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1 
Introduction

The accepted security architecture proposal for 802.15.3 [02130] supplies a security architecture designed to accommodate a variety of cryptographic algorithms and trust establishment methods. To achieve this versatility, the security architecture is necessarily underspecified. This document instantiates all underspecified items to build a complete security solution using the proposed architecture. 

At the March, 2002 802.15 TG3 meeting in St. Louis, MO, the group voted to require the use of AES and SHA-256 as mandatory symmetric algorithms (see the meeting minutes for details [02090].

This document provides standards text for inclusion of this security suite in the 802.15.3 draft standard.  Additionally, this document contains security analysis and supporting documentation for this proposal and the security architecture proposed in [02130]. 

1.1 Scope

This document covers text related to NTRU’s proposed security suite (described here as an algorithm suite) for the 802.15.3 draft standard.  In particular, this includes text to completely instantiate the security architecture proposed in [02130] as well as additional informative text and security considerations.

1.2 Purpose

This document is intended as an algorithm suite submission to the 802.15 TG3 for inclusion in the 802.15.3 draft standard.  The text from this submission may be incorporated directly into the draft standard and is offered as an update to the NTRU proposal for the security suite vote announced in document [02074] and held at the March 2002 meeting.

1.3 Document Organization

This document contains text for NTRU’s proposed algorithm suite for the 802.15.3 draft standard.  In addition, this submission includes informative text that may or may not be included in the draft standard to support the architecture.

The document is organized into the following categories:

· References (Normative)

· Instantiation of the algorithm suite (Normative)

· Security considerations for an informative annex (Informative)

· Efficiency considerations for working group consideration (Informative)

The reference section describes the external documents that are required in order to implement the cryptographic algorithms proposed in this document.

The instantiation section provides text and information for the aspects of the algorithm suite that must be defined in order to fully implement the security architecture.  This text may be added to the main section of the document or to an annex. 

The security considerations provide security analysis and rationale for the security architecture and algorithm suites.  This section is informative and may be included in an informative annex in the standard and/or used as a basis for discussions in the working group.

The efficiency considerations are provided to enable the working group to properly assess the impact on the draft standard by the acceptance of the proposed algorithms.

1.4 Notes to the Reader

Throughout the document, the author has included notes to the reader that are not part of the proposed text or submission.  These notes are supplied to aid in the review process of this document and the consideration for inclusion in the standard.  These notes are not intended to be a part of the standard itself.  

Author’s note: Notes are underlined, indented and written in this font to indicate that they are not part of the intended draft text. 
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3 Algorithm Suite Specifications

3.1 Object Identifier

Author's note: The group has agreed to obtain a company neutral OID arc for IEEE 802.15.3 security suites.  This object identifier is provided for completeness, but should be changed when the OID arc is obtained.

The object identifiers for NTRU security suites may be built off of the following OID root.  This root is written in ASN.1 format.

id-ntru-security-suites OBJECT IDENTIFIER ::= {
iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprises(1) ntruCryptosystems(8342) ieee802-15-3(2) securitySuites(1)}

The object identifier for the security suite proposed in this clause may be:

id-ntru-security-suite-xx OBJECT IDENTIFIER ::= {
id-ntru-security-suites xx}

The DER encoding of this element, which shall be included in the OID field when this OID is used is the hex value: 06 0A 2B 06 01 04 01 C1 16 02 01 xx.

3.2 Security Functionality Provided

Author's note: The security suites described in this document provide the following security services.

	Security Service 
	Provided

	Mutual Authentication
	

	Verification of Public-Key
	

	Key Establishment
	

	Key Transport
	

	Beacon Integrity Protection
	

	Freshness Protection
	

	Command Integrity Protection
	

	ACK Integrity Protection
	

	Data Integrity Protection
	

	Data Encryption
	


Author’s note: The following two sub-clauses update the NTRU algorithm suite.  The public-key mechanisms specified in this suite are the same as in previous revisions of this document.  However,the symmetric algorithm and hash algorithm have been changed in the first algorithm suite to be consistent with the vote on symmetric algorithms at the meeting [02090].  

3.3 Data Formats (NTRUEncrypt with AES and SHA-256)

The following table specifies the length and meaning of the undefined data elements from clause 7.

	Notation
	Length
	Value
	Description

	PublicKeyObjectType
	2
	1
	The public key object type specifies NTRUEncrypt-251 public-key encryption keys as specified in EESS #1 using parameter set ees251ep1.

	PublicKeyObjectLength
	2
	251
	The length of an unpacked NTRUEncrypt-251 public key as specified in EESS #1 using parameter set ees251ep1.

	PublicKeyObject
	251
	Variable
	NTRUEncrypt-251 public-key encryption key as specified in EESS #1 using parameter set ees251ep1.

	AuthResponseType
	2
	3
	The auth response type specifies the result of an HMAC computation as defined in [HMAC] using a 32-byte key and the SHA-256 hash algorithm as defined in [FIP180].  

	AuthResponseLength
	2
	32
	The length of an HMAC computation using a 32-byte key as defined in [HMAC].

	AuthResponse
	32
	Variable
	The result of the HMAC computation using a 32-byte key as defined in [HMAC].  

	OIDLength
	1
	12
	The length of the DER encoding of the OID 1.3.6.1.4.1.8342.2.1.xx.

	OID
	12
	OID Value
	The DER encoding of the object identifier 1.3.6.1.4.1.8342.2.1.1, which is the hex value 06 0A 2B 06 01 04 01 C1 16 02 01 xx.

	ChallengeType
	2
	1
	The challenge type specifies an NTRUEncrypt-251 encryption of a 21-octet secret that is randomly and unpredictably generated at the time of the challenge. (This applies both to the ChallengeType in the CHALLENGE.request and the CHALLENGE.response commands.)

	ChallengeLength
	2
	251
	The length of an unpacked NTRUEncrypt-251 public key encryption as specified in EESS #1 using parameter set ees251ep1. (This applies both to the ChallengeLength in the CHALLENGE.request and the CHALLENGE.response commands.)

