-response interaction, finalizes the sequence.
Exception analysis

4.2.3 Validating the protocol

The best way to make sure all exceptions are found is to use a state space explorer, or a validator to exercise the system. Testing the model in 4.1, one will find that there are 10 trivial cases when a signal has no receiver, but no dead locks or other fatal errors


** Bit state exploration statistics **

No of reports: 10.

Generated states: 348.

Truncated paths: 0.

Unique system states: 240.

Size of hash table: 8000000 (1000000 bytes)

No of bits set in hash table: 480

Collision risk: 0 %

Max depth: 28

Current depth: -1

Min state size: 324

Max state size: 496

Symbol coverage :  80.88

Figure 28 Association Protocol Proposal-2: Validation Statistics
It turns out that none of the lost signals is of any importance, some are caused by the fact that the client cannot receive beacons until it has received the START.rq command, others are consequences of erroneous usage, for instance sending two subsequent START.rq to the MLME. More important is to find out what part of the system we have tested. Let’s examine the coverage for this model:
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Figure 29 Association Protocol Proposal-2: State Space Validation Map

We can see that the PNC Management timer has never expired and that neither an acknowledgement nor an acknowledgement timeout have been received. The two latter are obvious, because we don’t set the acknowledgement policy bit in any frame. The PMT timer never expires because the PNC always gets the second association request in time. To fully exercise the model we need to create all error conditions. It should be noted that a deeper analysis reveals that a few individual SDL symbols in other transitions have not been exercised either, because conditional statements have not evaluated to all possible results.

4.3.2
Global Finite State Machine analysis

Even if the validation gives us clues about what to test for, it can also be useful to look at the system (global) finite state machine. For the sake of simplicity we can assume that the XVR always immediately obeys its MLME. In a practical implementation, one may want to make sure that an address filter change in the XVR has taken place before the next frame is sent, to make sure no race conditions exist. There is no error that can occur in the XVR that will not lead to one of the transitions in the MLME as listed below (simply because there are no other transitions in MLME!)

Here we will only look at the two MLMEs involved. The MLME has the following state transition table:

For the client device:

Table 4 Association Protocol Proposal-2: Client State Transitions

	Start State
	Signal
	Next State

	wSTART
	START.rq
	wASSOC

	wASSOC
	up_assocrp
	wASSOC

	wASSOC
	up_beacon <<confirmation>>
	client

	wASSOC
	up_beacon <<no confirmation>>
	wASSOC

	wASSOC
	CMT <<retry = MAXRETRY>>
	wSTART

	wASSOC
	CMT <<retry < MAXRETRY>>
	wASSOC


For the PNC:

Table 5 Association Protocol Proposal-2: PNC State Transitions

	wSTART
	START.rq
	pnc

	pnc
	up_assocrq <<UNASSIGNED>>
	wassoc1

	wassoc1
	up_assocrq <<UNASSIGNED>>
	wassoc1

	wassoc1
	up_assocrq <<SA = 1>>
	pnc

	wassoc1
	PMT <<retry = MAXRETRY>>
	wSTART

	wassoc1
	PMT <<retry < MAXRETRY>>
	wassoc1


All other frames are ignored in the states listed.

From this point we have to look at global states. The wSTART state is the same for both PNC and client, but we have defined a rule that the PNC must be started before any device can associate. Thus there is only one global start state we can analyze: [client = wSTART ( PNC = pnc]. This state will be called ASTART. If there is no PNC, the client will eventually end up back in the wSTART state, when the CMT time expires and there are no more retries. In this example the PNC will never refuse an association, therefore the only legal global end state is [client = client ( PNC = pnc]. Lets call this state SUCCESS. If the association fails because a frame is lost, the end state should be 
[client = wSTART ( PNC = wSTART], we call this state FAILURE. Note that the FAILURE state means that the association failed but the protocol’s integrity was maintained. Any other end state is a fatal protocol failure and we name it the state CERROR if only the client failed (non catastrophic) and PERROR id only the PNC fails (catastrophic).

Between ASTART and the possible end states SUCCESS, FAILURE and (C/P)ERROR, there is a set of intermediate states. 

The possible combinations are:

Table 6 Association Protocol Proposal-2: PNC Intermediate State Transitions

	client
	PNC
	name
	reason

	wSTART
	pnc
	ASTART**
	Before starting association sequence

	wASSOC
	pnc
	CWAIT1*
	Client send first request, before pnc receives it

	wASSOC
	wassoc1
	ASSOC
	Association in progress

	wASSOC
	wSTART
	PFAIL
	PNC gave up, client still trying

	wASSOC
	pnc
	CWAIT2*
	PNC success, client waiting for beacon

	wSTART
	wassoc1
	CFAIL
	Client gave up. PNC still trying

	wSTART
	wSTART
	FAILURE
	Association failed

	client
	pnc
	SUCCESS
	Association succeeded

	client
	wassoc1
	PERROR
	Impossible state

	client 
	wSTART
	PERROR
	Impossible state

	wSTART
	pnc
	CERROR**
	wrong as end state, only legal as start state


**) same states. Should only occur as start state, not as end state. This can happen if the beacon is never received and the amount of retries used up. According to 1.4.1 and 1.4.3.2, this is an error state but not a catastrophic error. Client DME may retry, or PNC may free up resources.

