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Responsive to the call for Security Suite proposals, the follows elements are included in this compilation of 
documents: 
 
02/113r0P802-15_TG3-MAC-Distributed-Security-Proposal.doc 
02/114r3P802-15_TG3-MAC-Distributed-Security-Proposal.ppt 
02/135r0P802-15_TG3-MAC-Distributed-Security-Proposal.pdf 
 
Specifically, the current proposal consists of the following: 
 
Changes and additions to clause 6 (MLME) and clause 7 (frame formats): 
 
We will use the existing commands for Authenticate, Request Key, Distribute Key, and Deauthenticate.  The 
Challenge command is not needed since the components in the Authenticate command will serve its function. 
 
Changes in the Authenticate command are as follows: 
 
Parameters: 
 
Mode:  0 = entity authentication, 1 = key agreement 
Pass: 1, 2, 3 
DataObjectLength (2 octets) 
DataObject: VAR 
 
The authenticate command will be used to convey information that will support mutual authentication of a 
requesting entity and also serve to establish key agreement (the KEK). 
 
The frame formats described in Section 7 are useable with our current adaptation.  However, the Challenge 
request and Challenge response formats are no longer needed. 
 
Replacement text for clause 10 and appendix B.3 
 
Replacement text for clause 10 is contained in 02/113r0P802-15_TG3-MAC-Distributed-Security-
Proposal.doc. 
 
The appendix is included at the end of this document. 
 
Proposed symmetric key method for payload protection 
 
AES is proposed as the symmetric key method for payload protection.  Details are contained in the FIPS 197 
Standard that is part of appendix B.3 herein.  Further implementation details are contained in 02/113r3P802-
15_TG3-MAC-Distributed-Security-Proposal.ppt. 
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Proposed public key method for payload protection 
 
ECC is proposed as the public key method for payload protection.  Details are contained in the ANSI X9.63–
2001 Standard that is part of appendix B.3 herein  The complete version of ANSI X9.63-2001 has been 
abbreviated, including only the title page, participants, table of contents, and bibliography, pending receipt of a 
copyright release from the American Bankers Association.  For purposes of this document and pursuant to 
IEEE policy, the before mentioned publicly available standard document is hereby incorporated by reference as 
part of this submission.  Further architectural implementation details are contained in 02/113r3P802-15_TG3-
MAC-Distributed-Security-Proposal.ppt, and specific algorithm implementation details are contained in 
02/200r0P802-15_TG3-Mandatory-ECC-Security-Algorithm-Suite.doc. 
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Annex B.3 
 
Security considerations  
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1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.

2

1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).

3



THE FUTURE OF
ELLIPTIC CURVE CRYPTOGRAPHY

Scott Vanstone

Certicom Corp &
University of Waterloo

May 22, 2001

Outline

Outline

1. Discrete Logarithm Systems

2. Why Elliptic Curves?

3. The Elliptic Curve Discrete Logarithm Problem

4. ECC Protocols

5. ECC Implementation and Deployment

6. Conclusions

1

1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.

2

1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).

3

1. Discrete Logarithm Systems

EÆciency Requirements

Basic requirement: Computing ga from g and a should be
relatively easy.

� Group elements should have a compact representation.
Ideally, each group element should be represented using
� log2 n bits.

� Note: Representation of the group element can have
important security implications. After all, every cyclic group
of order n is isomorphic to (Zn;+) where the DLP is:
given 1 and a, �nd a.

� The group operation with respect to this representation
should be fast. (Then exponentiation can be eÆciently
performed using repeated square-and-multiply.)

4

1. Discrete Logarithm Systems

Cryptographically Suitable Groups

� DiÆe and Hellman �rst proposed using the multiplicative
group Z�p, where p is a prime.

� The existence of subexponential-time index-calculus methods
for solving the ECDLP in Z�p means that larger parameters
have to be used to avoid the best attacks known (e.g., a
1024-bit prime p).

� Fundamental question: Are there �nite groups for which:

(i) the group elements can be compactly represented;

(ii) the group operation can be eÆciently computed; and

(iii) the discrete logarithm problem cannot be solved in
subexponential time?

5
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2. Why Elliptic Curves?

Why Elliptic Curves?

[The following approach is due to Gerhard Frey]
Abelian Varieties

� Abelian varieties A (over �nite �elds Fq) provide a rich
source of �nite groups.

{ Set of solutions to a set of equations, together with a group law given
by rational functions.

{ Example (multiplicative group of Fq):
Equation: xy = 1
Group law: (x1; y1) + (x2; y2) = (x1y1; x2y2).

{ Example (elliptic curve group over Fp):
Equation: y2 = x3 + ax + b
Group law: usual tangent-and-chord formulas.

{ Problem: The number of variables and the degrees of the addition
formulas grow exponentially with the dimension of A.

6

2. Why Elliptic Curves?

Jacobian Varieties

� Solution: Take special abelian varieties{ Jacobian variety JC
of an algebraic curve C over a �nite �eld Fq.

� JC can be viewed as the quotient group of zero divisors
modulo the principal divisors.

� By Riemann-Roch, each divisor class has a reduced divisor:
P1 + P2 + � � � + Pt � tP1, where t � g.

� Problem: The points in the support of D 2 JC(Fq) are not
necessarily de�ned over Fq . Also need an eÆcient method to
add 2 reduced divisors and convert the result to reduced
form.

7
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2. Why Elliptic Curves?

Hyperelliptic Curves

� Solution: Consider the jacobian JC(Fq) of a hyperelliptic
curve C of genus g over Fq . (JC is a g-dimensional abelian
variety.) Note that #JC(Fq) � qg.

� C : v2 + h(u)v = f(u), h; f 2 Fq [u], deg h � g,
deg f = 2g + 1.

� Elements of JC(Fq) can be uniquely represented by a pair of
polynomials a; b 2 Fq [u], where deg b < deg a � g, a is

monic, and aj(b2 + bh� f).

� Cantor's algorithm eÆciently adds two elements in this form,
and provides the result in this same form.

8

2. Why Elliptic Curves?

Hyperelliptic Curves (2)

� Problem: For \large" genus hyperelliptic curves, there are
subexponential-time algorithms for the DLP in JC(Fq).
(Adleman-DeMarrais-Huang, M�uller-Stein-Thiel,
Enge-Gaudry.)

� Problem: For small genus g = 5; 6; 7; 8; : : : , Gaudry's
algorithm (2000) has a running time that is faster than
Pollard's rho algorithm.

� Problem: g = 4 is too close for comfort.

� Solution: Use g = 1; 2; 3 hyperelliptic curves.

9
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2. Why Elliptic Curves?

Genus 1, 2 and 3

� Problem: The group law for g = 3 is signi�cantly more
complicated than the group law for g = 2.

� Solution: Use g = 2.

{ Group law can be described by explicit & simple formulas.

{ However the group law for g = 2 is still more complicated
that the elliptic curve (g = 1) group law.

{ g = 2 has a potential advantage over g = 1 in that one
can use a smaller �nite �eld for the same level of
security{this may be advantageous for hardware.

{ However, in general g = 2 will be slower than g = 1.
There is no compelling reason (as yet) to use g = 2.

{ So, we are stuck with elliptic curves!

10

3. The ECDLP

The Elliptic Curve Discrete Logarithm Problem

� Let E be an elliptic curve over Fq with #E(Fq) = nh,
where n is prime and h is small. Let P 2 E(Fq),
ord(P ) = n. ECDLP: Given E, P , Q 2 hP i, �nd
l 2 [0; n� 1] such that Q = lP .

� In general, there is no subexponential-time algorithm known
for the DLP in E(Fq). The best algorithm known is
Pollard's rho which takes (

p
�n)=2 steps.

11
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1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.

2

1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).
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1. Discrete Logarithm Systems

EÆciency Requirements

Basic requirement: Computing ga from g and a should be
relatively easy.

� Group elements should have a compact representation.
Ideally, each group element should be represented using
� log2 n bits.

� Note: Representation of the group element can have
important security implications. After all, every cyclic group
of order n is isomorphic to (Zn;+) where the DLP is:
given 1 and a, �nd a.

� The group operation with respect to this representation
should be fast. (Then exponentiation can be eÆciently
performed using repeated square-and-multiply.)

4

1. Discrete Logarithm Systems

Cryptographically Suitable Groups

� DiÆe and Hellman �rst proposed using the multiplicative
group Z�p, where p is a prime.

� The existence of subexponential-time index-calculus methods
for solving the ECDLP in Z�p means that larger parameters
have to be used to avoid the best attacks known (e.g., a
1024-bit prime p).

� Fundamental question: Are there �nite groups for which:

(i) the group elements can be compactly represented;

(ii) the group operation can be eÆciently computed; and

(iii) the discrete logarithm problem cannot be solved in
subexponential time?

5

2. Why Elliptic Curves?

Why Elliptic Curves?

[The following approach is due to Gerhard Frey]
Abelian Varieties

� Abelian varieties A (over �nite �elds Fq) provide a rich
source of �nite groups.

{ Set of solutions to a set of equations, together with a group law given
by rational functions.

{ Example (multiplicative group of Fq):
Equation: xy = 1
Group law: (x1; y1) + (x2; y2) = (x1y1; x2y2).

{ Example (elliptic curve group over Fp):
Equation: y2 = x3 + ax + b
Group law: usual tangent-and-chord formulas.

{ Problem: The number of variables and the degrees of the addition
formulas grow exponentially with the dimension of A.
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Special Cases

� (Weil & Tate pairing): EÆciently embed hP i in F�
qk

for
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� (Prime �eld anomalous curves): If #E(Fp) = p, then
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3. The ECDLP

Analysis

� Theorem (Gaudry, Hess & Smart, 2000) g = 2m�1 or
2m�1 � 1, where

m = m(b) = dimF2
(SpanF2f(1; b

1=2
0 ); : : : ; (1; b

1=2
n�1)g);

where bi = bq
i

, 0 � i � n� 1.

� Notes:
(a) 1 � m � n, so 1 � g � 2n�1.

(b) If m = 1, so g = 1, the reduction is useless.

(c) If m = n, so g = 2n�1, the reduction takes fully

exponential time (#JC(Fq) � q2
n�1

).

14

3. The ECDLP

Analysis (2)

Theorem (Menezes & Qu, 2000) Let n be an odd prime,
t = ordn(2), s = (n� 1)=t, b 2 Fqn. Then

m(b) 2 f1; t + 1; 2t + 1; : : : ; st+ 1g:
Moreover, the number of b 2 Fqn with m(b) = it + 1 is

q
 s
i

!
(qt � 1)i.

15
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q
 s
i
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3. The ECDLP

Consequences

1. Koblitz curves (b 2 F2).

�m = 1, so g = 1.

� So, GHS attack is useless for Koblitz curves.

2. Non-Koblitz curves over F2n, n prime.

� If n 2 [160; 600], then m � 18, so g � 217 � 128; 000.

� So GHS attack fails for all elliptic curves over F2n,
where n is prime.

16

3. The ECDLP

3. Elliptic curves over F2155.

(a) q = 231, n = 5.