	Challenge
	251
	Variable
	NTRUEncrypt-251 public-key encryption of the random challenge using the recipient device’s public key as specified in EESS #1 using parameter set ees251ep1. (This applies both to the Challenge in the CHALLENGE.request and the CHALLENGE.response commands.)

	ChallengeResponseType
	2
	2
	The challenge response type specifies the result of an HMAC computation as defined in [HMAC] using a 32-byte key and the SHA-256 hash algorithm as defined in [FIP180].  

	ChallengeResponseLength
	2
	32
	The length of an HMAC computation as defined in [HMAC] using a 32-byte key and the SHA-256 hash algorithm as defined in [FIP180].

	ChallengeResponse
	32
	Variable
	The result of the HMAC computation as defined in [HMAC] using a 32-byte key and the SHA-256 hash algorithm as defined in [FIP180].  

	KeyPurpose
	1
	0
	The type of key requested in key request protocols.  Only seeds are transmitted in this security suite.

	EncryptedKeyType
	2
	2
	The encrypted key type specifies the result of AES-128 CBC encryption of the 256-bit seed with random IV as specified in [FIP197] and [MODES].

	EncryptedKeyLength
	2
	64
	The length of an encrypted 256-bit seed encrypted using AES-128 CBC encryption with random IV as specified in [FIP197] and [MODES].

	EncryptedKey
	64
	Variable
	The result of the encryption of the 256-bit seed using AES-128 CBC encryption with random IV as specified in [FIP197] and [MODES].


3.4 Cryptographic Operation Selections (NTRUEncrypt with AES and SHA-256)

The security architecture is instantiated by the following algorithms.

· NTRUEncrypt encryption and decryption using parameter set ees251ep1 as specified in EESS #1 [EESS#1] for public key operations

· 128-bit AES-CBC mode for symmetric encryption as specified in [FIP197] and [MODES].

· HMAC with SHA-256 message authentication codes for symmetric integrity protection as specified in [HMAC] and [FIP180].

· SHA-256 cryptographic hash for all cryptographic hashing as specified in [FIP180].

The use of the cryptographic algorithms for each of the security operations performed in the piconet are specified in the following table:

Author's note: The verification mechanism for public keys in this algorithm suite is to check if a hash of the public key and ID as been stored in the ACL of the device by the DME.  Other modes, such as communication between the DME and MLME may be provided.  

Author’s note: The HMAC specification defines full HMAC or truncated HMAC.  The non-truncated HMAC (using SHA-256) is included, but the truncated version that includes the first 128 bits of the HMAC is recommended and would provide bandwidth savings of 16 bytes without affecting security.

Author’s note: It was agreed at the meeting to use HMAC with SHA-256 for integrity protection.  It is recommended that the group consider the use of an AES MAC instead.  Since the implementation of AES will need to meet the data rate for encryption, it is more area-efficient to perform AES MAC than SHA-256 HMAC.  

	Use
	Operation

	Verification of Public-Key
	The ID and public-key received during the authentication protocol is verified by generating the SHA-256 hash of the device address concatenated with the public key of the device and comparing it to the stored hash of the ID and public key stored in the MAC PIB. If the hash is not in the PIB, the public key is passed to the DME to establish trust by other means. 

	Challenge generation
	The challenges generated during the authentication protocol are computed by performing an NTRUEncrypt encryption on a fresh, randomly generated 21-byte challenge using the other device’s public key.

	Challenge decryption
	The challenge decryption operation is the NTRUEncrypt decryption of the challenge received.

	Seed generation (for authentication protocol)
	The 42-byte seed for the authentication protocol consists of the decrypted challenge from the security manager, concatenated with the decrypted challenge of the DEV.

	Integrity Key Derivation 
	All integrity keys are generated from a seed by first calculating the SHA-256 hash of the seed concatenated with the byte 0x00 and then setting the key to be the first 128-bits of the result.

	Encryption Key Derivation 
	All encryption keys are generated from a seed by first calculating the SHA-256 hash of the seed concatenated with the byte 0x01 and then setting the key to be the first 128-bits of the result.

	Challenge response generation
	The challenge response is generated by computing the HMAC-SHA-256 message authentication code on the entire authentication protocol up to that point using the integrity key.

	Authentication response generation
	The authentication response is generated by computing the HMAC-SHA-256 message authentication code on the entire authentication protocol up to that point using the integrity key.

	Beacon message authentication code generation (Integrity Code information element)
	The message authentication code included in the beacon is computed as the HMAC-SHA-256 message authentication code on the entire beacon up to the integrity code information element using the integrity key.

	Command message authentication code generation
	The message authentication code included in command frames is computed as the HMAC-SHA-256 message authentication code on the entire command up to the message authentication code using the integrity key.

	ACK message authentication code generation
	The message authentication code included in ACK frames is computed as the HMAC-SHA-256 message authentication code on the entire ACK up to the message authentication code using the integrity key.

	Data message authentication code generation
	The message authentication code included in data frames is computed as the HMAC-SHA-256 message authentication code on the entire data frame up to the message authentication code after encryption has been performed using the integrity key.

	Seed encryption operation (for request key and distribute key)
	The seed for key transport is encrypted using AES-CBC with a random IV using the encryption key.

	Data encryption generation
	Data in a data frame is encrypted using AES-CBC with a random IV using the encryption key.


The following table specifies the instantiation of the protocols in the notation from clause XX.  

	Notation
	Definition

	Enc(m, K)
	NTRUEncrypt-251 public-key encryption of the message m using the public key K as specified in EESS #1 using parameter set ees251ep1.

	ID_D
	The 48-bit IEEE MAC address uniquely identifying the device. 

	ID_SM
	The 48-bit IEEE MAC address uniquely identifying the security manager.

	PKObj_D

	The device’s NTRUEncrypt-251 public key as specified in EESS #1 using parameter set ees251ep1.

	PKObj_SM
	The security manager’s NTRUEncrypt-251 public key as specified in EESS #1 using parameter set ees251ep1.

	Pub_D
	The device’s NTRUEncrypt-251 public key as specified in EESS #1 using parameter set ees251ep1.

	Pr_D
	The device’s NTRUEncrypt-251 private key as specified in EESS #1 using parameter set ees251ep1.

