March, 1994
 DOC: IEEE P802.11-94/xxx

February, 2002
 IEEE P802.15-02/111r0

IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	WPAN Security Framework Proposal

	Date Submitted
	[22 February, 2002]

	Source
	[Matthew Welborn]
[XtremeSpectrum, Inc.]
[7133 Leesburg Pike, Ste 700, Vienna, VA]
	Voice:
[(703) 269-3052]
Fax:
[]
E-mail:
[mwelborn@xtremespectrum.com]

	Re:
	 [In response to the Call for Proposals for a Security Suite, IEEE doc# P802.15-02-074r1
]

	Abstract
	[This document is a proposed draft of the security clause for the 802.15.3 MAC. Much of the text is derived from a draft of the 802.16 security sections. It is provided here as an initial draft for further work.]

	Purpose
	[Promote further discussion towards a 802.15.3 Security framework and Cipher Suite.]

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

10. Privacy Sublayer

Privacy provides subscribers with privacy across the piconet. It does this by encrypting connections between DEV and PNC. The specific portion of the PNC responsible for controlling all security functions is the security manager (SM).

The SM protects against unauthorized access to data transport services by enforcing encryption of the associated service flows across the piconet. Privacy employs an authenticated client/server key management protocol in which the SM, the server, controls distribution of keying material to client DEVs.

10.1 Architecture

Privacy has two component protocols:

a) An encapsulation protocol for encrypting packet data across the fixed broadband wireless access network. This protocol defines (1) a set of supported cryptographic suites, i.e., pairings of data encryption and authentication algorithms, and (2) the rules for applying those algorithms to a MAC PDU payload.

b) A key management protocol (Privacy Key Management, or “PKM”) providing the secure distribution of keying data from SM to DEV. Through this key management protocol, DEV and SM synchronize keying data; in addition, the SM uses the protocol to enforce conditional access to network services.

10.1.1 Packet data encryption

Encryption services are defined as a set of capabilities within the MAC security sublayer. MAC Header information specific to encryption is allocated in the Generic MAC Header Format. Encryption is always applied to the MAC PDU payload; the Generic MAC Header is not encrypted. All MAC management messages shall be sent in the clear to facilitate registration, ranging, and normal operation of the MAC sublayer.

Subclause X.X.X.X specifies the format of MAC PDUs carrying encrypted packet data payloads.

10.1.2 Key Management protocol

A DEV uses the Privacy Key Management protocol to obtain authorization and traffic keying material from the SM, and to support key refresh.

The key management protocol uses RSA [RSA2] (a public-key encryption algorithm) and strong symmetric algorithms to perform key exchanges between DEV and SM.

The Privacy Key Management protocol adheres to a client/server model, where the DEV, a PKM “client,” requests keying material, and the SM, a PKM “server,” responds to those requests, ensuring individual DEV clients only receive keying material they are authorized for. The PKM protocol uses MAC management messaging, i.e., PKM-REQ and PKM-RSP messages defined in X.X.X.X.

The PKM protocol uses public-key cryptography to establish a shared secret (i.e., an Authorization Key) between DEV and SM. The shared secret is then used to secure subsequent PKM exchanges of data encryption keys. This two-tiered mechanism for key distribution permits refreshing of data encryption keys without incurring the overhead of computation-intensive public-key operations.

A SM authenticates a client DEV during the initial authorization exchange.

Note: WPAN applications span a wide variety of authentification needs and devices associated with WPAN applications may have very limited user interfaces and no connection to external certification resources. There is no way to completely address all possible scenarios here, but the primary goal is that the user of the WPAN be able to control piconet access. For these reasons,
access control procedures should be implemented in the higher layers of the SM node that allow control of the specific DEVs authorized or allowing the user to directly allow DEVs to join piconet. Because of the insecure nature of the wireless channel, the user must take care to ensure that DEV corresponding to a particular authorization request is the correct one before the user allows the trust relationship to be established.

