March, 2002

doc.: IEEE 802.15-02/110r0

IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	Stream Negotiation Analysis with an Alternate Proposal

	Date Submitted
	[March, 2002]

	Authored by:

Edited by:
	[Knut Odman]

[XtremeSpectrum, Inc.]
[8133 Leesburg Pike]

[Vienna, Va. 22182]

[Allen D. Heberling]
[XtremeSpectrum, Inc.]
[8133 Leesburg Pike]

[Vienna, Va. 22182]

	Voice: [703-269-3058

E-mail: [kodman@xtremespectrum.com]

Voice:[703-269-3022]
Fax[]
E-mail: [adheberling@ieee.org]

	Re:
	[00000D09P802-15-3_Draft_Standard.pdf]

	Abstract
	[This document addresses draft proposal #9 of IEEE 802.15.3 and its handling of streams and channel time allocation. The proposed protocol has grown very complex, mostly due to assumptions that the MAC layer is supposed to solve a number of higher layer problems such as end-to-end service negotiations, flow control and several others currently not spelled out. By becoming more strict regarding the functionality of each protocol layer, the MAC layer stream negotiations can be radically simplified.]

	Purpose
	[To provide the 802.15.3 community with stream negotiation analyses supporting a proposal to eliminate tripartite stream negotiation]

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

	Revision History
	

1. Quality of services

Even though there are plenty of named concepts to support quality of services there are only two main schemes; end-to-end or per-hop service allocation.

End-to-end quality of services is described by IETF integrated services, or IntServ. IntServ uses the signaling protocol RSVP (ReSerVation Protocol) to reserve an end-to-end service level including end stations and all routers and bridges on the way. To make RSVP work, every server, a message will pass, must have a way to initialize and maintain a service level per data flow. This may be done by a function called Subnet Bandwidth Manager (SMB). The SBMs along the path of a message will do a initial signal exchange and synchronize into a specified service state, based on the parameters in the signal. There are different topological solutions and also different possibilities to put this functionality in the network layer, link layer or in an external management entity.

The second alternative is to tag every data message with a header field representing what kind of service priority the message should have. This is called Differential Services, or DiffServ. In DiffServ there is no end-to-end agreement about service level, and no hard state synchronization between servers along the message path. Instead, the priority tag in every step (hop) the message takes will be interpreted by the next server in the chain. The message, then will be handled using the service level supported by the local server that best conforms to the priority level selected in the header.

IntServ is the only way to offer a guaranteed service level between the originator and destination of a message, but it has the disadvantage that all servers on the path must support the same QoS scheme. You also need a transport protocol that supports all necessary service levels. In most implementations ATM, or a derivative thereof, is used. The reason for ATM being used is that ATM has a defined QoS scheme for cell packets on virtual channels.

DiffServ can be supported by most transport protocols, as long as they provide a way to carry the priority tag in the message header. IEEE 802.11p and 802.11Q suggests ways to carry this information across the network. An extra parameter needs to be passed to the MAC, either as a parameter to MLME-CREATE-STREAM.request, or in the data packet header. The MAC layer needs to handle every packet according to its individual priority tag.

Looking at typical 802.15.3 applications, it is most likely that they will need to support DiffServ and less likely that they will be requested to support IntServ, since the 802.15.3 device will most likely not do any layer2 switching but rather act as a link between directly connected end points. Another reason why the DiffServ version is more suitable is that the Controlled Load service level better maps to a wireless media than the Guaranteed Service of IntServ. In a media with variable transfer conditions one cannot guarantee a bandwidth, but one can very well individually priority handle every packet.

Even though we will from this point forward assume that only DiffServ is supported, it is important to note that nothing in this simplified model prevents support for integrated services with RSVP signaling.

The activity in the upper layers for RSVP interaction would be:

· request channel time

· send/pass PATH message

· send/pass RESV message

2. Stream properties

2.2 Tri-partite stream negotiation and DME role

To support DiffServ, there must be a function that marks every package with the requested 802.1p 3 bit priority level. The priority levels must also have a well defined interpretation. There are some major observations to make about this technique:

· only the originator of a message will tag it.

· The receiver will have no need to re-tag, refuse or recalculate parameters for a message.

· Only channel time can be allocated. There is no way to guarantee a bandwidth, since the media condition is variable and unpredictable.

· All channel time allocations are done by the PNC.

· Only the sender can do the calculation of how much channel time is needed for a certain service flow (based on rates and media condition).

· Neither IETF nor IEEE standards define where the tagging should be done, but it’s clear that it’s above the MAC layer.

We can also do some general observations about channel time allocations:

· Since the PNC will only handle channel time, and the receiver will not negotiate anything, there is no need for tri-partite negotiations. The receiver will get the channel time allocation in the beacon. That is all it needs to know. The 802.15.3 tri-partite negotiation stems from a misconception that the stream QoS negotiations or the flow control handling should be done in the MAC. In fact the QoS negotiations, if any, are done in L3 or L4, and the flow control handling where the transmit and receive queues reside, which in 802.15.3 would be the common convergence layer.

· Since the PNC cannot make any conclusions about the originator’s current media status and its management layer protocol, there is no need to transfer QoS parameters in the request. Only channel time can be requested and granted. There is therefore no need for separate channel time and stream allocation signals. The two can be combined into one.