	Pub_SM
	The security manager’s NTRUEncrypt-251 public key as specified in EESS #1 using parameter set ees251ep1.

	Pr_SM
	The security manager’s NTRUEncrypt-251 private key as specified in EESS #1 using parameter set ees251ep1.

	C1

	21-octet secret that is randomly and secretly generated for the challenge. 

	C2
	21-octet secret that is randomly and secretly generated for the challenge.

	OID
	Uniquely identifies the security suite. The object identifier is the ASN.1 DER encoding of the OID as defined by ISO/ITU 8824.  For this security suite, this is the hex value 0x060A2B06010401C1160201xx.

	SSID_D

	8-octet random value chosen by the security manager to uniquely identify the keys used to communicate with device D.

	SSID_G
	8-octet random value chosen by the security manager to uniquely identify the keys used to communicate in the piconet.

	Seed_G
	32-octet random value associated with a particular SSID_G used to generate the encryption key Enc_G and integrity key Int_G.

	Enc_D

	128-bit AES key associated with a particular SSID_D, to be used in AES-CBC mode. 

	Enc_G
	128-bit AES key associated with a particular SSID_G, to be used in AES-CBC mode.

	Int_D

	128-bit HMAC-SHA-256 key associated with a particular SSID_D

	Int_G
	128-bit HMAC-SHA-256 key associated with a particular SSID_G

	seq_num_SM

	4-octet integer in network byte order associated with a particular SSID_D, used to count commands sent by the SM using that key. The sequence number shall begin counting with 0.

	seq_sum_D
	4-octet integer in network byte order associated with a particular SSID_D, used to count commands sent by the device using that key. The sequence number shall begin counting with 0.

	SymE(m, Enc, IV)
	The result of AES encryption of the message m with the AES key Enc using CBC mode with initialization vector IV as defined in [FIP197] and [MODES].

	SymI(m, Int)
	The result of calculating the HMAC-SHA-256 message authentication code on the message m with the 128-bit HMAC key Int.  If m is “…”, the message authentication code is computed over all preceding fields in the frame.

	H(m)
	The 32-octet result of SHA-256 hash on the message m as defined in [FIP180].

	m||n
	The concatenation of two messages m and n. 

	Key(m)
	The 128-bit result of truncating the message m to be used as a 128-bit AES key.

	AReq
	Authentication Request command header

	CReq
	Challenge Request command header

	CRes
	Challenge Response command header

	ARes
	Authentication Response command header

	KUReq
	Key Update Request command header

	KURes
	Key Update Response command header

	KRReq
	Key Request command header

	KRRes
	Key Request Response command header

	finished1

	SymI(m, Int) where m is the entire set of data in order in the preceding protocol up to the point of the message authentication code and Int is Int_D.

	finished2
	SymI(m, Int) where m is the entire set of data in order in the preceding protocol up to the point of the message authentication code and Int is Int_D.


Author’s note: The following two sub-clauses describe the NTRU algorithm suite as specified in the initial revision of this document.

3.5 Data Formats (NTRUEncrypt with TDES and SHA-1)

The following table specifies the length and meaning of the undefined data elements from clause 7.

	Notation
	Length
	Value
	Description

	PublicKeyObjectType
	2
	1
	The public key object type specifies NTRUEncrypt-251 public-key encryption keys as specified in EESS #1 using parameter set ees251ep1.

	PublicKeyObjectLength
	2
	251
	The length of an unpacked NTRUEncrypt-251 public key as specified in EESS #1 using parameter set ees251ep1.

	PublicKeyObject
	251
	Variable
	NTRUEncrypt-251 public-key encryption key as specified in EESS #1 using parameter set ees251ep1.

	AuthResponseType
	2
	1
	The auth response type specifies the result of a two-key Triple-DES message authentication code using CBC-MAC-EDE mode as defined in ISO 9797.  

	AuthResponseLength
	2
	8
	The length of a two-key Triple-DES message authentication code using CBC-MAC-EDE mode as defined in ISO 9797.

	AuthResponse
	8
	Variable
	The result of the two-key Triple-DES message authentication code using CBC-MAC-EDE mode as defined in ISO 9797.  

	OIDLength
	1
	12
	The length of the DER encoding of the OID 1.3.6.1.4.1.8342.2.1.xx.

	OID
	12
	OID Value
	The DER encoding of the object identifier 1.3.6.1.4.1.8342.2.1.1, which is the hex value 06 0A 2B 06 01 04 01 C1 16 02 01 xx.

	ChallengeType
	2
	1
	The challenge type specifies an NTRUEncrypt-251 encryption of a 21-octet secret that is randomly and unpredictably generated at the time of the challenge. (This applies both to the ChallengeType in the CHALLENGE.request and the CHALLENGE.response commands.)

	ChallengeLength
	2
	251
	The length of an unpacked NTRUEncrypt-251 public key encryption as specified in EESS #1 using parameter set ees251ep1. (This applies both to the ChallengeLength in the CHALLENGE.request and the CHALLENGE.response commands.)

	Challenge
	251
	Variable
	NTRUEncrypt-251 public-key encryption of the random challenge using the recipient device’s public key as specified in EESS #1 using parameter set ees251ep1. (This applies both to the Challenge in the CHALLENGE.request and the CHALLENGE.response commands.)

	ChallengeResponseType
	2
	1
	The challenge response type specifies the result of a two-key Triple-DES message authentication code using CBC-MAC-EDE mode as defined in ISO 9797.  

	ChallengeResponseLength
	2
	8
	The length of a two-key Triple-DES message authentication code using CBC-MAC-EDE mode as defined in ISO 9797.

	ChallengeResponse
	8
	Variable
	The result of the two-key Triple-DES message authentication code using CBC-MAC-EDE mode as defined in ISO 9797.  

	KeyPurpose
	1
	0
	The type of key requested in key request protocols.  Only seeds are transmitted in this security suite.

	EncryptedKeyType
	2
	1
	The encrypted key type specifies the result of two-key Triple-DES encryption using CBC-EDE mode with initialization vector IV as defined in FIPS 46-3.

	EncryptedKeyLength
	2
	32
	The length of an encrypted 21-byte seed encrypted using two-key Triple-DES encryption using CBC-EDE mode with initialization vector IV as defined in FIPS 46-3.