All DEVs shall have factory-installed RSA private/public key pairs or provide an internal algorithm to generate such key pairs dynamically. If a DEV relies on an internal algorithm to generate its RSA key pair, the DEV shall generate the key pair prior to its first AK exchange, described in 10.2.1.

 The PKM protocol is defined in detail in 10.2.

10.1.5 Cryptographic Suite

A Cryptographic Suite is the piconet’s set of methods for data encryption, data authentication, and DEK exchange. A Cryptographic Suite is specified as described in X.X.X. A DEV shall support the mandatory Cryptographic Suite and any of the optional suites as shownin Table XXX.

10.2 Privacy Key Management (PKM) protocol

10.2.1 DEV Authorization and AK exchange overview

DEV authorization, controlled by the Authorization state machine, is the process of:

a) The SM authenticating a client DEV’s identity

b) The SM providing the authenticated DEV with an Authorization Key, from which a Key Encryption Key (KEK) and message authentication keys are derived

DEK state machines manage the refreshing of Data encryption Keys.

The DEV sends an Authorization Request message to its SM. This is a request for an Authorization Key. The Authorization Request includes:

a) The DEVs public key that will be used for authentication.

b) A description of the cryptographic algorithms the requesting DEV supports; a DEV’s cryptographic capabilities is presented to the SM as a list of cryptographic suite identifiers, each indicating a particular pairing of packet data encryption and packet data authentication algorithms the DEV supports.

In response to an Authorization Request message, a SM validates the requesting DEV’s identity, determines the encryption algorithm and protocol support it shares with the DEV, activates an Authorization Key for the DEV, encrypts it with the DEV’s public key, and sends it back to the DEV in an Authorization Reply message. The authorization reply includes:

a) An Authorization Key encrypted with the DEV’s public key

b) A 4-bit key sequence number, used to distinguish between successive generations of Authorization Keys

The SM, in responding to a DEV’s Authorization Request, shall determine whether the requesting DEV’s identity can be verified via techniques that are out of scope of this standard.

10.2.2 DEK exchange overview

Upon achieving authorization, a DEV starts a DEK state machine that is responsible for managing the keying material associated with the piconet. DEK state machines may send Key Request messages to the SM, requesting a refresh of keying material if necessary.

The SM responds to a Key Request with a Key Reply message, containing the SM’s active keying material for the piconet.

The data encryption key (DEK) in the Key Reply is triple DES (encrypt-decrypt-encrypt or EDE mode) encrypted, using a two-key, triple DES key encryption key (KEK) derived from the Authorization Key.

The Key Reply provides the requesting DEV the DEK and CBC initialization vector.

A DEK state machine remains active as long as the DEV is authorized to operate in the SM’s security domain, i.e., it has a valid Authorization Key.

The parent Authorization state machine stops its child DEK state machines when the DEV receives from the SM an Authorization Reject during a reauthorization cycle.

Communication between Authorization and DEK state machines occurs through the passing of events and protocol messaging. The Authorization state machine generates events (i.e., Stop, Authorized, Authorization Pending, and Authorization Complete events) that are targeted at its child DEK state machine. DEK state machines do not target events at their parent Authorization state machine. The DEK state machine affects the Authorization state machine indirectly through the messaging a SM sends in response to an DEV’s requests: a SM may respond to a DEK machine’s Key Requests with a failure response (i.e., Authorization Invalid message) that will be handled by the Authorization state machine.

10.2.3 Security capabilities selection

As part of their authorization exchange, the DEV provides the SM with a list of all the cryptographic suites (pairing of data encryption and data authentication algorithms) the DEV supports. A SM shall reject the authorization request if it determines that none of the offered cryptographic suites match the one in use in the piconet at that time.

10.2.4 Authorization state machine

The Authorization finite state machine (FSM) is presented below in a graphical format, as a state flow model (Figure 10a), and in a tabular format, as a state transition matrix (Table 10a).