{ g = 1; 15 or 16.

{HCDLP in a genus 15 curve over F231 appears
infeasible (Smart, Eurocrypt 2001).

(b) q = 25, n = 31.

{m = 6, so g = 31 for a small fraction of elliptic curves
over F25.

{HCDLP in a genus 31 curve over F25 is feasible
(Jacobson, Menezes & Stein, 2001).

17
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complicated than the group law for g = 2.

� Solution: Use g = 2.

{ Group law can be described by explicit & simple formulas.

{ However the group law for g = 2 is still more complicated
that the elliptic curve (g = 1) group law.

{ g = 2 has a potential advantage over g = 1 in that one
can use a smaller �nite �eld for the same level of
security{this may be advantageous for hardware.

{ However, in general g = 2 will be slower than g = 1.
There is no compelling reason (as yet) to use g = 2.

{ So, we are stuck with elliptic curves!

10

3. The ECDLP

The Elliptic Curve Discrete Logarithm Problem

� Let E be an elliptic curve over Fq with #E(Fq) = nh,
where n is prime and h is small. Let P 2 E(Fq),
ord(P ) = n. ECDLP: Given E, P , Q 2 hP i, �nd
l 2 [0; n� 1] such that Q = lP .

� In general, there is no subexponential-time algorithm known
for the DLP in E(Fq). The best algorithm known is
Pollard's rho which takes (

p
�n)=2 steps.

11

3. The ECDLP

Special Cases

� (Weil & Tate pairing): EÆciently embed hP i in F�
qk

for

small k.

� (Prime �eld anomalous curves): If #E(Fp) = p, then
ECDLP in E(Fp) can be eÆciently calculated.

� (Frobenius endomorphism): Use equivalence classes of
points under Frobenius map to speed up Pollard's rho
algorithm for Koblitz curves over F2m by a factor of

p
m.

12

3. The ECDLPWeil Descent Attack

� q = 2l, E=Fqn : y2 + xy = x3 + ax2 + b.

� Frey (1998); Galbraith & Smart (1999)

� Gaudry, Hess & Smart (2000)

E(Fqn)

C=Fq -A(Fq)
?

JC(Fq)

-

-

� A: n-dimensional abelian variety over Fq .
C: genus-g hyperelliptic curve which lies on A.
JC(Fq)

�= subgroup of E(Fqn).

13

3. The ECDLP

Analysis

� Theorem (Gaudry, Hess & Smart, 2000) g = 2m�1 or
2m�1 � 1, where

m = m(b) = dimF2
(SpanF2f(1; b

1=2
0 ); : : : ; (1; b

1=2
n�1)g);

where bi = bq
i

, 0 � i � n� 1.

� Notes:
(a) 1 � m � n, so 1 � g � 2n�1.

(b) If m = 1, so g = 1, the reduction is useless.

(c) If m = n, so g = 2n�1, the reduction takes fully

exponential time (#JC(Fq) � q2
n�1

).

14

3. The ECDLP

Analysis (2)

Theorem (Menezes & Qu, 2000) Let n be an odd prime,
t = ordn(2), s = (n� 1)=t, b 2 Fqn. Then

m(b) 2 f1; t + 1; 2t + 1; : : : ; st+ 1g:
Moreover, the number of b 2 Fqn with m(b) = it + 1 is

q
 s
i

!
(qt � 1)i.

15

3. The ECDLP

Consequences

1. Koblitz curves (b 2 F2).

�m = 1, so g = 1.

� So, GHS attack is useless for Koblitz curves.

2. Non-Koblitz curves over F2n, n prime.

� If n 2 [160; 600], then m � 18, so g � 217 � 128; 000.

� So GHS attack fails for all elliptic curves over F2n,
where n is prime.

16

3. The ECDLP

3. Elliptic curves over F2155.

(a) q = 231, n = 5.

{ g = 1; 15 or 16.

{HCDLP in a genus 15 curve over F231 appears
infeasible (Smart, Eurocrypt 2001).

(b) q = 25, n = 31.

{m = 6, so g = 31 for a small fraction of elliptic curves
over F25.

{HCDLP in a genus 31 curve over F25 is feasible
(Jacobson, Menezes & Stein, 2001).

17

3. The ECDLP

Certicom's ECC Challenge

� Launched on November 6, 1997.

� See http://www.certicom.com/

18

3. The ECDLP

The Challenges

� The challenge curves are divided into three categories:

{ Randomly generated curves over F2m (m prime)

{ Koblitz curves over F2m (m prime)

{ Randomly generated curves over Fp (p prime)

�Within each category, there are 3 subcategories:

{ Exercises

{ Level I challenges

{ Level II challenges

19
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1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.

2

1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).

3

1. Discrete Logarithm Systems

EÆciency Requirements

Basic requirement: Computing ga from g and a should be
relatively easy.

� Group elements should have a compact representation.
Ideally, each group element should be represented using
� log2 n bits.

� Note: Representation of the group element can have
important security implications. After all, every cyclic group
of order n is isomorphic to (Zn;+) where the DLP is:
given 1 and a, �nd a.

� The group operation with respect to this representation
should be fast. (Then exponentiation can be eÆciently
performed using repeated square-and-multiply.)

4

1. Discrete Logarithm Systems

Cryptographically Suitable Groups

� DiÆe and Hellman �rst proposed using the multiplicative
group Z�p, where p is a prime.

� The existence of subexponential-time index-calculus methods
for solving the ECDLP in Z�p means that larger parameters
have to be used to avoid the best attacks known (e.g., a
1024-bit prime p).

� Fundamental question: Are there �nite groups for which:

(i) the group elements can be compactly represented;

(ii) the group operation can be eÆciently computed; and

(iii) the discrete logarithm problem cannot be solved in
subexponential time?

5

2. Why Elliptic Curves?

Why Elliptic Curves?

[The following approach is due to Gerhard Frey]
Abelian Varieties

� Abelian varieties A (over �nite �elds Fq) provide a rich
source of �nite groups.

{ Set of solutions to a set of equations, together with a group law given
by rational functions.

{ Example (multiplicative group of Fq):
Equation: xy = 1
Group law: (x1; y1) + (x2; y2) = (x1y1; x2y2).

{ Example (elliptic curve group over Fp):
Equation: y2 = x3 + ax + b
Group law: usual tangent-and-chord formulas.

{ Problem: The number of variables and the degrees of the addition
formulas grow exponentially with the dimension of A.

6

2. Why Elliptic Curves?

Jacobian Varieties

� Solution: Take special abelian varieties{ Jacobian variety JC
of an algebraic curve C over a �nite �eld Fq.

� JC can be viewed as the quotient group of zero divisors
modulo the principal divisors.

� By Riemann-Roch, each divisor class has a reduced divisor:
P1 + P2 + � � � + Pt � tP1, where t � g.

� Problem: The points in the support of D 2 JC(Fq) are not
necessarily de�ned over Fq . Also need an eÆcient method to
add 2 reduced divisors and convert the result to reduced
form.

7

2. Why Elliptic Curves?

Hyperelliptic Curves

� Solution: Consider the jacobian JC(Fq) of a hyperelliptic
curve C of genus g over Fq . (JC is a g-dimensional abelian
variety.) Note that #JC(Fq) � qg.

� C : v2 + h(u)v = f(u), h; f 2 Fq [u], deg h � g,
deg f = 2g + 1.

� Elements of JC(Fq) can be uniquely represented by a pair of
polynomials a; b 2 Fq [u], where deg b < deg a � g, a is

monic, and aj(b2 + bh� f).

� Cantor's algorithm eÆciently adds two elements in this form,
and provides the result in this same form.

8

2. Why Elliptic Curves?

Hyperelliptic Curves (2)

� Problem: For \large" genus hyperelliptic curves, there are
subexponential-time algorithms for the DLP in JC(Fq).
(Adleman-DeMarrais-Huang, M�uller-Stein-Thiel,
Enge-Gaudry.)

� Problem: For small genus g = 5; 6; 7; 8; : : : , Gaudry's
algorithm (2000) has a running time that is faster than
Pollard's rho algorithm.

� Problem: g = 4 is too close for comfort.

� Solution: Use g = 1; 2; 3 hyperelliptic curves.

9

2. Why Elliptic Curves?

Genus 1, 2 and 3

� Problem: The group law for g = 3 is signi�cantly more
complicated than the group law for g = 2.

� Solution: Use g = 2.

{ Group law can be described by explicit & simple formulas.

{ However the group law for g = 2 is still more complicated
that the elliptic curve (g = 1) group law.

{ g = 2 has a potential advantage over g = 1 in that one
can use a smaller �nite �eld for the same level of
security{this may be advantageous for hardware.

{ However, in general g = 2 will be slower than g = 1.
There is no compelling reason (as yet) to use g = 2.

{ So, we are stuck with elliptic curves!

10

3. The ECDLP

The Elliptic Curve Discrete Logarithm Problem

� Let E be an elliptic curve over Fq with #E(Fq) = nh,
where n is prime and h is small. Let P 2 E(Fq),
ord(P ) = n. ECDLP: Given E, P , Q 2 hP i, �nd
l 2 [0; n� 1] such that Q = lP .

� In general, there is no subexponential-time algorithm known
for the DLP in E(Fq). The best algorithm known is
Pollard's rho which takes (

p
�n)=2 steps.

11

3. The ECDLP

Special Cases

� (Weil & Tate pairing): EÆciently embed hP i in F�
qk

for

small k.

� (Prime �eld anomalous curves): If #E(Fp) = p, then
ECDLP in E(Fp) can be eÆciently calculated.

� (Frobenius endomorphism): Use equivalence classes of
points under Frobenius map to speed up Pollard's rho
algorithm for Koblitz curves over F2m by a factor of

p
m.

12

3. The ECDLPWeil Descent Attack

� q = 2l, E=Fqn : y2 + xy = x3 + ax2 + b.

� Frey (1998); Galbraith & Smart (1999)

� Gaudry, Hess & Smart (2000)

E(Fqn)

C=Fq -A(Fq)
?

JC(Fq)

-

-

� A: n-dimensional abelian variety over Fq .
C: genus-g hyperelliptic curve which lies on A.
JC(Fq)

�= subgroup of E(Fqn).

13

3. The ECDLP

Analysis

� Theorem (Gaudry, Hess & Smart, 2000) g = 2m�1 or
2m�1 � 1, where

m = m(b) = dimF2
(SpanF2f(1; b

1=2
0 ); : : : ; (1; b

1=2
n�1)g);

where bi = bq
i

, 0 � i � n� 1.

� Notes:
(a) 1 � m � n, so 1 � g � 2n�1.

(b) If m = 1, so g = 1, the reduction is useless.

(c) If m = n, so g = 2n�1, the reduction takes fully

exponential time (#JC(Fq) � q2
n�1

).

14

3. The ECDLP

Analysis (2)

Theorem (Menezes & Qu, 2000) Let n be an odd prime,
t = ordn(2), s = (n� 1)=t, b 2 Fqn. Then

m(b) 2 f1; t + 1; 2t + 1; : : : ; st+ 1g:
Moreover, the number of b 2 Fqn with m(b) = it + 1 is

q
 s
i

!
(qt � 1)i.