	EncryptedKey
	32
	Variable
	The result of the two-key Triple-DES encryption using CBC-EDE mode with initialization vector IV as defined in FIPS 46-3.


Author's note: The following clauses are included to describe a possible alternate optional algorithm suite for the standard.  If multiple optional algorithm suites are included, this suite may be used.  If only one optional NTRUEncrypt suite is selected, the suite with AES and SHA-256 is proposed.

3.6 Cryptographic Operation Selections (NTRUEncrypt with TDES and SHA-1)

The security architecture is instantiated by the following algorithms.

· NTRUEncrypt encryption and decryption using parameter set ees251ep1 as specified in EESS #1 [EESS#1] for public key operations

· Two-key Triple-DES CBC-EDE mode as specified in FIPS 46-3 [FIP46-3] for all symmetric encryption

· Two-key Triple-DES CBC-MAC-EDE message authentication codes as specified in ISO/IEC 9797 [ISO/IEC9797] for symmetric integrity protection. 

· SHA-1 cryptographic hash as specified in FIPS 180-1 [FIP180] for all cryptographic hashing.

The use of the cryptographic algorithms for each of the security operations performed in the piconet are specified in the following table:

Author's note: The verification mechanism for public keys in this algorithm suite is to check if a hash of the public key and ID as been stored in the ACL of the device by the DME.  Other modes, such as communication between the DME and MLME may be provided.  

	Use
	Operation

	Verification of Public-Key
	The ID and public-key received during the authentication protocol is verified by generating the SHA-1 hash of the device address concatenated with the public key of the device and comparing it to the stored hash of the ID and public key stored in the MAC PIB. If the hash is not in the PIB, the public key is passed to the DME to establish trust by other means.

	Challenge generation
	The challenges generated during the authentication protocol are compute by performing an NTRUEncrypt encryption on a fresh, randomly generated 21-byte challenge using the other device’s public key.

	Challenge decryption
	The challenge decryption operation is the NTRUEncrypt decryption of the challenge received.

	Seed generation (for authentication protocol)
	The 42-byte seed for the authentication protocol consists of the decrypted challenge from the security manager, concatenated with the decrypted challenge of the DEV.

	Integrity Key Derivation 
	All integrity keys are generated from a seed by first calculating the SHA-1 hash of the seed concatenated with the byte 0x00 and then setting the key to be the first 112-bits of the result.

	Encryption Key Derivation 
	All encryption keys are generated from a seed by first calculating the SHA-1 hash of the seed concatenated with the byte 0x01 and then setting the key to be the first 112-bits of the result.

	Challenge response generation
	The challenge response is computed by computing the TDES message authentication code on the entire authentication protocol up to that point using the integrity key.

	Authentication response generation
	The authentication response is computed by computing the TDES message authentication code on the entire authentication protocol up to that point using the integrity key.

	Beacon message authentication code generation (Integrity Code information element)
	The message authentication code included in the beacon is computed as the TDES message authentication code on the entire beacon up to the integrity code information element using the integrity key.

	Command message authentication code generation
	The message authentication code included in command frames is computed as the TDES message authentication code on the entire command up to the message authentication code using the integrity key.

	ACK message authentication code generation
	The message authentication code included in ACK frames is computed as the TDES message authentication code on the entire ACK up to the message authentication code using the integrity key.

	Data message authentication code generation
	The message authentication code included in data frames is computed as the TDES message authentication code on the entire data frame up to the message authentication code after encryption has been performed using the integrity key.

	Seed encryption operation (for request key and distribute key)
	The seed for key transport is encrypted using TDES with a random IV using the encryption key.

	Data encryption generation
	Data in a data frame is encrypted using TDES with a random IV using the encryption key.


The following table specifies the instantiation of the protocols in the notation from clause XX.  

	Notation
	Definition

	Enc(m, K)
	NTRUEncrypt-251 public-key encryption of the message m using the public key K as specified in EESS #1 using parameter set ees251ep1.

	ID_D
	The 48-bit IEEE MAC address uniquely identifying the device. 

	ID_SM
	The 48-bit IEEE MAC address uniquely identifying the device.

	PKObj_D

	The device’s NTRUEncrypt-251 public key as specified in EESS #1 using parameter set ees251ep1.

	PKObj_SM
	The security manager’s NTRUEncrypt-251 public key as specified in EESS #1 using parameter set ees251ep1.

	Pub_D
	The device’s NTRUEncrypt-251 public key as specified in EESS #1 using parameter set ees251ep1.

	Pr_D
	The device’s NTRUEncrypt-251 private key as specified in EESS #1 using parameter set ees251ep1.

	Pub_SM
	The security manager’s NTRUEncrypt-251 public key as specified in EESS #1 using parameter set ees251ep1.

	Pr_SM
	The security manager’s NTRUEncrypt-251 private key as specified in EESS #1 using parameter set ees251ep1.

	C1

	21-octet secret that is randomly and secretly generated for the challenge. 

	C2
	21-octet secret that is randomly and secretly generated for the challenge.

	OID
	Uniquely identifies the security suite. The object identifier is the ASN.1 DER encoding of the OID as defined by ISO/ITU 8824.  For this security suite, this is the hex value 0x060A2B06010401C1160201xx.

	SSID_D

	8-octet random value chosen by the security manager to uniquely identify the keys used to communicate with device D.

	SSID_G
	8-octet random value chosen by the security manager to uniquely identify the keys used to communicate in the piconet.

	Seed_G
	21-octet random value associated with a particular SSID_G used to generate the encryption key Enc_G and integrity key Int_G.

	Seed_D
	21-octet random value associated with a particular SSID_D used to generate the encryption key Enc_D and integrity key Int_D.

	Enc_D

	112-bit two-key Triple-DES key associated with a particular SSID_D, to be used in TCBC-EDE mode as defined in FIPS 46-3. 

	Enc_G
	112-bit two-key Triple-DES key associated with a particular SSID_G, to be used in TCBC-EDE mode as defined in FIPS 46-3.