· The PNC channel time allocation has to be done at the same place where the beacon is built, since the beacon CTA is created out of the current stream allocations. The CTA format and allocation procedure have to be specified in the standard, since they will both affect the QoS handling and the beacon frames that are sent over the radio medium. The allocation algorithm itself doesn’t have to be standardized.

Out of these observations we can conclude:

· There is no need for tri-partite stream negotiation. The protocol can be significantly simplified by only letting the originator of the stream request channel time from the PNC.

· In the PNC, it’s only possible for the DME to allow or disallow the creation of a stream based on higher layer specifications. The DME can base it’s decision on source address, destination address and requested priority. As a consequence, modification and termination of a stream is completely done in the PNC MLME.

Stream direction

Furthermore only one stream direction is allocated, from source to destination of the flow. If the destination needs a reverse stream, the destination DME must allocate appropriate channel time, for the conditions only known at the destination. No duplex streams are allocated by a device. The reason is that the originating device does not have the necessary knowledge about the peer device’s condition and capabilities to do the channel time calculation in its place. Rather every device that needs to send continuous or repetitive data shall open their own unidirectional stream. Note that there may very well be higher layer signal exchanges to negotiate certain parameters for the streams. Such higher layer handshaking is most likely done as asynchronous data transmissions.

For obvious reasons no device can allocate a stream towards itself. The mere fact that a device is prepared to listen for a certain time per superframe doesn’t convey enough information for the proposed sender of streamed data to decide how to use the time. This functionality is also a result of “layer bleeding”, confusing request for services on the application layer with request for channel time on the MAC layer. If a device wants to request a higher level service, the most likely sequence, without consideration of originating layer, would be:

· DEV-B: Broadcast service discovery. “Is there a device with service X in the piconet”

· DEV-A: Unicast service reply. “I’m device A and can provide service X”

· DEV-B: Unicast service request. “Device B requests service X from A”

· DEV-A: Create stream with channel time C for service X to device B

At this point, depending on the needs of the service X, the device B which was requesting the service may open a reverse stream to A for flow control or other control signals, or maybe a reverse virtual channel for full duplex transmission, if the service is for instance Voice over IP.

2.3 QoS parameters versus channel time

The only thing that can be negotiated at the MAC layer in a wireless network is guaranteed channel time. In a wireless media, there is no guarantee that this time can be optimally used. It’s the duty of a link manager unit (TBD) at the convergence layer to calculate the need for channel time out of requested stream parameters based on media quality statistics. What statistics to gather and how to compute necessary channel time for desired bandwidth, acknowledgements and retries, is beyond the scope of the standard.

No stream parameters are needed except the globally assigned stream-Id (for identification of a stream entity to manage) and in the case of stream creation, a streamRequestId (to separate retries of the same request from requests for separate streams).

The request shall contain desired channel time and a minimum acceptable channel time. If the PNC cannot allocate the minimum time, the request will fail. The PNC shall return the available channel time. In the case of a successful allocation, the available channel time is the time allocated to the requestor by the PNC. In case of a failed allocation, the available channel time indicates the maximum available channel time of the type requested in the piconet.

Stream creation and modification sequence

The signal interchange for the initial request follows the same synchronous request-response interchange as described in [association and other synchronous request-response interaction]. In short, a request is sent and PNC sends a response with the result of the resource allocation. The response frame in always very important to get acknowledged by the client. This acknowledgement is the only way that the PNC can know that the response frame has been successfully sent.

As proven in the same document, the requestor must get a confirmation in the beacon before considering the request successfully granted. The reason for that is that the requestor has no way of telling that its acknowledgement of the PNC response frame actually reached the PNC. For additional details regarding MLME-CREATE-STREAM.request/indication/response/confirm, MLME-MODIFY-STREAM.request/confirm, CHANNEL-TIME-REQUEST/RESPONSE command frames and additional message sequence charts see doc: 01/469r3.

[image: image1.wmf]CLient

PNC

ChannelTime.rq

(DA, min CT, desired CT, prio)

ChannelTime.rsp

(stream-ID, available CT, result-code)

ack

beacon

(CTA map)

wait rsp

wait ack

wait bcn

success

success

Fig.1. Synchronous request for stream

Modifications go through the same signal interchange, with two exceptions:

· DME is not involved in PNC

· If the client requests a reduction of CTA, it need not wait for a beacon confirmation

Stream termination sequence

Termination of streams is done as an asynchronous request. The reason is that the client has no need to enter a new state after the stream is deallocated. It will only send the request with the ACK policy bit set. It’s up to the implementation what happens if the acknowledgment from PNC is not received. For additional details regarding MLME-TERMINATE-STREAM.request/confirm, CHANNEL-TIME-REQUEST command frame and additional message sequence charts see doc: 01/469r3.

[image: image2.wmf]CLient

PNC

ChannelTime.rq

(DA, min CT, desired CT, prio)

ack

wait ack

success

success

Termination. No response signal is sent from the PNC since there are no decisions made that needs to conveyed to the client.

3. References

[1]
802.15.3-D09

[2]
IEEE 802.1D including 802.1p and 802.1Q

[3]
IETF RFC 2205, 2210, 2212, 2214, 2215, 2274, 2275, 2814, 2815, 2816

Submission
page 1
Knut Odman XtremeSpectrum, Inc.