*) this state combination is passed twice during an association sequence

Next we have to give names and define the transitions. A successfully sent frame is a stimulus to the state machine. If the frame is not received in by the intended destination, a timer will expire in the source, destination or both and lead to a new state. In the table below, a frame event means that the frame was successfully received.

Possible events:

Table 7 Association Protocol Proposal-2: State Machine Events
	Sent frame or expired timer
	Name
	Explanation

	START.rq
	START
	Client gets MLME order to associate

	assoc_rq(FE)
	RQ(FE)
	Client sends an association request as UNASSIGNED

	assoc_rq(1)
	RQ(1)
	Client sends an association request as AID 1

	CMT
	CMT(1)
	Client’s timer times out. Not expected event in time. 
Ok to retry

	CMT
	CMT(0)
	Client’s timer times out. Not expected event in time.
No more retries

	beacon(association confirm)
	BCN(1)
	Beacon received with association confirmation element

	beacon(no confirm)
	BCN(0)
	Beacon without confirmation received

	assoc_rp
	RP
	An association reply is received by the requestor, with parameters confirming that the requestor is associated.

	PMT
	PMT(1)
	PNC’s timer times out. Not expected event in time. 
Ok to retry

	PMT
	PMT(0)
	PNC’s timer times out. Not expected event in time.
No more retries


With this information we can draw the global state chart
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Figure 30 Association Protocol Proposal-2: Client & PNC State Diagrams

The local state machines. Note that in client there are two implicit states called wASSOC. The two states are really the same, but they are separates by a condition that both the association reply and the beacon with the confirmation element must be received, and in that order. Signals received in the wrong order are ignored (that is, they will not change the state).

When we combine the two state machines into one, we will find that we get one state with three implicit states, namely the ASSOC state.  First step is to reduce this into one state.
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Figure 31 Association Protocol Proposal-2: State Machine Consolidation

The ASSOC:1 is the state where the PNC is ready to accept the first association request RQ(FE) and the client waits for association response (RP). ASSOC:2 is when PNC waits for the second request, RQ(1) and the client waits for the confirming beacon BCN(1). ASSOC:3 is the repetition state where the client retries the first association request. To make the state machine more readable, we will combine the 3 implicit states into one, and remove all events that doesn’t cause a transition out of the ASSOC state.

Finally, the consolidated state machine looks like this:
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Figure 32 Association Protocol Proposal-2: Consolidated State Transition Diagram

The important thing here is that there is no transition path to the catastrophic states PERROR. 

A comment on retrial of RQ(FE): In this implementation, the PNC will go to its start state if the association fails. In a real implementation it would go back to its active server state “pnc”. The retry path shown at ((A) would in a real implementation restart the whole sequence as shown with ((B).

The XVR, even if not evaluated here, is of interest. If an MTS is not available within a reasonable time, a management frame will be stuck in the transmit queue and never be sent. The result in MLME will be expiring timers, such as CMT and PMT in this drawing. The only MTS that is guaranteed to exist is the UNASSIGNED MTS. The dedicated MTS for AID 1 may or may not exist at a certain moment, depending on PNC allocation policy and whether the PNC timer has expired. For this reason it is crucial that all retries by the client are always initiated with the RQ(FE) frame, that is the contention association request. By doing so, the PNC can also synchronize its state machine to the start of the association sequence. If the client were to retry in the assigned MTS, it may very well be that the client and PNC timers, as well as the interval between the dedicated MTS, ends up being the same. Under those circumstances, an association could never occur if the first iteration failed.

4.3.3 Timing

It is not possible to do a generic time analysis without having specified times for beacon intervals and MTS assignment. 

Compared to Association Protocol Proposal-1, the worst case will be increased by one MTS up delay time, since the client has to send a directed frame rather than just to acknowledge the association reply from the PNC.

Compared to current 802.15.3, it will be quicker. At a first glance, it may seem like we would save an MTS up delay time in the 802.15.3 sequence, since the PNC sends both the association response and the directed frame and thus could do it in the same MTS down. As proven in chapter 2, this, unfortunately, does not work, since the client would always miss the directed frame if it was sent immediately following the response, and the sequence would have to be repeated a minimum of two times.

4.3.4 Alternatives

It would be possible to skip the wait for a confirmation beacon if the second association request frame were acknowledged. The acknowledgement would then serve as a proof that the association is completed in the PNC. While fully possible, this approach has some drawbacks.
· if there is any latency in the PNC between getting the second association request and actually allocating the resources, these resources may be used by the client before they exist. Once assigned in a beacon they are guaranteed to exist.

· Other devices would not be informed that there is a new device associated

· Repetition must always be done starting from the first UNASSIGNED association request, so using ack at the second may lure implementers into using their normal ack/retry mechanism for the second request, which may very well not work. Using the beacon as final confirmation makes the protocol stringent and consequent, and the small cost in time is well spent.

· Looking at the state machine above, we of course want to avoid the CERROR state, and get to a conclusive state. It would be easy to implement a policy that the PNC keeps sending the association confirmation element for a number of beacons to increase probability of a successful delivery. Using ack at the second request forces the client and PNC to always go through the complete association sequence if the transmission is unsuccessful.
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