	Int_D

	112-bit two-key Triple-DES key associated with a particular SSID_D, to be used in TCBC-MAC mode as defined in ISO 9797.

	Int_G
	112-bit two-key Triple-DES key associated with a particular SSID_G, to be used in TCBC-MAC mode as defined in ISO 9797.

	seq_num_SM

	4-octet integer in network byte order associated with a particular SSID_D, used to count commands sent by the SM using that key. The sequence number shall begin counting with 0.

	seq_sum_D
	4-octet integer in network byte order associated with a particular SSID_D, used to count commands sent by the device using that key. The sequence number shall begin counting with 0.

	SymE(m, Enc, IV)
	The result of two-key Triple-DES encryption of the message m with the Triple-DES key Enc using CBC-EDE mode with initialization vector IV as defined in FIPS 46-3.

	SymI(m, Int)
	The result of two-key Triple-DES message authentication code on the message m with the Triple-DES key Int using CBC-MAC-EDE mode as defined in ISO 9797.  If m is “…”, the message authentication code is computed over all preceding fields in the frame.

	PP(h, m, K1, K2)
	The result of the header h concatenated with the encryption e of message m, using the key K1, concatenated with the integrity code on h concatenated with e using the key K2. 

	H(m)
	The 20-octet result of SHA-1 hash on the message m as defined in FIPS 181.

	m||n
	The concatenation of two messages m and n. 

	Key(m)
	The 112-bit result of truncating the message m to be used as a two-key Triple-DES key.

	AReq
	Authentication Request command header

	CReq
	Challenge Request command header

	CRes
	Challenge Response command header

	ARes
	Authentication Response command header

	KUReq
	Key Update Request command header

	KURes
	Key Update Response command header

	KRReq
	Key Request command header

	KRRes
	Key Request Response command header

	finished1

	SymI(m, Int) where m is the entire set of data in order in the preceding protocol up to the point of the message authentication code and Int is Int_D.

	finished2
	SymI(m, Int) where m is the entire set of data in order in the preceding protocol up to the point of the message authentication code and Int is Int_D.


4 Security Analysis

Author’s note: The security analysis on the comparison with TLS and some of the attack scenarios also apply to the security architecture document.  Some of this text may be included in the security considerations section of the draft standard.

4.1 Protocol Security Analysis

4.1.1 Comparison with TLS

Author's note: Some of the comparisons with TLS relate to the use of different algorithms from TLS.  Since this protocol can be instantiated using a number of different algorithms, these comparisons have been generalized to describe the generic differences.  In addition, a description of the particular instantiation using the NTRU security suites is also provided.  

The following describes some of the differences between the TLS protocol and the protocols defined in clause XX. We first describe the differences between the TLS protocol and our design, and then the differences between the proposed security suite and ciphersuites supported in TLS.

· TLS provides integrity with HMAC and PRF using SHA-1 and MD5. This proposal instead uses other HMAC algorithms, hash algorithms or block cipher message authentication codes using symmetric algorithms.

SHA-1 and MD5 involve many 32-bit operations. On the relatively powerful platforms that TLS is commonly used on, these algorithms are very fast. However, in constrained environments, especially ones with 8-bit processors, Triple DES or other symmetric ciphers are considerably faster for providing integrity protection.  It is also cost-efficient to only implement one hash algorithm for the HMAC.

The two NTRUEncrypt algorithm suites in this document specify the use of HMAC with SHA-256 (for compatibility with the mandatory to implement algorithm suite) and Triple DES (for area efficiency). 

· TLS requires certificates. This protocol does not.

In TLS, the typical use case is that a user’s browser communicates to an e-commerce site and requires assurance that the site belongs to a legitimate business. Certificates are highly suitable for this situation. In 802.15.3, a DEV is obtaining a connection to an ad-hoc network. In this situation, certificates may or may not be used depending on the needs of the environment and the trust model for the public keys.

· TLS typically authenticates the server with an encrypted challenge-response, while client authentication is done by means of a signed challenge from the server. This protocol instead allows for the use of encrypted challenge-response or more symmetric authentication mechanisms to authenticate both parties.

This change is desirable for several reasons:

· If both parties use an encrypted challenge-response, both parties can contribute to the freshness of the key that is established. This is a desirable security feature to prevent reuse of old shared secrets.

· In cost-sensitive devices such as 802.15.3, gates and cost can be saved if devices do not have to implement signing as well as encryption and decryption.

· For the specific NTRU cipher suites proposed, encryption and decryption are considerably faster than signing and verification. This increases the probability that authentication of a device to the network can be completed quickly and efficiently.

The two NTRUEncrypt algorithm suites in this document specify the use of NTRUEncrypt encrypted challenge-response for mutual authentication. 

· TLS has cipher suite agreement in line. This protocol does not.

For a group networking protocol such as this one, all devices must use the same cipher suite. A device that wants to join the network should not be able to compel all other devices to change cipher suite. Therefore, there is no requirement for cipher suite negotiation when a device is joining the group.

· In TLS, the client (device) commits to a public random value in step 1. In this protocol, there are no public random values.

TLS requires the use of public random values to ensure that its Diffie-Hellman-based ciphersuites produce a different seed every time. The techniques specified in the algorithm suites ensure that a unique seed is produced every time.

· In TLS, the server (security manager) commits to a public random value in step 2. In this protocol, there are no public random values.

See the previous comment.

· TLS offers optional compression. This protocol does not.

TLS is an application-layer protocol. The data it produces is passed down through the protocol stack. However, because it is encrypted, it appears random, which means that it cannot be compressed by any process running further down the stack than TLS. TLS therefore has to offer compression. In contrast, 802.15.3 is a networking protocol. If data is to be compressed, it will be done at a higher level than the MAC layer.

· In TLS, the sequence number used for payload protection is not explicitly sent (it is stored internally and incremented). This protocol transmits the sequence number, cryptographically protected, in the messages.

TLS uses a reliable communications channel between two applications, and can assume that packets arrive in order and that both parties are still involved in the communication. 802.15.3 is a standard for ad hoc networking and can make no such assumptions. The safest way to ensure all devices are able to decrypt and check integrity on the data, it is necessary to explicitly include the sequence number in the messages.