The state flow diagram depicts the protocol messages transmitted and internal events generated for each of the model’s state transitions; however, the diagram does not indicate additional internal actions, such as the clearing or starting of timers that accompany the specific state transitions. Accompanying the state transition matrix is a detailed description of the specific actions accompanying each state transition; the state transition matrix shall be used as the definitive specification of protocol actions associated with each state transition.

The following legend applies to the Authorization State Machine flow diagram depicted in Figure 10a.

a) Ovals are states.

b) Events are in italics.

c) Messages are in normal font.

d) State transitions (i.e., the lines between states) are labeled with <what causes the transition>/<messages and events triggered by the transition>. So “timeout/Auth Request” means that the state received a “timeout” event and sent an Authorization Request (“Auth Request”) message. If there are multiple events or messages before the slash “/” separated by a comma, any of them can cause the transition. If there are multiple events or messages listed after the slash, all of the specified actions must accompany the transition.

Figure 10a—Authorization State Machine Flow Diagram (TBD)

Note: Description of Authorization state machine is TBD.

10.2.4.1 States

Note: Description of Authorization state machine states is TBD.

Table 10b—Authorization FSM State Transition Matrix (TBD)

10.2.4.2 Messages

Note that the message formats are defined in detail in X.X.X.X.X.

Note: Description of Authorization state machine messages is TBD.

10.2.4.3 Events

Note: Description of Authorization state machine events is TBD.

10.2.4.4 Parameters

Note: Description of Authorization state machine parameters is TBD.

10.2.4.5 Actions

Note: Description of Authorization state machine actions is TBD.

10.2.5 DEK state machine

The DEK state machine consists of X states and Y events (including receipt of messages) that can trigger state transitions. Like the Authorization state machine, the DEK state machine is presented in both a state flow diagram (Figure 94) and a state transition matrix (Table 74). As was the case for the Authorization state machine, the state transition matrix shall be used as the definitive specification of protocol actions associated with each state transition.

Note: Description of DEK state machine is TBD.

Figure 10b—DEK State Machine Flow Diagram (TBD)

10.2.5.1 States

Note: Description of DEK state machine states is TBD.

Table 10b—DEK FSM State Transition Matrix (TBD)

10.2.5.2 Messages

Note that the message formats are defined in detail in X.X.X.X.X.

Note: Description of DEK state machine messages is TBD.

10.2.5.3 Events

Note: Description of DEK state machine events is TBD.

10.2.5.4 Parameters

Note: Description of DEK state machine parameters is TBD.

10.2.5.5 Actions

Note: Description of DEK state machine actions is TBD.

10.4 Key usage

10.4.1 SM key usage

The SM is responsible for maintaining keying information for the piconet. The PKM protocol defined in this specification describes a mechanism for synchronizing this keying information between a SM and its client DEVs.

10.4.1.1 AK key lifetime

The SM’s first receipt of an Authorization Request message from the unauthorized DEV shall initiate the activation of a new Authorization Key (AK), which the SM sends back to the requesting DEV in an Authorization Reply message.

10.4.1.2 AK transition period on SM side

The SM must always be prepared to send an AK to a DEV upon request.

10.4.1.3 SM usage of AK

The SM shall use keying material derived from the DEV’s Authorization Key for:

a) Verifying the HMAC-Digests in Key Request messages received from that DEV,

b) Calculating the HMAC-Digests it writes into Key Reply, Key Reject and DEK Invalid messages sent to that DEV, and

c) Encrypting the DEK in the Key Reply messages it sends to that DEV.

A SM shall use an HMAC_KEY derived from the DEV’s AK to verify the HMAC-digest in Key Request messages received from the DEV and in calculating HMAC-Digests in Key Reply, Key Reject, and DEK Invalid message.

The SM shall use a KEK derived from the AK for a DEV when encrypting the DEK in the Key Reply messages.