15

3. The ECDLP

Consequences

1. Koblitz curves (b 2 F2).

�m = 1, so g = 1.

� So, GHS attack is useless for Koblitz curves.

2. Non-Koblitz curves over F2n, n prime.

� If n 2 [160; 600], then m � 18, so g � 217 � 128; 000.

� So GHS attack fails for all elliptic curves over F2n,
where n is prime.

16

3. The ECDLP

3. Elliptic curves over F2155.

(a) q = 231, n = 5.

{ g = 1; 15 or 16.

{HCDLP in a genus 15 curve over F231 appears
infeasible (Smart, Eurocrypt 2001).

(b) q = 25, n = 31.

{m = 6, so g = 31 for a small fraction of elliptic curves
over F25.

{HCDLP in a genus 31 curve over F25 is feasible
(Jacobson, Menezes & Stein, 2001).

17

3. The ECDLP

Certicom's ECC Challenge

� Launched on November 6, 1997.

� See http://www.certicom.com/

18

3. The ECDLP

The Challenges

� The challenge curves are divided into three categories:

{ Randomly generated curves over F2m (m prime)

{ Koblitz curves over F2m (m prime)

{ Randomly generated curves over Fp (p prime)

�Within each category, there are 3 subcategories:

{ Exercises

{ Level I challenges

{ Level II challenges

19

3. The ECDLP

Challenges { Random Curves Over F2m

Field size (bits) Prize (US$)

Exercises
ECC2-79 79 Book/Maple
ECC2-89 89 Book/Maple
ECC2-97 97 $ 5,000

Level I Challenges
ECC2-109 109 $10,000
ECC2-131 131 $20,000

Level II Challenges
ECC2-163 163 $30,000
ECC2-191 191 $40,000
ECC2-238 239 $50,000
ECC2-353 359 $100,000

20

3. The ECDLP

Challenges { Koblitz Curves

Field size (bits) Prize (US$)

Exercises
ECC2K-95 97 $ 5,000

Level I Challenges
ECC2K-108 109 $10,000
ECC2K-130 131 $20,000

Level II Challenges
ECC2K-163 163 $30,000
ECC2K-238 239 $50,000
ECC2K-358 359 $100,000

21
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1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.

2

1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).

3

1. Discrete Logarithm Systems

EÆciency Requirements

Basic requirement: Computing ga from g and a should be
relatively easy.

� Group elements should have a compact representation.
Ideally, each group element should be represented using
� log2 n bits.

� Note: Representation of the group element can have
important security implications. After all, every cyclic group
of order n is isomorphic to (Zn;+) where the DLP is:
given 1 and a, �nd a.

� The group operation with respect to this representation
should be fast. (Then exponentiation can be eÆciently
performed using repeated square-and-multiply.)

4

1. Discrete Logarithm Systems

Cryptographically Suitable Groups

� DiÆe and Hellman �rst proposed using the multiplicative
group Z�p, where p is a prime.

� The existence of subexponential-time index-calculus methods
for solving the ECDLP in Z�p means that larger parameters
have to be used to avoid the best attacks known (e.g., a
1024-bit prime p).

� Fundamental question: Are there �nite groups for which:

(i) the group elements can be compactly represented;

(ii) the group operation can be eÆciently computed; and

(iii) the discrete logarithm problem cannot be solved in
subexponential time?

5

2. Why Elliptic Curves?

Why Elliptic Curves?

[The following approach is due to Gerhard Frey]
Abelian Varieties

� Abelian varieties A (over �nite �elds Fq) provide a rich
source of �nite groups.

{ Set of solutions to a set of equations, together with a group law given
by rational functions.

{ Example (multiplicative group of Fq):
Equation: xy = 1
Group law: (x1; y1) + (x2; y2) = (x1y1; x2y2).

{ Example (elliptic curve group over Fp):
Equation: y2 = x3 + ax + b
Group law: usual tangent-and-chord formulas.

{ Problem: The number of variables and the degrees of the addition
formulas grow exponentially with the dimension of A.

6

2. Why Elliptic Curves?

Jacobian Varieties

� Solution: Take special abelian varieties{ Jacobian variety JC
of an algebraic curve C over a �nite �eld Fq.

� JC can be viewed as the quotient group of zero divisors
modulo the principal divisors.

� By Riemann-Roch, each divisor class has a reduced divisor:
P1 + P2 + � � � + Pt � tP1, where t � g.

� Problem: The points in the support of D 2 JC(Fq) are not
necessarily de�ned over Fq . Also need an eÆcient method to
add 2 reduced divisors and convert the result to reduced
form.

7

2. Why Elliptic Curves?

Hyperelliptic Curves

� Solution: Consider the jacobian JC(Fq) of a hyperelliptic
curve C of genus g over Fq . (JC is a g-dimensional abelian
variety.) Note that #JC(Fq) � qg.

� C : v2 + h(u)v = f(u), h; f 2 Fq [u], deg h � g,
deg f = 2g + 1.

� Elements of JC(Fq) can be uniquely represented by a pair of
polynomials a; b 2 Fq [u], where deg b < deg a � g, a is

monic, and aj(b2 + bh� f).

� Cantor's algorithm eÆciently adds two elements in this form,
and provides the result in this same form.

8

2. Why Elliptic Curves?

Hyperelliptic Curves (2)

� Problem: For \large" genus hyperelliptic curves, there are
subexponential-time algorithms for the DLP in JC(Fq).
(Adleman-DeMarrais-Huang, M�uller-Stein-Thiel,
Enge-Gaudry.)

� Problem: For small genus g = 5; 6; 7; 8; : : : , Gaudry's
algorithm (2000) has a running time that is faster than
Pollard's rho algorithm.

� Problem: g = 4 is too close for comfort.

� Solution: Use g = 1; 2; 3 hyperelliptic curves.

9

2. Why Elliptic Curves?

Genus 1, 2 and 3

� Problem: The group law for g = 3 is signi�cantly more
complicated than the group law for g = 2.

� Solution: Use g = 2.

{ Group law can be described by explicit & simple formulas.

{ However the group law for g = 2 is still more complicated
that the elliptic curve (g = 1) group law.

{ g = 2 has a potential advantage over g = 1 in that one
can use a smaller �nite �eld for the same level of
security{this may be advantageous for hardware.

{ However, in general g = 2 will be slower than g = 1.
There is no compelling reason (as yet) to use g = 2.

{ So, we are stuck with elliptic curves!

10

3. The ECDLP

The Elliptic Curve Discrete Logarithm Problem

� Let E be an elliptic curve over Fq with #E(Fq) = nh,
where n is prime and h is small. Let P 2 E(Fq),
ord(P ) = n. ECDLP: Given E, P , Q 2 hP i, �nd
l 2 [0; n� 1] such that Q = lP .

� In general, there is no subexponential-time algorithm known
for the DLP in E(Fq). The best algorithm known is
Pollard's rho which takes (

p
�n)=2 steps.

11

3. The ECDLP

Special Cases

� (Weil & Tate pairing): EÆciently embed hP i in F�
qk

for

small k.

� (Prime �eld anomalous curves): If #E(Fp) = p, then
ECDLP in E(Fp) can be eÆciently calculated.

� (Frobenius endomorphism): Use equivalence classes of
points under Frobenius map to speed up Pollard's rho
algorithm for Koblitz curves over F2m by a factor of

p
m.
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3. The ECDLPWeil Descent Attack

� q = 2l, E=Fqn : y2 + xy = x3 + ax2 + b.

� Frey (1998); Galbraith & Smart (1999)

� Gaudry, Hess & Smart (2000)

E(Fqn)

C=Fq -A(Fq)
?

JC(Fq)

-

-

� A: n-dimensional abelian variety over Fq .
C: genus-g hyperelliptic curve which lies on A.
JC(Fq)

�= subgroup of E(Fqn).

13

3. The ECDLP

Analysis

� Theorem (Gaudry, Hess & Smart, 2000) g = 2m�1 or
2m�1 � 1, where

m = m(b) = dimF2
(SpanF2f(1; b

1=2
0 ); : : : ; (1; b

1=2
n�1)g);

where bi = bq
i

, 0 � i � n� 1.

� Notes:
(a) 1 � m � n, so 1 � g � 2n�1.

(b) If m = 1, so g = 1, the reduction is useless.

(c) If m = n, so g = 2n�1, the reduction takes fully

exponential time (#JC(Fq) � q2
n�1

).

14

3. The ECDLP

Analysis (2)

Theorem (Menezes & Qu, 2000) Let n be an odd prime,
t = ordn(2), s = (n� 1)=t, b 2 Fqn. Then

m(b) 2 f1; t + 1; 2t + 1; : : : ; st+ 1g:
Moreover, the number of b 2 Fqn with m(b) = it + 1 is

q
 s
i

!
(qt � 1)i.

15

3. The ECDLP

Consequences

1. Koblitz curves (b 2 F2).

�m = 1, so g = 1.

� So, GHS attack is useless for Koblitz curves.

2. Non-Koblitz curves over F2n, n prime.

� If n 2 [160; 600], then m � 18, so g � 217 � 128; 000.

� So GHS attack fails for all elliptic curves over F2n,
where n is prime.

16

3. The ECDLP

3. Elliptic curves over F2155.

(a) q = 231, n = 5.

{ g = 1; 15 or 16.

{HCDLP in a genus 15 curve over F231 appears
infeasible (Smart, Eurocrypt 2001).

(b) q = 25, n = 31.

{m = 6, so g = 31 for a small fraction of elliptic curves
over F25.

{HCDLP in a genus 31 curve over F25 is feasible
(Jacobson, Menezes & Stein, 2001).

17

3. The ECDLP

Certicom's ECC Challenge

� Launched on November 6, 1997.

� See http://www.certicom.com/
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3. The ECDLP

The Challenges

� The challenge curves are divided into three categories:

{ Randomly generated curves over F2m (m prime)

{ Koblitz curves over F2m (m prime)

{ Randomly generated curves over Fp (p prime)

�Within each category, there are 3 subcategories:

{ Exercises

{ Level I challenges

{ Level II challenges

19

3. The ECDLP

Challenges { Random Curves Over F2m

Field size (bits) Prize (US$)

Exercises
ECC2-79 79 Book/Maple
ECC2-89 89 Book/Maple
ECC2-97 97 $ 5,000

Level I Challenges
ECC2-109 109 $10,000
ECC2-131 131 $20,000

Level II Challenges
ECC2-163 163 $30,000
ECC2-191 191 $40,000
ECC2-238 239 $50,000
ECC2-353 359 $100,000
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3. The ECDLP

Challenges { Koblitz Curves

Field size (bits) Prize (US$)

Exercises
ECC2K-95 97 $ 5,000

Level I Challenges
ECC2K-108 109 $10,000
ECC2K-130 131 $20,000

Level II Challenges
ECC2K-163 163 $30,000
ECC2K-238 239 $50,000
ECC2K-358 359 $100,000
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3. The ECDLP

Challenges { Random Curves Over Fp

Field size (bits) Prize (US$)

Exercises
ECCp-79 79 Book/Maple
ECCp-89 89 Book/Maple
ECCp-97 97 $ 5,000

Level I Challenges
ECCp-109 109 $10,000
ECCp-131 131 $20,000

Level II Challenges
ECCp-163 163 $30,000
ECCp-191 191 $40,000
ECCp-239 239 $50,000
ECCp-359 359 $100,000
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3. The ECDLP

Results To Date

(Robert Harley, INRIA; Adrian Escott, BT Labs)
Using parallelized Pollard-rho in software:

Challenge Date Time
solved (group ops)

ECCp-79 Dec 6 97 1:4 � 1012

ECC2-79 Dec 16 97 1:7 � 1012

ECCp-89 Jan 12 98 3:0 � 1013

ECC2-89 Feb 9 98 1:8 � 1013

ECCp-97 Mar 18 98 2:0 � 1014

ECC2K-95 May 21 98 2:2 � 1013

ECC2-97 Sep 22 99 1:2 � 1014

ECC2K-108 Apr 4 00 1:1 � 1014
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1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.