· TLS does not require additional key transport messages after the handshake (authentication) is complete.

In TLS, once a shared key is established between the two entities, no further exchange of cryptographic material is necessary. In this protocol, once the shared key has been established, the joining device must have the group key securely transmitted to it before it can participate in the group communications. For this reason, the current proposal requires the additional key transport message. 

· Key derivation from the seed is different in TLS from this protocol.

TLS requires the use of two different hash functions, MD5 and SHA-1, to derive the key from the seed. 

4.1.2 Protection Against Attacks

Author's note: In order to describe the protection provided by a number of different algorithm suites, the defenses have been described generally by describing aspects of each algorithm suite that are common.  

Attackers herein are assumed to be non-members of the secure piconet.  An authenticated member of the piconet has easy avenues of attack, including revealing decrypted data.  More difficult first-party attacks are not considered further.

Similarly, non-members of the secure piconet have easy denial of service attacks: simply jam the radio.  More difficult denial of service attacks are not considered further.

	Type
	Attack
	Defense

	Attacks on the Public-key Binding

	
	Public-key Substitution, or “the man in the middle”
	When the public key is sent from one device to another, an attacker may try to insert her public key instead.  If this key is accepted by the recipient, the attacker would gain all access privileges that the legitimate device would have.
	The DME bears the responsibility for establishing a binding between a public key and a device’s identity, using the method best suited to the device. 

	
	Multiple Public-key/ID Pairs with Same Binding Hash
	The DME binds a public key and ID together by writing H(ID_D || Pub_D) to the ACL.  An attacker may try to find another pair of Pub_D and ID_D values that give the same hash.
	Using a strong cryptographic hash algorithm prevents an attacker from finding any two values with the same hash.

   


	Attacks on Authentication Protocol

	
	Replay attack
	An attacker may attempt to authenticate by recording a legitimate command from a previous transaction and using it in the current protocol.
	Each authentication message exchange is unique due to each device choosing its own random challenge value. The finished messages prevent replay by ensuring that only parties that know the fresh secret participated in the protocol. 

The fact that the whole protocol is protected by the finished message also prevents the insertion of a message from a different protocol into the current run of the protocol.

	
	Decryption of challenges
	An attacker may attempt to decrypt the challenge in order to obtain the secret.
	The public-key encryption algorithms are chosen to be strong enough and have large enough key spaces to make this sort of attack infeasible. 

	
	Brute force on shared key
	An attacker may attempt to guess the value of a key.
	The symmetric encryption and message authentication code algorithms are chosen to be strong enough and have large enough key spaces to prevent the guessing of the shared secrets. 

	
	Challenge substitution
	An attacker may attempt to substitute a symmetric key in the protocol instead of the one sent by the intended party.
	The finished messages provide integrity protection on all data in the protocol, including the challenges. Both parties in the protocol would detect the tampering of the key and reject the protocol’s outcome when the finished messages do not match their expected values.

	
	Security Suite Substitution
	An attacker may attempt to trick a device into using keys with the wrong algorithms.
	The finished messages provide integrity protection on all data in the protocol, including the OID.  Both parties in the protocol would detect the tampering and reject the protocol’s outcome when the finished messages do not match their expected values.

	
	Authentication States Not Synchronized
	An attacker may attempt to inject an authentication command frame.
	During the authentication process, an attacker can issue a Disassociate command frame and the device will return to the Unassociated state.  Without knowing either the device’s public key or decrypted challenges (see above), the attacker is unable to impersonate the device.

	
	Dictionary Attacks
	An attacker builds a table of messages from successful authentications
	The space of challenges and authentication runs is chosen to be large enough to thwart dictionary attacks.


	Attacks on the Beacon

	
	Beacon Replay
	The attacker could replay the beacon in order to replay messages.
	A device rejects any beacon with a TimeToken less than or equal to a TimeToken it has already received. 

	
	PNC Spoofing
	The attacker could broadcast a fake beacon to confuse devices.
	The symmetric message authentication code algorithm is chosen to be strong enough to prevent an entity that does not know the key from randomly guessing the message authentication code.  Since a device will only accept a message with a valid TimeToken and the TimeToken changes with every superframe, an insufficient number of  frames can be sent in a single superframe to make this kind of attack feasible.

The key space is also selected to be large enough to prevent guessing of the key.

	
	Time Rollback
	The attacker could broadcast an old or fake beacon with an old TimeToken
	In addition to the integrity code problems listed under PNC Spoofing, devices only accept strictly increasing TimeToken values.


	Attacks on the Distribute Key and Request Key Protocols

	
	Command Spoofing
	An attacker could attempt to inject a command telling a device to update its key.
	The security manager computes an integrity code over the command using a key known to only the device and the security manager.

	
	Command Replay
	An attacker could replay a command
	PNC-DEV commands include a sequence number.  Any received command with a sequence number less than or equal to the last received sequence number is rejected.  A DEV-DEV command may only be replayed while its TimeToken is valid: typically the duration of one superframe.  Replay within a superframe is not prevented, but appears to offer little threat. 


	Attacks on Other Commands

	
	Message Replay
	An attacker could replay a message
	A message may only be replayed while its TimeToken is valid: typically the duration of one superframe.  Replay within a superframe is not prevented, but appears to offer little threat.


	Attacks on Data Frames

	
	Brute Force on Data Keys
	An attacker may attempt to guess the value of a key.
	The symmetric encryption and message authentication code algorithms are chosen to be strong enough and have large enough key spaces to prevent the guessing of the shared secrets.

	
	Source Spoofing From a Non-group Member
	An attacker may try to authenticate as another device.
	The DME bears the responsibility for establishing a binding between a public key and a device’s identity, using the method best suited to the device.

	
	Source Spoofing From a Group Member
	An attacker may try to guess the correct integrity code on a message.
	Management keys for each device are distinct from the group keys.  The symmetric encryption and message authentication code algorithms are chosen to be strong enough and have large enough key spaces to prevent the guessing of the shared secrets.

The source of messages protected with the group keys are only guaranteed to have originated from a group member.  These commands and data do not offer individual source authentication protection.