10.4.1.4 DEK lifetime

Note: TBD
10.4.1.5 SM usage of DEK

Note: TBD
10.4.2 DEV key usage

The DEV is responsible for sustaining authorization with its SM and maintaining an active Authorization Key. A DEV shall be prepared to use its two most recently obtained AKs according to the following manner.

10.4.2.2 DEV usage of AK

A DEV shall use the HMAC_KEY derived from its AK when calculating the HMAC-Digests it attaches to Key Request messages.

The DEV shall use the HMAC_KEY derived from its AK to authenticate Key Reply, Key Reject, and DEK Reject messages. The DEV shall decrypt an encrypted DEK in a Key Reply message with the KEK derived from its AK.

10.4.2.3 DEV usage of DEK

The DEV shall use its DEK to encrypt data traffic.

Figure 10c—Authorization Key Management in SM and DEV (TBD)

Figure 10d—DEK Management in SM and DEV (TBD)

Note: Discussion TBD

10.5 Cryptographic methods

This section specifies the cryptographic algorithms and key sizes used by the PKM protocol. All DEV and SM implementations shall support the method of packet data encryption defined in 10.5.1, encryption of the DEK as specified in 10.5.2, and message digest calculation as specified in 10.5.3.

10.5.1 Data encryption with 3-DES

Note: The text in this section was originally written assuming the data encryption would use DES. It needs to be updated to indicate the use of 3-DES

If the Data Encryption Algorithm Identifier in the Cryptographic Suite equals 0x01, data on connections shall use the Cipher Block Chaining (CBC) mode of the US Data Encryption Standard (DES) algorithm [FIPS-46-2, FIPS-74, FIPS-81] to encrypt the MAC PDU payloads.

The CBC IV shall be calculated as follows: in the downlink, the CBC shall be initialized with the Exclusive-OR (XOR) of (1) the IV parameter included in the DEK keying information, and (2) the content of the PHY Synchronization field of the latest DL-MAP. In the uplink, the CBC shall be initialized with the XOR of (1) the IV parameter included in the DEK keying information, and (2) the content of the PHY Synchronization field of the DL-MAP that is in effect when the UL-MAP for the uplink transmission is created/received.

Residual termination block processing shall be used to encrypt the final block of plaintext when the final block is less than 64 bits. Given a final block having n bits, where n is less than 64, the next-to-last cipher text block is DES encrypted a second time, using the Electronic Code Book (ECB) mode, and the least significant n bits of the result are XORed with the final n bits of the payload to generate the short final cipher block.

In order for the receiver to decrypt the short final cipher block, the receiver DES encrypts the next-to-last ciphertext block, using the ECB mode, and XORs the left-most n bits with the short final cipher block in order to recover the short final cleartext block. This encryption procedure is depicted in Figure 9.4 of [B17].

In the special case when the payload portion of the MAC PDU is less than 64 bits, the initialization vector must be DES encrypted and the left-most n bits of the resulting ciphertext, corresponding to the number of bits of the payload, must be XORed with the n bits of the payload to generate the short cipher block.6

6This method of encrypting short payloads is vulnerable to attack: XORing two sets of ciphertext encrypted in the above manner under the same set of keying material will yield the XOR of the corresponding sets of plaintext. Further investigation is required.

10.5.2 Encryption of DEK with 3-DES

The SM encrypts the value fields of the DEK in the Key Reply messages it sends to client DEV. This field is encrypted using two-key triple DES in the encrypt-decrypt-encrypt (EDE) mode [B17]:

Encryption: C = Ek1[Dk2[Ek1[P]]]

Decryption: P = Dk1[Ek2[Dk1[C]]]

P = Plaintext 64-bit DEK

C = Ciphertext 64-bit DEK

k1 = left-most 64 bits of the 128-bit KEK

k2 = right-most 64 bits of the 128-bit KEK

E[] = 56-bit DES ECB (electronic code book) mode encryption

D[] = 56-bit DES ECB decryption

10.5.4 below describes how the KEK is derived from the Authorization key.