2

1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).

3

1. Discrete Logarithm Systems

EÆciency Requirements

Basic requirement: Computing ga from g and a should be
relatively easy.

� Group elements should have a compact representation.
Ideally, each group element should be represented using
� log2 n bits.

� Note: Representation of the group element can have
important security implications. After all, every cyclic group
of order n is isomorphic to (Zn;+) where the DLP is:
given 1 and a, �nd a.

� The group operation with respect to this representation
should be fast. (Then exponentiation can be eÆciently
performed using repeated square-and-multiply.)

4

1. Discrete Logarithm Systems

Cryptographically Suitable Groups

� DiÆe and Hellman �rst proposed using the multiplicative
group Z�p, where p is a prime.

� The existence of subexponential-time index-calculus methods
for solving the ECDLP in Z�p means that larger parameters
have to be used to avoid the best attacks known (e.g., a
1024-bit prime p).

� Fundamental question: Are there �nite groups for which:

(i) the group elements can be compactly represented;

(ii) the group operation can be eÆciently computed; and

(iii) the discrete logarithm problem cannot be solved in
subexponential time?

5

2. Why Elliptic Curves?

Why Elliptic Curves?

[The following approach is due to Gerhard Frey]
Abelian Varieties

� Abelian varieties A (over �nite �elds Fq) provide a rich
source of �nite groups.

{ Set of solutions to a set of equations, together with a group law given
by rational functions.

{ Example (multiplicative group of Fq):
Equation: xy = 1
Group law: (x1; y1) + (x2; y2) = (x1y1; x2y2).

{ Example (elliptic curve group over Fp):
Equation: y2 = x3 + ax + b
Group law: usual tangent-and-chord formulas.

{ Problem: The number of variables and the degrees of the addition
formulas grow exponentially with the dimension of A.

6

2. Why Elliptic Curves?

Jacobian Varieties

� Solution: Take special abelian varieties{ Jacobian variety JC
of an algebraic curve C over a �nite �eld Fq.

� JC can be viewed as the quotient group of zero divisors
modulo the principal divisors.

� By Riemann-Roch, each divisor class has a reduced divisor:
P1 + P2 + � � � + Pt � tP1, where t � g.

� Problem: The points in the support of D 2 JC(Fq) are not
necessarily de�ned over Fq . Also need an eÆcient method to
add 2 reduced divisors and convert the result to reduced
form.

7

2. Why Elliptic Curves?

Hyperelliptic Curves

� Solution: Consider the jacobian JC(Fq) of a hyperelliptic
curve C of genus g over Fq . (JC is a g-dimensional abelian
variety.) Note that #JC(Fq) � qg.

� C : v2 + h(u)v = f(u), h; f 2 Fq [u], deg h � g,
deg f = 2g + 1.

� Elements of JC(Fq) can be uniquely represented by a pair of
polynomials a; b 2 Fq [u], where deg b < deg a � g, a is

monic, and aj(b2 + bh� f).

� Cantor's algorithm eÆciently adds two elements in this form,
and provides the result in this same form.

8

2. Why Elliptic Curves?

Hyperelliptic Curves (2)

� Problem: For \large" genus hyperelliptic curves, there are
subexponential-time algorithms for the DLP in JC(Fq).
(Adleman-DeMarrais-Huang, M�uller-Stein-Thiel,
Enge-Gaudry.)

� Problem: For small genus g = 5; 6; 7; 8; : : : , Gaudry's
algorithm (2000) has a running time that is faster than
Pollard's rho algorithm.

� Problem: g = 4 is too close for comfort.

� Solution: Use g = 1; 2; 3 hyperelliptic curves.

9

2. Why Elliptic Curves?

Genus 1, 2 and 3

� Problem: The group law for g = 3 is signi�cantly more
complicated than the group law for g = 2.

� Solution: Use g = 2.

{ Group law can be described by explicit & simple formulas.

{ However the group law for g = 2 is still more complicated
that the elliptic curve (g = 1) group law.

{ g = 2 has a potential advantage over g = 1 in that one
can use a smaller �nite �eld for the same level of
security{this may be advantageous for hardware.

{ However, in general g = 2 will be slower than g = 1.
There is no compelling reason (as yet) to use g = 2.

{ So, we are stuck with elliptic curves!

10

3. The ECDLP

The Elliptic Curve Discrete Logarithm Problem

� Let E be an elliptic curve over Fq with #E(Fq) = nh,
where n is prime and h is small. Let P 2 E(Fq),
ord(P ) = n. ECDLP: Given E, P , Q 2 hP i, �nd
l 2 [0; n� 1] such that Q = lP .

� In general, there is no subexponential-time algorithm known
for the DLP in E(Fq). The best algorithm known is
Pollard's rho which takes (

p
�n)=2 steps.

11

3. The ECDLP

Special Cases

� (Weil & Tate pairing): EÆciently embed hP i in F�
qk

for

small k.

� (Prime �eld anomalous curves): If #E(Fp) = p, then
ECDLP in E(Fp) can be eÆciently calculated.

� (Frobenius endomorphism): Use equivalence classes of
points under Frobenius map to speed up Pollard's rho
algorithm for Koblitz curves over F2m by a factor of

p
m.

12

3. The ECDLPWeil Descent Attack

� q = 2l, E=Fqn : y2 + xy = x3 + ax2 + b.

� Frey (1998); Galbraith & Smart (1999)

� Gaudry, Hess & Smart (2000)

E(Fqn)

C=Fq -A(Fq)
?

JC(Fq)

-

-

� A: n-dimensional abelian variety over Fq .
C: genus-g hyperelliptic curve which lies on A.
JC(Fq)

�= subgroup of E(Fqn).

13

3. The ECDLP

Analysis

� Theorem (Gaudry, Hess & Smart, 2000) g = 2m�1 or
2m�1 � 1, where

m = m(b) = dimF2
(SpanF2f(1; b

1=2
0 ); : : : ; (1; b

1=2
n�1)g);

where bi = bq
i

, 0 � i � n� 1.

� Notes:
(a) 1 � m � n, so 1 � g � 2n�1.

(b) If m = 1, so g = 1, the reduction is useless.

(c) If m = n, so g = 2n�1, the reduction takes fully

exponential time (#JC(Fq) � q2
n�1

).

14

3. The ECDLP

Analysis (2)

Theorem (Menezes & Qu, 2000) Let n be an odd prime,
t = ordn(2), s = (n� 1)=t, b 2 Fqn. Then

m(b) 2 f1; t + 1; 2t + 1; : : : ; st+ 1g:
Moreover, the number of b 2 Fqn with m(b) = it + 1 is

q
 s
i

!
(qt � 1)i.

15

3. The ECDLP

Consequences

1. Koblitz curves (b 2 F2).

�m = 1, so g = 1.

� So, GHS attack is useless for Koblitz curves.

2. Non-Koblitz curves over F2n, n prime.

� If n 2 [160; 600], then m � 18, so g � 217 � 128; 000.

� So GHS attack fails for all elliptic curves over F2n,
where n is prime.

16

3. The ECDLP

3. Elliptic curves over F2155.

(a) q = 231, n = 5.

{ g = 1; 15 or 16.

{HCDLP in a genus 15 curve over F231 appears
infeasible (Smart, Eurocrypt 2001).

(b) q = 25, n = 31.

{m = 6, so g = 31 for a small fraction of elliptic curves
over F25.

{HCDLP in a genus 31 curve over F25 is feasible
(Jacobson, Menezes & Stein, 2001).

17

3. The ECDLP

Certicom's ECC Challenge

� Launched on November 6, 1997.

� See http://www.certicom.com/

18

3. The ECDLP

The Challenges

� The challenge curves are divided into three categories:

{ Randomly generated curves over F2m (m prime)

{ Koblitz curves over F2m (m prime)

{ Randomly generated curves over Fp (p prime)

�Within each category, there are 3 subcategories:

{ Exercises

{ Level I challenges

{ Level II challenges

19

3. The ECDLP

Challenges { Random Curves Over F2m

Field size (bits) Prize (US$)

Exercises
ECC2-79 79 Book/Maple
ECC2-89 89 Book/Maple
ECC2-97 97 $ 5,000

Level I Challenges
ECC2-109 109 $10,000
ECC2-131 131 $20,000

Level II Challenges
ECC2-163 163 $30,000
ECC2-191 191 $40,000
ECC2-238 239 $50,000
ECC2-353 359 $100,000

20

3. The ECDLP

Challenges { Koblitz Curves

Field size (bits) Prize (US$)

Exercises
ECC2K-95 97 $ 5,000

Level I Challenges
ECC2K-108 109 $10,000
ECC2K-130 131 $20,000

Level II Challenges
ECC2K-163 163 $30,000
ECC2K-238 239 $50,000
ECC2K-358 359 $100,000

21

3. The ECDLP

Challenges { Random Curves Over Fp

Field size (bits) Prize (US$)

Exercises
ECCp-79 79 Book/Maple
ECCp-89 89 Book/Maple
ECCp-97 97 $ 5,000

Level I Challenges
ECCp-109 109 $10,000
ECCp-131 131 $20,000

Level II Challenges
ECCp-163 163 $30,000
ECCp-191 191 $40,000
ECCp-239 239 $50,000
ECCp-359 359 $100,000

22

3. The ECDLP

Results To Date

(Robert Harley, INRIA; Adrian Escott, BT Labs)
Using parallelized Pollard-rho in software:

Challenge Date Time
solved (group ops)

ECCp-79 Dec 6 97 1:4 � 1012

ECC2-79 Dec 16 97 1:7 � 1012

ECCp-89 Jan 12 98 3:0 � 1013

ECC2-89 Feb 9 98 1:8 � 1013

ECCp-97 Mar 18 98 2:0 � 1014

ECC2K-95 May 21 98 2:2 � 1013

ECC2-97 Sep 22 99 1:2 � 1014

ECC2K-108 Apr 4 00 1:1 � 1014
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3. The ECDLP

Computational E�ort for ECC2-97

� 740 machines (mostly Pentiums and Alphas).