	
	Replay of Data
	An attacker could replay a message.
	A message may only be replayed while its TimeToken is valid: typically the duration of one superframe.  Replay within a superframe is not prevented, but appears to offer little threat.

	
	Traffic Analysis
	An attacker could attempt to determine information about the data based on the length of the encrypted data.
	The encryption mechanism pads the message to a multiple of the block size of the symmetric algorithm.  This provides limited traffic analysis protection against messages of approximately the same length. Any additional traffic analysis requirements need to be handled by the DME.

	
	Cut-and-paste of Ciphertext
	An attacker could insert ciphertext sent to one device into a message sent to another device, which might then accept the decrypted ciphertext. 
	This attack is not feasible unless the attacker knows the message integrity key or can forge the message integrity code.  

	
	Dictionary Attacks
	The attacker collects a table of messages and their integrity codes.
	The use of a random IV prevents dictionary attacks on the encrypted data.  The symmetric message authentication code algorithm is chosen to be strong enough to make dictionary attacks on message authentication codes infeasible.

	
	Message Authentication Code Attacks
	An attacker may try to guess the correct integrity code on a message.
	The symmetric encryption and message authentication code algorithms are chosen to be strong enough and have large enough key spaces to prevent the guessing of the integrity code.  Since a device will only accept a message with a valid TimeToken and the TimeToken changes with every superframe, an insufficient number of frames are sent within the superframe to make collisions of integrity codes possible.

	
	Replay Attacks
	An attacker could replay a message
	A message may only be replayed while its TimeToken is valid: typically the duration of one superframe.  Replay within a superframe is not prevented, but appears to offer little threat.


5 Efficiency Analysis 

Author's note: The efficiency analysis in the following 4 sub-clauses is for the NTRUEncrypt algorithm suite with AES and SHA-256.   

5.1 Frame Protection

AES for encryption on data frames should be implemented in hardware.  The AES algorithm processes 128 bits at a time, and has 10 rounds.  Thus encrypting 128 bits with AES takes 10 clock cycles with an area cost over 40,000 gates.  Thus, to achieve a data rate of 55 Mbps, a clock rate of around 5 MHz is required.

In order to achieve a data rate of 55 Mbps, the HMAC-SHA-256 should be implemented in hardware.  The SHA-256 algorithm processes 512 bits at a time, and has 64 rounds, taking 68 clock cycles in practice with an area cost over 10,000 gates.  Thus, to achieve a data rate of 55 Mbps, a clock rate of around 8 MHz is required.  Since the authentication protocol needs to hash only small amounts of data, we neglect the cost of this operation in our subsequent analysis of its efficiency.    

5.2 Authentication

Software computational efficiency results in this section are based on a commercially available 8-bit microcontroller running at 2.66 MHz.  We assume a superframe lasts 65 msec.  On this processor, encryption and decryption using NTRUEncrypt can complete in the duration of a single superframe: encryption takes 42 msec, decryption takes 60 msec.  We neglect the time for a SHA-256 hash.  The following table details the computation and communication needed for authentication on a superframe-by-superframe basis.

	Super- frame Number
	Action
	Time (msec)
	Octets

	1
	DEV sends Authenticate Request Command to SM
	
	277

	2


	SM checks if H(ID_D, Pub_D) is in its ACL.  If not, send failure message and abort.
	0*
	

	
	Generate challenge C2
	0*
	

	
	Encrypt C2 with Pub_D
	42
	

	
	SM sends Challenge Request Command to DEV
	
	553

	3
	DEV checks if H(ID_SM, Pub_SM) is in its ACL.  If not, send failure message and abort.
	0*
	

	
	Decrypt C2
	60
	

	4


	DEV generates challenge C1
	0*
	

	
	Compute Enc_D=H(C1||C2||0x00)
	0*
	

	
	Compute Int_D=H(C1||C2||0x01)
	0*
	

	
	Compute finished1 = SymI(…)
	0*
	

	
	DEV encrypts C1 with Pub_SM
	42
	

	
	DEV sends Challenge Response Command to SM
	
	291

	5


	SM decrypts C1
	60
	

	
	SM computes Enc_D=H(C1||C2||0x00)
	0*
	

	
	Compute Int_D=H(C1||C2||0x01)
	0*
	

	
	Verify IC on finished1
	0*
	

	
	Compute finished2 = SymI(…)
	0*
	

	
	SM sends Authentication Response to DEV
	
	37

	
	DEV computes finished2 = SymI(…)
	0*
	


The Authentication protocol completes in five superframes, or 325 msec.  The total processing time for both the DEV and the SM is approximately 102* ms.   A total of 1,158 octets are exchanged.

* The time for operations using SHA-256 is neglected since SHA-256 should be implemented in hardware to meet the 55 Mbps data rate.

5.3 Access Control List Storage

A device keeps a table of the other devices with which it has a security relationship.  To facilitate reintroduction of devices, one can use persistent store such as EEPROM for parts of the ACL.  The DME is responsible for maintaining the ACL by adding trusted devices and deleting untrusted devices.  Items in the ACL:

1. Device address, the 48-bit IEEE MAC address of the other device.  Written only by the DME.

2. 256-bit hash of device address and public key.  Written only by the DME.

3. 1-bit indicator for the other device’s role in the relationship: SM or device.  Written only by the MLME.

4. 8-bit Device ID for the piconet address.  Read and written only by the MLME.

5. 128-bit management encryption key shared with that device.  Read and written only by the MLME.

6. 128-bit management integrity key shared with that device.  Read and written only by the MLME.

7. 64-bit SSID for management keys.  Read and written only by the MLME.

8. 128-bit payload encryption key shared with that device.  Read and written only by the MLME.

9. 128-bit payload integrity key shared with that device.  Read and written only by the MLME.

10. 64-bit SSID for payload protection keys.  Read and written only by the MLME.

11. 64-bit sequence number for this device’s use of the management keys.  Read and written only by the MLME.

12. 64-bit sequence number for the other device’s use of the management keys.  Read and written only by the MLME.

These items total 1,081 bits per security relationship.  Of these, items 1 and 2 should be kept in persistent storage.