10.5.2 Encryption of data traffic with 3-DES

TBD

10.5.3 Calculation of HMAC digests

The calculation of the keyed hash in the HMAC-Digest attribute and the HMAC Tuple shall use the HMAC [RFC-2104] with the SHA-1 hash algorithm [FIPS-180-1].

Message authentication keys are derived from the Authorization Key (see 10.5.4 below for details).

The HMAC Sequence number in the HMAC Tuple shall be equal to the AK Sequence Number of the AK from which the HMAC_KEY was derived.

The digest shall be calculated over the entire MAC Management Message with the exception of the HMACDigest and HMAC Tuple attributes.

10.5.4 Derivation of DEKs, KEKs and message authentication Keys

The SM generates Authorization Keys, DEKs and IVs. A random or pseudo-random number generator shall be used to generate Authorization Keys and DEKs. A random or pseudo-random number generator may also be used to generate IVs. Regardless of how they are generated, IVs shall be unpredictable. [B9] provides recommended practices for generating random numbers for use within cryptographic systems.

10.5.4.1 DES Keys

[FIPS-81] defines 56-bit DES keys as 8-byte (64-bit) quantities where the seven most significant bits (i.e., seven left-most bits) of each byte are the independent bits of a DES key, and the least significant bit (i.e., right-most bit) of each byte is a parity bit computed on the preceding seven independent bits and adjusted so that the byte has odd parity. PKM does not require odd parity. The PKM protocol generates and distributes 8-byte DES keys of arbitrary parity, and it requires that implementations ignore the value of the least significant bit of each. The encryption operations used for key distribution and data encryption each require two distinct DES keys.

10.5.4.2 3-DES KEKs

The keying material for two-key triple DES consists of two distinct (single) DES keys.

The 3-DES KEK used to encrypt the DEK is derived from a common AK. The KEK shall be derived as follows:

KEK=Truncate(SHA(K_PAD_KEK | AK),128)

K_PAD_KEK=0x53 repeated 64 times, i.e., a 512 bit string.

Truncate(x,n) denotes the result of truncating x to its left-most n bits.

SHA(x|y) denotes the result of applying the SHA-1 function to the concatenated bit strings x and y. The keying material of 3-DES consists of two distinct DES keys. The 64 most significant bits of the KEK shall be used in the encrypt operation. The 64 least significant bits shall be used in the decrypt operation.

10.5.4.3 3-DES DEKs

The 3-DES DEK that is used to encrypt the data traffic will be distributed by the SM to the DEVs.

The keying material of 3-DES consists of two distinct DES keys. The 64 most significant bits of the DEK shall be used in the encrypt operation. The 64 least significant bits shall be used in the decrypt operation.

10.5.4.4 HMAC authentication keys

The HMAC authentication key is derived as follows:

HMAC_KEY=SHA(H_PAD|AK)

H_PAD=0x3A repeated 64 times

10.5.5 Public-Key encryption of authorization key

Authorization keys in Authorization Reply messages shall be RSA public-key encrypted, using the DEV’s public key. The protocol uses 65537 (0x010001) as its public exponent and a modulus length of 1024 bits. The PKM protocol employs the RSAES-OAEP encryption scheme specified in version 2.0 of the PKCS#1 standard [RSA]. RSAES-OAEP requires the selection of a hash function, a mask-generation function, and an encoding parameter string. The default selections specified in [RSA] shall be used when encrypting the authorization key. These default selections are SHA-1 for the hash function, MGF1 with SHA-1 for the mask-generation function, and the empty string for the encoding parameter string.

Submission
Page

D. Kawaguchi, Symbol Technologies
Submission
Page

Matthew Welborn, XtremeSpectrum, Inc.