� 20 countries.

� 40 days.

� 1:2 � 1014 elliptic curve points computed.

� 127; 497 distinguished points collected.

� Computing power utilized: About 16,000 MIPS years.

�More than twice as much computing power as used for the
recent factorization of RSA-155.

24

3. The ECDLP

Future Results?

Estimated time to compute logarithms using Pollard-rho.

Challenge Time
(expected)

ECC2-109 2:2 � 1016

ECCp-109 2:2 � 1016

ECC2K-130 2:9 � 1018

ECC2-131 4:6 � 1019

ECCp-131 4:6 � 1019
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1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.

2

1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).

3

1. Discrete Logarithm Systems

EÆciency Requirements

Basic requirement: Computing ga from g and a should be
relatively easy.

� Group elements should have a compact representation.
Ideally, each group element should be represented using
� log2 n bits.

� Note: Representation of the group element can have
important security implications. After all, every cyclic group
of order n is isomorphic to (Zn;+) where the DLP is:
given 1 and a, �nd a.

� The group operation with respect to this representation
should be fast. (Then exponentiation can be eÆciently
performed using repeated square-and-multiply.)

4

1. Discrete Logarithm Systems

Cryptographically Suitable Groups

� DiÆe and Hellman �rst proposed using the multiplicative
group Z�p, where p is a prime.

� The existence of subexponential-time index-calculus methods
for solving the ECDLP in Z�p means that larger parameters
have to be used to avoid the best attacks known (e.g., a
1024-bit prime p).

� Fundamental question: Are there �nite groups for which:

(i) the group elements can be compactly represented;

(ii) the group operation can be eÆciently computed; and

(iii) the discrete logarithm problem cannot be solved in
subexponential time?

5

2. Why Elliptic Curves?

Why Elliptic Curves?

[The following approach is due to Gerhard Frey]
Abelian Varieties

� Abelian varieties A (over �nite �elds Fq) provide a rich
source of �nite groups.

{ Set of solutions to a set of equations, together with a group law given
by rational functions.

{ Example (multiplicative group of Fq):
Equation: xy = 1
Group law: (x1; y1) + (x2; y2) = (x1y1; x2y2).

{ Example (elliptic curve group over Fp):
Equation: y2 = x3 + ax + b
Group law: usual tangent-and-chord formulas.

{ Problem: The number of variables and the degrees of the addition
formulas grow exponentially with the dimension of A.

6

2. Why Elliptic Curves?

Jacobian Varieties

� Solution: Take special abelian varieties{ Jacobian variety JC
of an algebraic curve C over a �nite �eld Fq.

� JC can be viewed as the quotient group of zero divisors
modulo the principal divisors.

� By Riemann-Roch, each divisor class has a reduced divisor:
P1 + P2 + � � � + Pt � tP1, where t � g.

� Problem: The points in the support of D 2 JC(Fq) are not
necessarily de�ned over Fq . Also need an eÆcient method to
add 2 reduced divisors and convert the result to reduced
form.

7

2. Why Elliptic Curves?

Hyperelliptic Curves

� Solution: Consider the jacobian JC(Fq) of a hyperelliptic
curve C of genus g over Fq . (JC is a g-dimensional abelian
variety.) Note that #JC(Fq) � qg.

� C : v2 + h(u)v = f(u), h; f 2 Fq [u], deg h � g,
deg f = 2g + 1.

� Elements of JC(Fq) can be uniquely represented by a pair of
polynomials a; b 2 Fq [u], where deg b < deg a � g, a is

monic, and aj(b2 + bh� f).

� Cantor's algorithm eÆciently adds two elements in this form,
and provides the result in this same form.

8

2. Why Elliptic Curves?

Hyperelliptic Curves (2)

� Problem: For \large" genus hyperelliptic curves, there are
subexponential-time algorithms for the DLP in JC(Fq).
(Adleman-DeMarrais-Huang, M�uller-Stein-Thiel,
Enge-Gaudry.)

� Problem: For small genus g = 5; 6; 7; 8; : : : , Gaudry's
algorithm (2000) has a running time that is faster than
Pollard's rho algorithm.

� Problem: g = 4 is too close for comfort.

� Solution: Use g = 1; 2; 3 hyperelliptic curves.

9

2. Why Elliptic Curves?

Genus 1, 2 and 3

� Problem: The group law for g = 3 is signi�cantly more
complicated than the group law for g = 2.

� Solution: Use g = 2.

{ Group law can be described by explicit & simple formulas.

{ However the group law for g = 2 is still more complicated
that the elliptic curve (g = 1) group law.

{ g = 2 has a potential advantage over g = 1 in that one
can use a smaller �nite �eld for the same level of
security{this may be advantageous for hardware.

{ However, in general g = 2 will be slower than g = 1.
There is no compelling reason (as yet) to use g = 2.

{ So, we are stuck with elliptic curves!

10

3. The ECDLP

The Elliptic Curve Discrete Logarithm Problem

� Let E be an elliptic curve over Fq with #E(Fq) = nh,
where n is prime and h is small. Let P 2 E(Fq),
ord(P ) = n. ECDLP: Given E, P , Q 2 hP i, �nd
l 2 [0; n� 1] such that Q = lP .

� In general, there is no subexponential-time algorithm known
for the DLP in E(Fq). The best algorithm known is
Pollard's rho which takes (

p
�n)=2 steps.

11

3. The ECDLP

Special Cases

� (Weil & Tate pairing): EÆciently embed hP i in F�
qk

for

small k.

� (Prime �eld anomalous curves): If #E(Fp) = p, then
ECDLP in E(Fp) can be eÆciently calculated.

� (Frobenius endomorphism): Use equivalence classes of
points under Frobenius map to speed up Pollard's rho
algorithm for Koblitz curves over F2m by a factor of

p
m.
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3. The ECDLPWeil Descent Attack

� q = 2l, E=Fqn : y2 + xy = x3 + ax2 + b.

� Frey (1998); Galbraith & Smart (1999)

� Gaudry, Hess & Smart (2000)

E(Fqn)

C=Fq -A(Fq)
?

JC(Fq)

-

-

� A: n-dimensional abelian variety over Fq .
C: genus-g hyperelliptic curve which lies on A.
JC(Fq)

�= subgroup of E(Fqn).

13

3. The ECDLP

Analysis

� Theorem (Gaudry, Hess & Smart, 2000) g = 2m�1 or
2m�1 � 1, where

m = m(b) = dimF2
(SpanF2f(1; b

1=2
0 ); : : : ; (1; b

1=2
n�1)g);

where bi = bq
i

, 0 � i � n� 1.

� Notes:
(a) 1 � m � n, so 1 � g � 2n�1.

(b) If m = 1, so g = 1, the reduction is useless.

(c) If m = n, so g = 2n�1, the reduction takes fully

exponential time (#JC(Fq) � q2
n�1

).

14

3. The ECDLP

Analysis (2)

Theorem (Menezes & Qu, 2000) Let n be an odd prime,
t = ordn(2), s = (n� 1)=t, b 2 Fqn. Then

m(b) 2 f1; t + 1; 2t + 1; : : : ; st+ 1g:
Moreover, the number of b 2 Fqn with m(b) = it + 1 is

q
 s
i

!
(qt � 1)i.

15

3. The ECDLP

Consequences

1. Koblitz curves (b 2 F2).

�m = 1, so g = 1.

� So, GHS attack is useless for Koblitz curves.

2. Non-Koblitz curves over F2n, n prime.

� If n 2 [160; 600], then m � 18, so g � 217 � 128; 000.

� So GHS attack fails for all elliptic curves over F2n,
where n is prime.

16

3. The ECDLP

3. Elliptic curves over F2155.

(a) q = 231, n = 5.

{ g = 1; 15 or 16.

{HCDLP in a genus 15 curve over F231 appears
infeasible (Smart, Eurocrypt 2001).

(b) q = 25, n = 31.

{m = 6, so g = 31 for a small fraction of elliptic curves
over F25.

{HCDLP in a genus 31 curve over F25 is feasible
(Jacobson, Menezes & Stein, 2001).
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3. The ECDLP

Certicom's ECC Challenge

� Launched on November 6, 1997.

� See http://www.certicom.com/
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3. The ECDLP

The Challenges

� The challenge curves are divided into three categories:

{ Randomly generated curves over F2m (m prime)

{ Koblitz curves over F2m (m prime)

{ Randomly generated curves over Fp (p prime)

�Within each category, there are 3 subcategories:

{ Exercises

{ Level I challenges

{ Level II challenges

19

3. The ECDLP

Challenges { Random Curves Over F2m

Field size (bits) Prize (US$)

Exercises
ECC2-79 79 Book/Maple
ECC2-89 89 Book/Maple
ECC2-97 97 $ 5,000

Level I Challenges
ECC2-109 109 $10,000
ECC2-131 131 $20,000

Level II Challenges
ECC2-163 163 $30,000
ECC2-191 191 $40,000
ECC2-238 239 $50,000
ECC2-353 359 $100,000
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3. The ECDLP

Challenges { Koblitz Curves

Field size (bits) Prize (US$)

Exercises
ECC2K-95 97 $ 5,000

Level I Challenges
ECC2K-108 109 $10,000
ECC2K-130 131 $20,000

Level II Challenges
ECC2K-163 163 $30,000
ECC2K-238 239 $50,000
ECC2K-358 359 $100,000

21

3. The ECDLP

Challenges { Random Curves Over Fp

Field size (bits) Prize (US$)

Exercises
ECCp-79 79 Book/Maple
ECCp-89 89 Book/Maple
ECCp-97 97 $ 5,000

Level I Challenges
ECCp-109 109 $10,000
ECCp-131 131 $20,000

Level II Challenges
ECCp-163 163 $30,000
ECCp-191 191 $40,000
ECCp-239 239 $50,000
ECCp-359 359 $100,000
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3. The ECDLP

Results To Date

(Robert Harley, INRIA; Adrian Escott, BT Labs)
Using parallelized Pollard-rho in software:

Challenge Date Time
solved (group ops)

ECCp-79 Dec 6 97 1:4 � 1012

ECC2-79 Dec 16 97 1:7 � 1012

ECCp-89 Jan 12 98 3:0 � 1013

ECC2-89 Feb 9 98 1:8 � 1013

ECCp-97 Mar 18 98 2:0 � 1014

ECC2K-95 May 21 98 2:2 � 1013

ECC2-97 Sep 22 99 1:2 � 1014

ECC2K-108 Apr 4 00 1:1 � 1014
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3. The ECDLP

Computational E�ort for ECC2-97

� 740 machines (mostly Pentiums and Alphas).

� 20 countries.

� 40 days.

� 1:2 � 1014 elliptic curve points computed.

� 127; 497 distinguished points collected.

� Computing power utilized: About 16,000 MIPS years.

�More than twice as much computing power as used for the
recent factorization of RSA-155.

24

3. The ECDLP

Future Results?

Estimated time to compute logarithms using Pollard-rho.