5.4 Secure Group State Storage

A device must store state information for the piconet-wide security session.  These include:

1. Device address of the PNC, the 48-bit MAC address of the piconet’s security manager.  Written only by the DME.

2. 256-bit hash of device address and public key.  Written only by the DME.

3. 128-bit management encryption key for the piconet.  Read and written only by the MLME.

4. 128-bit management integrity key for the piconet.  Read and written only by the MLME.

5. 64-bit SSID for management keys.  Read and written only by the MLME.

6. 128-bit payload encryption key for the piconet.  Read and written only by the MLME.

7. 128-bit payload integrity key for the piconet.  Read and written only by the MLME.

8. 64-bit SSID for payload protection keys.  Read and written only by the MLME.

9. 64-bit sequence number for this device’s use of the management keys.  Read and written only by the MLME.

10. 64-bit sequence number for the other device’s use of the management keys.  Read and written only by the MLME.

11. 64-bit TimeToken.  Read and written only by the MLME.

12. 1-bit indicator of current or failed validity for this superframe.

These items total 1,137 bits.

Author's note: The efficiency analysis in the following 4 sub-clauses is retained from the previous version of this document for the NTRUEncrypt algorithm suite with TDES and SHA-1.   

5.5 Frame Protection

Triple-DES for encryption and integrity on command and data frames should be implemented in hardware.  The DES algorithm processes 64 bits at a time, has 16 rounds, and a typical implementation instantiates two rounds of DES in 9,796 gates.  Thus encrypting 64 bits with DES takes 8 clock cycles while Triple-DES takes 24 cycles.  Adding another DES round for integrity, 32 cycles are required to provide both encryption and integrity.  Thus, to achieve a data rate of 55 Mbps, a clock rate of 30 MHz is required.

5.6 Authentication

Software computational efficiency results in this section are based on a commercially available 8-bit microcontroller running at 2.66 MHz.  We assume a superframe lasts 65 msec.  On this processor, encryption and decryption using NTRUEncrypt can complete in the duration of a single superframe: encryption takes 42 msec, decryption takes 60 msec.  A SHA-1 hash takes 8.2 msec.  These functions are only used during authentication.  The following table details the computation and communication needed for authentication on a superframe-by-superframe basis.

	Super- frame Number
	Action
	Time (msec)
	Octets

	1
	DEV sends Authenticate Request Command to SM
	
	277

	2
	SM checks if H(ID_D, Pub_D) is in its ACL.  If not, send failure message and abort.
	41
	

	
	Generate challenge C2
	16.4
	

	3
	Encrypt C2 with Pub_D
	42
	

	
	SM sends Challenge Request Command to DEV
	
	553

	4
	Dev checks if H(ID_SM, Pub_SM) is in its ACL.  If not, send failure message and abort.
	41
	

	5
	Decrypt C2
	60
	

	6
	Dev generates challenge C1
	16.4
	

	
	Compute Enc_D=H(C1||C2||0x00)
	8.2
	

	
	Compute Int_D=H(C1||C2||0x01)
	8.2
	

	
	Compute finished1 = SymI(…)
	.14
	

	7


	DEV encrypts C1 with Pub_SM
	42
	

	
	DEV sends Challenge Response Command to SM
	
	283

	8
	SM decrypts C1
	60
	

	9
	SM computes Enc_D=H(C1||C2||0x00)
	8.2
	

	
	Compute Int_D=H(C1||C2||0x01)
	8.2
	

	
	Verify IC on finished1
	.14
	

	
	Compute finished2 = SymI(…)
	.14
	

	10
	SM sends Authentication Response to DEV
	29
	

	
	DEV computes finished2 = SymI(…)
	.14
	


The Authentication protocol completes in ten superframes, or 650 msec.  The total processing time for both the DEV and the SM is approximately 176 ms.  A total of 1,143 octets are exchanged.

5.7 Access Control List Storage

A device keeps a table of the other devices with which it has a security relationship.  To facilitate reintroduction of devices, one can use persistent store such as EEPROM for parts of the ACL.  The DME is responsible for maintaining the ACL by adding trusted devices and deleting untrusted devices.  Items in the ACL:

1. Device address, the 48-bit IEEE MAC address of the other device.  Written only by the DME.

2. 160-bit hash of device address and public key.  Written only by the DME.

3. 1-bit indicator for the other device’s role in the relationship: SM or device.  Written only by the MLME.

4. 8-bit Device ID for the piconet address.  Read and written only by the MLME.

5. 112-bit management encryption key shared with that device.  Read and written only by the MLME.

6. 112-bit management integrity key shared with that device.  Read and written only by the MLME.

7. 64-bit SSID for management keys.  Read and written only by the MLME.

8. 112-bit payload encryption key shared with that device.  Read and written only by the MLME.

9. 112-bit payload integrity key shared with that device.  Read and written only by the MLME.

10. 64-bit SSID for payload protection keys.  Read and written only by the MLME.

11. 64-bit sequence number for this device’s use of the management keys.  Read and written only by the MLME.

12. 64-bit sequence number for the other device’s use of the management keys.  Read and written only by the MLME.

These items total 921 bits per security relationship.  Of these, items 1 and 2 should be kept in persistent storage.

5.8 Secure Group State Storage

A device must store state information for the piconet-wide security session.  These include:

1. Device address of the PNC, the 48-bit MAC address of the piconet’s security manager.  Written only by the DME.

2. 160-bit hash of device address and public key.  Written only by the DME.

3. 112-bit management encryption key for the piconet.  Read and written only by the MLME.

4. 112-bit management integrity key for the piconet.  Read and written only by the MLME.

5. 64-bit SSID for management keys.  Read and written only by the MLME.

6. 112-bit payload encryption key for the piconet.  Read and written only by the MLME.

7. 112-bit payload integrity key for the piconet.  Read and written only by the MLME.

8. 64-bit SSID for payload protection keys.  Read and written only by the MLME.

9. 64-bit sequence number for this device’s use of the management keys.  Read and written only by the MLME.

10. 64-bit sequence number for the other device’s use of the management keys.  Read and written only by the MLME.

11. 64-bit TimeToken.  Read and written only by the MLME.

12. 1-bit indicator of current or failed validity for this superframe.

These items total 977 bits.
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