Challenge Time
(expected)

ECC2-109 2:2 � 1016

ECCp-109 2:2 � 1016

ECC2K-130 2:9 � 1018

ECC2-131 4:6 � 1019

ECCp-131 4:6 � 1019
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4. ECC Protocols

ECC Protocols

� Elliptic curves can be used to design procotols for the basic
public-key functions of key agreement, key transport
(encryption), and digital signatures.

� Ideally, a protocol should have the following attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).

26

4. ECC Protocols

Elliptic Curve Digital Signature Algorithm
(ECDSA)

EC Key Pair Generation:

� Domain parameters: E, Fq , G 2 E(Fq), n = ord(G),
h = #E(Fq)=n.

� Each entity A does the following:

1. Select a random integer d in the interval [1; n� 1].

2. Compute Q = dG.

3. A's public key is Q; A's private key is d.
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1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.

2

1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).

3

1. Discrete Logarithm Systems

EÆciency Requirements

Basic requirement: Computing ga from g and a should be
relatively easy.

� Group elements should have a compact representation.
Ideally, each group element should be represented using
� log2 n bits.

� Note: Representation of the group element can have
important security implications. After all, every cyclic group
of order n is isomorphic to (Zn;+) where the DLP is:
given 1 and a, �nd a.

� The group operation with respect to this representation
should be fast. (Then exponentiation can be eÆciently
performed using repeated square-and-multiply.)

4

1. Discrete Logarithm Systems

Cryptographically Suitable Groups

� DiÆe and Hellman �rst proposed using the multiplicative
group Z�p, where p is a prime.

� The existence of subexponential-time index-calculus methods
for solving the ECDLP in Z�p means that larger parameters
have to be used to avoid the best attacks known (e.g., a
1024-bit prime p).

� Fundamental question: Are there �nite groups for which:

(i) the group elements can be compactly represented;

(ii) the group operation can be eÆciently computed; and

(iii) the discrete logarithm problem cannot be solved in
subexponential time?

5

2. Why Elliptic Curves?

Why Elliptic Curves?

[The following approach is due to Gerhard Frey]
Abelian Varieties

� Abelian varieties A (over �nite �elds Fq) provide a rich
source of �nite groups.

{ Set of solutions to a set of equations, together with a group law given
by rational functions.

{ Example (multiplicative group of Fq):
Equation: xy = 1
Group law: (x1; y1) + (x2; y2) = (x1y1; x2y2).

{ Example (elliptic curve group over Fp):
Equation: y2 = x3 + ax + b
Group law: usual tangent-and-chord formulas.

{ Problem: The number of variables and the degrees of the addition
formulas grow exponentially with the dimension of A.

6

2. Why Elliptic Curves?

Jacobian Varieties

� Solution: Take special abelian varieties{ Jacobian variety JC
of an algebraic curve C over a �nite �eld Fq.

� JC can be viewed as the quotient group of zero divisors
modulo the principal divisors.

� By Riemann-Roch, each divisor class has a reduced divisor:
P1 + P2 + � � � + Pt � tP1, where t � g.

� Problem: The points in the support of D 2 JC(Fq) are not
necessarily de�ned over Fq . Also need an eÆcient method to
add 2 reduced divisors and convert the result to reduced
form.

7

2. Why Elliptic Curves?

Hyperelliptic Curves

� Solution: Consider the jacobian JC(Fq) of a hyperelliptic
curve C of genus g over Fq . (JC is a g-dimensional abelian
variety.) Note that #JC(Fq) � qg.

� C : v2 + h(u)v = f(u), h; f 2 Fq [u], deg h � g,
deg f = 2g + 1.

� Elements of JC(Fq) can be uniquely represented by a pair of
polynomials a; b 2 Fq [u], where deg b < deg a � g, a is

monic, and aj(b2 + bh� f).

� Cantor's algorithm eÆciently adds two elements in this form,
and provides the result in this same form.

8

2. Why Elliptic Curves?

Hyperelliptic Curves (2)

� Problem: For \large" genus hyperelliptic curves, there are
subexponential-time algorithms for the DLP in JC(Fq).
(Adleman-DeMarrais-Huang, M�uller-Stein-Thiel,
Enge-Gaudry.)

� Problem: For small genus g = 5; 6; 7; 8; : : : , Gaudry's
algorithm (2000) has a running time that is faster than
Pollard's rho algorithm.

� Problem: g = 4 is too close for comfort.

� Solution: Use g = 1; 2; 3 hyperelliptic curves.

9

2. Why Elliptic Curves?

Genus 1, 2 and 3

� Problem: The group law for g = 3 is signi�cantly more
complicated than the group law for g = 2.

� Solution: Use g = 2.

{ Group law can be described by explicit & simple formulas.

{ However the group law for g = 2 is still more complicated
that the elliptic curve (g = 1) group law.

{ g = 2 has a potential advantage over g = 1 in that one
can use a smaller �nite �eld for the same level of
security{this may be advantageous for hardware.

{ However, in general g = 2 will be slower than g = 1.
There is no compelling reason (as yet) to use g = 2.

{ So, we are stuck with elliptic curves!

10

3. The ECDLP

The Elliptic Curve Discrete Logarithm Problem

� Let E be an elliptic curve over Fq with #E(Fq) = nh,
where n is prime and h is small. Let P 2 E(Fq),
ord(P ) = n. ECDLP: Given E, P , Q 2 hP i, �nd
l 2 [0; n� 1] such that Q = lP .

� In general, there is no subexponential-time algorithm known
for the DLP in E(Fq). The best algorithm known is
Pollard's rho which takes (

p
�n)=2 steps.

11

3. The ECDLP

Special Cases

� (Weil & Tate pairing): EÆciently embed hP i in F�
qk

for

small k.

� (Prime �eld anomalous curves): If #E(Fp) = p, then
ECDLP in E(Fp) can be eÆciently calculated.

� (Frobenius endomorphism): Use equivalence classes of
points under Frobenius map to speed up Pollard's rho
algorithm for Koblitz curves over F2m by a factor of

p
m.

12

3. The ECDLPWeil Descent Attack

� q = 2l, E=Fqn : y2 + xy = x3 + ax2 + b.

� Frey (1998); Galbraith & Smart (1999)

� Gaudry, Hess & Smart (2000)

E(Fqn)

C=Fq -A(Fq)
?

JC(Fq)

-

-

� A: n-dimensional abelian variety over Fq .
C: genus-g hyperelliptic curve which lies on A.
JC(Fq)

�= subgroup of E(Fqn).

13

3. The ECDLP

Analysis

� Theorem (Gaudry, Hess & Smart, 2000) g = 2m�1 or
2m�1 � 1, where

m = m(b) = dimF2
(SpanF2f(1; b

1=2
0 ); : : : ; (1; b

1=2
n�1)g);

where bi = bq
i

, 0 � i � n� 1.

� Notes:
(a) 1 � m � n, so 1 � g � 2n�1.

(b) If m = 1, so g = 1, the reduction is useless.

(c) If m = n, so g = 2n�1, the reduction takes fully

exponential time (#JC(Fq) � q2
n�1

).

14

3. The ECDLP

Analysis (2)

Theorem (Menezes & Qu, 2000) Let n be an odd prime,
t = ordn(2), s = (n� 1)=t, b 2 Fqn. Then

m(b) 2 f1; t + 1; 2t + 1; : : : ; st+ 1g:
Moreover, the number of b 2 Fqn with m(b) = it + 1 is

q
 s
i

!
(qt � 1)i.

15

3. The ECDLP

Consequences

1. Koblitz curves (b 2 F2).

�m = 1, so g = 1.

� So, GHS attack is useless for Koblitz curves.

2. Non-Koblitz curves over F2n, n prime.

� If n 2 [160; 600], then m � 18, so g � 217 � 128; 000.

� So GHS attack fails for all elliptic curves over F2n,
where n is prime.

16

3. The ECDLP

3. Elliptic curves over F2155.

(a) q = 231, n = 5.

{ g = 1; 15 or 16.

{HCDLP in a genus 15 curve over F231 appears
infeasible (Smart, Eurocrypt 2001).

(b) q = 25, n = 31.

{m = 6, so g = 31 for a small fraction of elliptic curves
over F25.

{HCDLP in a genus 31 curve over F25 is feasible
(Jacobson, Menezes & Stein, 2001).

17

3. The ECDLP

Certicom's ECC Challenge

� Launched on November 6, 1997.

� See http://www.certicom.com/
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3. The ECDLP

The Challenges

� The challenge curves are divided into three categories:

{ Randomly generated curves over F2m (m prime)

{ Koblitz curves over F2m (m prime)

{ Randomly generated curves over Fp (p prime)

�Within each category, there are 3 subcategories:

{ Exercises

{ Level I challenges

{ Level II challenges

19

3. The ECDLP

Challenges { Random Curves Over F2m

Field size (bits) Prize (US$)

Exercises
ECC2-79 79 Book/Maple
ECC2-89 89 Book/Maple
ECC2-97 97 $ 5,000

Level I Challenges
ECC2-109 109 $10,000
ECC2-131 131 $20,000

Level II Challenges
ECC2-163 163 $30,000
ECC2-191 191 $40,000
ECC2-238 239 $50,000
ECC2-353 359 $100,000

20

3. The ECDLP

Challenges { Koblitz Curves

Field size (bits) Prize (US$)

Exercises
ECC2K-95 97 $ 5,000

Level I Challenges
ECC2K-108 109 $10,000
ECC2K-130 131 $20,000

Level II Challenges
ECC2K-163 163 $30,000
ECC2K-238 239 $50,000
ECC2K-358 359 $100,000

21

3. The ECDLP

Challenges { Random Curves Over Fp

Field size (bits) Prize (US$)

Exercises
ECCp-79 79 Book/Maple
ECCp-89 89 Book/Maple
ECCp-97 97 $ 5,000

Level I Challenges
ECCp-109 109 $10,000
ECCp-131 131 $20,000

Level II Challenges
ECCp-163 163 $30,000
ECCp-191 191 $40,000
ECCp-239 239 $50,000
ECCp-359 359 $100,000

22

3. The ECDLP

Results To Date

(Robert Harley, INRIA; Adrian Escott, BT Labs)
Using parallelized Pollard-rho in software:

Challenge Date Time
solved (group ops)

ECCp-79 Dec 6 97 1:4 � 1012

ECC2-79 Dec 16 97 1:7 � 1012

ECCp-89 Jan 12 98 3:0 � 1013

ECC2-89 Feb 9 98 1:8 � 1013

ECCp-97 Mar 18 98 2:0 � 1014

ECC2K-95 May 21 98 2:2 � 1013

ECC2-97 Sep 22 99 1:2 � 1014

ECC2K-108 Apr 4 00 1:1 � 1014

23

3. The ECDLP

Computational E�ort for ECC2-97

� 740 machines (mostly Pentiums and Alphas).

� 20 countries.

� 40 days.

� 1:2 � 1014 elliptic curve points computed.

� 127; 497 distinguished points collected.

� Computing power utilized: About 16,000 MIPS years.

�More than twice as much computing power as used for the
recent factorization of RSA-155.

24

3. The ECDLP

Future Results?

Estimated time to compute logarithms using Pollard-rho.

Challenge Time
(expected)

ECC2-109 2:2 � 1016

ECCp-109 2:2 � 1016

ECC2K-130 2:9 � 1018

ECC2-131 4:6 � 1019

ECCp-131 4:6 � 1019

25

4. ECC Protocols

ECC Protocols

� Elliptic curves can be used to design procotols for the basic
public-key functions of key agreement, key transport
(encryption), and digital signatures.

� Ideally, a protocol should have the following attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).

26

4. ECC Protocols

Elliptic Curve Digital Signature Algorithm
(ECDSA)

EC Key Pair Generation:

� Domain parameters: E, Fq , G 2 E(Fq), n = ord(G),
h = #E(Fq)=n.

� Each entity A does the following:

1. Select a random integer d in the interval [1; n� 1].

2. Compute Q = dG.

3. A's public key is Q; A's private key is d.

27

4. ECC Protocols

ECDSA Signature Generation

To sign a message m, A does the following:

1. Select a random integer k, 1 � k � n � 1.

2. Compute kG = (x1; y1) and r = x1 mod n.
If r = 0 then go to step 1.

3. Compute k�1 mod n.

4. Compute e = SHA-1(m).

5. Compute s = k�1fe + drg mod n.
If s = 0 then go to step 1.

6. A's signature for the message m is (r; s).

28

4. ECC Protocols

ECDSA Signature Veri�cation

To verify A's signature (r; s) on m, B should do the following:

1. Verify that r and s are integers in the interval [1; n� 1].

2. Compute e = SHA-1(m).

3. Compute w = s�1 mod n.

4. Compute u1 = ew mod n and u2 = rw mod n.

5. Compute u1G + u2Q = (x1; y1) and v = x1 mod n.

6. Accept the signature if and only if v = r.
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1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.

2

1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).

3

1. Discrete Logarithm Systems

EÆciency Requirements

Basic requirement: Computing ga from g and a should be
relatively easy.

� Group elements should have a compact representation.
Ideally, each group element should be represented using
� log2 n bits.

� Note: Representation of the group element can have
important security implications. After all, every cyclic group
of order n is isomorphic to (Zn;+) where the DLP is:
given 1 and a, �nd a.

� The group operation with respect to this representation
should be fast. (Then exponentiation can be eÆciently
performed using repeated square-and-multiply.)

4

1. Discrete Logarithm Systems

Cryptographically Suitable Groups

� DiÆe and Hellman �rst proposed using the multiplicative
group Z�p, where p is a prime.

� The existence of subexponential-time index-calculus methods
for solving the ECDLP in Z�p means that larger parameters
have to be used to avoid the best attacks known (e.g., a
1024-bit prime p).

� Fundamental question: Are there �nite groups for which:

(i) the group elements can be compactly represented;

(ii) the group operation can be eÆciently computed; and

(iii) the discrete logarithm problem cannot be solved in
subexponential time?

5

2. Why Elliptic Curves?

Why Elliptic Curves?

[The following approach is due to Gerhard Frey]
Abelian Varieties

� Abelian varieties A (over �nite �elds Fq) provide a rich
source of �nite groups.

{ Set of solutions to a set of equations, together with a group law given
by rational functions.

{ Example (multiplicative group of Fq):
Equation: xy = 1
Group law: (x1; y1) + (x2; y2) = (x1y1; x2y2).

{ Example (elliptic curve group over Fp):
Equation: y2 = x3 + ax + b
Group law: usual tangent-and-chord formulas.

{ Problem: The number of variables and the degrees of the addition
formulas grow exponentially with the dimension of A.

6

2. Why Elliptic Curves?

Jacobian Varieties

� Solution: Take special abelian varieties{ Jacobian variety JC
of an algebraic curve C over a �nite �eld Fq.

� JC can be viewed as the quotient group of zero divisors
modulo the principal divisors.

� By Riemann-Roch, each divisor class has a reduced divisor:
P1 + P2 + � � � + Pt � tP1, where t � g.

� Problem: The points in the support of D 2 JC(Fq) are not
necessarily de�ned over Fq . Also need an eÆcient method to
add 2 reduced divisors and convert the result to reduced
form.

7

2. Why Elliptic Curves?

Hyperelliptic Curves

� Solution: Consider the jacobian JC(Fq) of a hyperelliptic
curve C of genus g over Fq . (JC is a g-dimensional abelian
variety.) Note that #JC(Fq) � qg.

� C : v2 + h(u)v = f(u), h; f 2 Fq [u], deg h � g,
deg f = 2g + 1.

� Elements of JC(Fq) can be uniquely represented by a pair of
polynomials a; b 2 Fq [u], where deg b < deg a � g, a is

monic, and aj(b2 + bh� f).

� Cantor's algorithm eÆciently adds two elements in this form,
and provides the result in this same form.

8

2. Why Elliptic Curves?

Hyperelliptic Curves (2)

� Problem: For \large" genus hyperelliptic curves, there are
subexponential-time algorithms for the DLP in JC(Fq).
(Adleman-DeMarrais-Huang, M�uller-Stein-Thiel,
Enge-Gaudry.)

� Problem: For small genus g = 5; 6; 7; 8; : : : , Gaudry's
algorithm (2000) has a running time that is faster than
Pollard's rho algorithm.

� Problem: g = 4 is too close for comfort.

� Solution: Use g = 1; 2; 3 hyperelliptic curves.
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2. Why Elliptic Curves?

Genus 1, 2 and 3

� Problem: The group law for g = 3 is signi�cantly more
complicated than the group law for g = 2.

� Solution: Use g = 2.

{ Group law can be described by explicit & simple formulas.

{ However the group law for g = 2 is still more complicated
that the elliptic curve (g = 1) group law.

{ g = 2 has a potential advantage over g = 1 in that one
can use a smaller �nite �eld for the same level of
security{this may be advantageous for hardware.

{ However, in general g = 2 will be slower than g = 1.
There is no compelling reason (as yet) to use g = 2.

{ So, we are stuck with elliptic curves!

10

3. The ECDLP

The Elliptic Curve Discrete Logarithm Problem

� Let E be an elliptic curve over Fq with #E(Fq) = nh,
where n is prime and h is small. Let P 2 E(Fq),
ord(P ) = n. ECDLP: Given E, P , Q 2 hP i, �nd
l 2 [0; n� 1] such that Q = lP .

� In general, there is no subexponential-time algorithm known
for the DLP in E(Fq). The best algorithm known is
Pollard's rho which takes (

p
�n)=2 steps.

11

3. The ECDLP

Special Cases

� (Weil & Tate pairing): EÆciently embed hP i in F�
qk

for

small k.

� (Prime �eld anomalous curves): If #E(Fp) = p, then
ECDLP in E(Fp) can be eÆciently calculated.

� (Frobenius endomorphism): Use equivalence classes of
points under Frobenius map to speed up Pollard's rho
algorithm for Koblitz curves over F2m by a factor of

p
m.
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3. The ECDLPWeil Descent Attack

� q = 2l, E=Fqn : y2 + xy = x3 + ax2 + b.

� Frey (1998); Galbraith & Smart (1999)

� Gaudry, Hess & Smart (2000)

E(Fqn)

C=Fq -A(Fq)
?

JC(Fq)

-

-

� A: n-dimensional abelian variety over Fq .
C: genus-g hyperelliptic curve which lies on A.
JC(Fq)

�= subgroup of E(Fqn).
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3. The ECDLP

Analysis

� Theorem (Gaudry, Hess & Smart, 2000) g = 2m�1 or
2m�1 � 1, where

m = m(b) = dimF2
(SpanF2f(1; b

1=2
0 ); : : : ; (1; b

1=2
n�1)g);

where bi = bq
i

, 0 � i � n� 1.

� Notes:
(a) 1 � m � n, so 1 � g � 2n�1.

(b) If m = 1, so g = 1, the reduction is useless.

(c) If m = n, so g = 2n�1, the reduction takes fully

exponential time (#JC(Fq) � q2
n�1

).
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3. The ECDLP

Analysis (2)

Theorem (Menezes & Qu, 2000) Let n be an odd prime,
t = ordn(2), s = (n� 1)=t, b 2 Fqn. Then

m(b) 2 f1; t + 1; 2t + 1; : : : ; st+ 1g:
Moreover, the number of b 2 Fqn with m(b) = it + 1 is

q
 s
i

!
(qt � 1)i.

15

3. The ECDLP

Consequences

1. Koblitz curves (b 2 F2).

�m = 1, so g = 1.

� So, GHS attack is useless for Koblitz curves.

2. Non-Koblitz curves over F2n, n prime.

� If n 2 [160; 600], then m � 18, so g � 217 � 128; 000.

� So GHS attack fails for all elliptic curves over F2n,
where n is prime.

16

3. The ECDLP

3. Elliptic curves over F2155.

(a) q = 231, n = 5.

{ g = 1; 15 or 16.

{HCDLP in a genus 15 curve over F231 appears
infeasible (Smart, Eurocrypt 2001).

(b) q = 25, n = 31.

{m = 6, so g = 31 for a small fraction of elliptic curves
over F25.

{HCDLP in a genus 31 curve over F25 is feasible
(Jacobson, Menezes & Stein, 2001).
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3. The ECDLP

Certicom's ECC Challenge

� Launched on November 6, 1997.

� See http://www.certicom.com/
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3. The ECDLP

The Challenges

� The challenge curves are divided into three categories:

{ Randomly generated curves over F2m (m prime)

{ Koblitz curves over F2m (m prime)

{ Randomly generated curves over Fp (p prime)

�Within each category, there are 3 subcategories:

{ Exercises

{ Level I challenges

{ Level II challenges

19

3. The ECDLP

Challenges { Random Curves Over F2m

Field size (bits) Prize (US$)

Exercises
ECC2-79 79 Book/Maple
ECC2-89 89 Book/Maple
ECC2-97 97 $ 5,000

Level I Challenges
ECC2-109 109 $10,000
ECC2-131 131 $20,000

Level II Challenges
ECC2-163 163 $30,000
ECC2-191 191 $40,000
ECC2-238 239 $50,000
ECC2-353 359 $100,000
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3. The ECDLP

Challenges { Koblitz Curves

Field size (bits) Prize (US$)

Exercises
ECC2K-95 97 $ 5,000

Level I Challenges
ECC2K-108 109 $10,000
ECC2K-130 131 $20,000

Level II Challenges
ECC2K-163 163 $30,000
ECC2K-238 239 $50,000
ECC2K-358 359 $100,000
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3. The ECDLP

Challenges { Random Curves Over Fp

Field size (bits) Prize (US$)

Exercises
ECCp-79 79 Book/Maple
ECCp-89 89 Book/Maple
ECCp-97 97 $ 5,000

Level I Challenges
ECCp-109 109 $10,000
ECCp-131 131 $20,000

Level II Challenges
ECCp-163 163 $30,000
ECCp-191 191 $40,000
ECCp-239 239 $50,000
ECCp-359 359 $100,000
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3. The ECDLP

Results To Date

(Robert Harley, INRIA; Adrian Escott, BT Labs)
Using parallelized Pollard-rho in software:

Challenge Date Time
solved (group ops)

ECCp-79 Dec 6 97 1:4 � 1012

ECC2-79 Dec 16 97 1:7 � 1012

ECCp-89 Jan 12 98 3:0 � 1013

ECC2-89 Feb 9 98 1:8 � 1013

ECCp-97 Mar 18 98 2:0 � 1014

ECC2K-95 May 21 98 2:2 � 1013

ECC2-97 Sep 22 99 1:2 � 1014

ECC2K-108 Apr 4 00 1:1 � 1014
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3. The ECDLP

Computational E�ort for ECC2-97

� 740 machines (mostly Pentiums and Alphas).

� 20 countries.

� 40 days.

� 1:2 � 1014 elliptic curve points computed.

� 127; 497 distinguished points collected.

� Computing power utilized: About 16,000 MIPS years.

�More than twice as much computing power as used for the
recent factorization of RSA-155.
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3. The ECDLP

Future Results?

Estimated time to compute logarithms using Pollard-rho.

Challenge Time
(expected)

ECC2-109 2:2 � 1016

ECCp-109 2:2 � 1016

ECC2K-130 2:9 � 1018

ECC2-131 4:6 � 1019

ECCp-131 4:6 � 1019
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4. ECC Protocols

ECC Protocols

� Elliptic curves can be used to design procotols for the basic
public-key functions of key agreement, key transport
(encryption), and digital signatures.

� Ideally, a protocol should have the following attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).

26

4. ECC Protocols

Elliptic Curve Digital Signature Algorithm
(ECDSA)

EC Key Pair Generation:

� Domain parameters: E, Fq , G 2 E(Fq), n = ord(G),
h = #E(Fq)=n.

� Each entity A does the following:

1. Select a random integer d in the interval [1; n� 1].

2. Compute Q = dG.

3. A's public key is Q; A's private key is d.
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4. ECC Protocols

ECDSA Signature Generation

To sign a message m, A does the following:

1. Select a random integer k, 1 � k � n � 1.

2. Compute kG = (x1; y1) and r = x1 mod n.
If r = 0 then go to step 1.

3. Compute k�1 mod n.

4. Compute e = SHA-1(m).

5. Compute s = k�1fe + drg mod n.
If s = 0 then go to step 1.

6. A's signature for the message m is (r; s).

28

4. ECC Protocols

ECDSA Signature Veri�cation

To verify A's signature (r; s) on m, B should do the following:

1. Verify that r and s are integers in the interval [1; n� 1].

2. Compute e = SHA-1(m).

3. Compute w = s�1 mod n.

4. Compute u1 = ew mod n and u2 = rw mod n.

5. Compute u1G + u2Q = (x1; y1) and v = x1 mod n.

6. Accept the signature if and only if v = r.
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4. ECC Protocols

Security De�nition

�De�nition: A signature scheme is said to be secure if it is
existentially unforgeable against chosen-message attack by a
computationally bounded adversary.

� NOTE: The adversary has access to a signing oracle. Its
goal is to compute a single valid message/signature pair for
any message that was not previously given to the signing
oracle.
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4. ECC Protocols

Security Proof for ECDSA

Theorem (Brown, 2000) ECDSA is existentially unforgeable
by chosen-message adversaries assuming that H is a
collision-resistant hash function, and that the underlying group
is a generic group.
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1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.

2

1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).

3

1. Discrete Logarithm Systems

EÆciency Requirements

Basic requirement: Computing ga from g and a should be
relatively easy.

� Group elements should have a compact representation.
Ideally, each group element should be represented using
� log2 n bits.

� Note: Representation of the group element can have
important security implications. After all, every cyclic group
of order n is isomorphic to (Zn;+) where the DLP is:
given 1 and a, �nd a.

� The group operation with respect to this representation
should be fast. (Then exponentiation can be eÆciently
performed using repeated square-and-multiply.)

4

1. Discrete Logarithm Systems

Cryptographically Suitable Groups

� DiÆe and Hellman �rst proposed using the multiplicative
group Z�p, where p is a prime.

� The existence of subexponential-time index-calculus methods
for solving the ECDLP in Z�p means that larger parameters
have to be used to avoid the best attacks known (e.g., a
1024-bit prime p).

� Fundamental question: Are there �nite groups for which:

(i) the group elements can be compactly represented;

(ii) the group operation can be eÆciently computed; and

(iii) the discrete logarithm problem cannot be solved in
subexponential time?

5

2. Why Elliptic Curves?

Why Elliptic Curves?

[The following approach is due to Gerhard Frey]
Abelian Varieties

� Abelian varieties A (over �nite �elds Fq) provide a rich
source of �nite groups.

{ Set of solutions to a set of equations, together with a group law given
by rational functions.

{ Example (multiplicative group of Fq):
Equation: xy = 1
Group law: (x1; y1) + (x2; y2) = (x1y1; x2y2).

{ Example (elliptic curve group over Fp):
Equation: y2 = x3 + ax + b
Group law: usual tangent-and-chord formulas.

{ Problem: The number of variables and the degrees of the addition
formulas grow exponentially with the dimension of A.

6

2. Why Elliptic Curves?

Jacobian Varieties

� Solution: Take special abelian varieties{ Jacobian variety JC
of an algebraic curve C over a �nite �eld Fq.

� JC can be viewed as the quotient group of zero divisors
modulo the principal divisors.

� By Riemann-Roch, each divisor class has a reduced divisor:
P1 + P2 + � � � + Pt � tP1, where t � g.

� Problem: The points in the support of D 2 JC(Fq) are not
necessarily de�ned over Fq . Also need an eÆcient method to
add 2 reduced divisors and convert the result to reduced
form.

7

2. Why Elliptic Curves?

Hyperelliptic Curves

� Solution: Consider the jacobian JC(Fq) of a hyperelliptic
curve C of genus g over Fq . (JC is a g-dimensional abelian
variety.) Note that #JC(Fq) � qg.

� C : v2 + h(u)v = f(u), h; f 2 Fq [u], deg h � g,
deg f = 2g + 1.

� Elements of JC(Fq) can be uniquely represented by a pair of
polynomials a; b 2 Fq [u], where deg b < deg a � g, a is

monic, and aj(b2 + bh� f).

� Cantor's algorithm eÆciently adds two elements in this form,
and provides the result in this same form.

8

2. Why Elliptic Curves?

Hyperelliptic Curves (2)

� Problem: For \large" genus hyperelliptic curves, there are
subexponential-time algorithms for the DLP in JC(Fq).
(Adleman-DeMarrais-Huang, M�uller-Stein-Thiel,
Enge-Gaudry.)

� Problem: For small genus g = 5; 6; 7; 8; : : : , Gaudry's
algorithm (2000) has a running time that is faster than
Pollard's rho algorithm.

� Problem: g = 4 is too close for comfort.

� Solution: Use g = 1; 2; 3 hyperelliptic curves.

9

2. Why Elliptic Curves?

Genus 1, 2 and 3

� Problem: The group law for g = 3 is signi�cantly more
complicated than the group law for g = 2.

� Solution: Use g = 2.

{ Group law can be described by explicit & simple formulas.

{ However the group law for g = 2 is still more complicated
that the elliptic curve (g = 1) group law.

{ g = 2 has a potential advantage over g = 1 in that one
can use a smaller �nite �eld for the same level of
security{this may be advantageous for hardware.

{ However, in general g = 2 will be slower than g = 1.
There is no compelling reason (as yet) to use g = 2.

{ So, we are stuck with elliptic curves!

10

3. The ECDLP

The Elliptic Curve Discrete Logarithm Problem

� Let E be an elliptic curve over Fq with #E(Fq) = nh,
where n is prime and h is small. Let P 2 E(Fq),
ord(P ) = n. ECDLP: Given E, P , Q 2 hP i, �nd
l 2 [0; n� 1] such that Q = lP .

� In general, there is no subexponential-time algorithm known
for the DLP in E(Fq). The best algorithm known is
Pollard's rho which takes (

p
�n)=2 steps.

11

3. The ECDLP

Special Cases

� (Weil & Tate pairing): EÆciently embed hP i in F�
qk

for

small k.

� (Prime �eld anomalous curves): If #E(Fp) = p, then
ECDLP in E(Fp) can be eÆciently calculated.

� (Frobenius endomorphism): Use equivalence classes of
points under Frobenius map to speed up Pollard's rho
algorithm for Koblitz curves over F2m by a factor of

p
m.
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3. The ECDLPWeil Descent Attack

� q = 2l, E=Fqn : y2 + xy = x3 + ax2 + b.

� Frey (1998); Galbraith & Smart (1999)

� Gaudry, Hess & Smart (2000)

E(Fqn)

C=Fq -A(Fq)
?

JC(Fq)

-

-

� A: n-dimensional abelian variety over Fq .
C: genus-g hyperelliptic curve which lies on A.
JC(Fq)

�= subgroup of E(Fqn).
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3. The ECDLP

Analysis

� Theorem (Gaudry, Hess & Smart, 2000) g = 2m�1 or
2m�1 � 1, where

m = m(b) = dimF2
(SpanF2f(1; b

1=2
0 ); : : : ; (1; b

1=2
n�1)g);

where bi = bq
i

, 0 � i � n� 1.

� Notes:
(a) 1 � m � n, so 1 � g � 2n�1.

(b) If m = 1, so g = 1, the reduction is useless.

(c) If m = n, so g = 2n�1, the reduction takes fully

exponential time (#JC(Fq) � q2
n�1

).
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3. The ECDLP

Analysis (2)

Theorem (Menezes & Qu, 2000) Let n be an odd prime,
t = ordn(2), s = (n� 1)=t, b 2 Fqn. Then

m(b) 2 f1; t + 1; 2t + 1; : : : ; st+ 1g:
Moreover, the number of b 2 Fqn with m(b) = it + 1 is

q
 s
i

!
(qt � 1)i.

15

3. The ECDLP

Consequences

1. Koblitz curves (b 2 F2).

�m = 1, so g = 1.

� So, GHS attack is useless for Koblitz curves.

2. Non-Koblitz curves over F2n, n prime.

� If n 2 [160; 600], then m � 18, so g � 217 � 128; 000.

� So GHS attack fails for all elliptic curves over F2n,
where n is prime.

16

3. The ECDLP

3. Elliptic curves over F2155.

(a) q = 231, n = 5.

{ g = 1; 15 or 16.

{HCDLP in a genus 15 curve over F231 appears
infeasible (Smart, Eurocrypt 2001).

(b) q = 25, n = 31.

{m = 6, so g = 31 for a small fraction of elliptic curves
over F25.

{HCDLP in a genus 31 curve over F25 is feasible
(Jacobson, Menezes & Stein, 2001).

17

3. The ECDLP

Certicom's ECC Challenge

� Launched on November 6, 1997.

� See http://www.certicom.com/

18

3. The ECDLP

The Challenges

� The challenge curves are divided into three categories:

{ Randomly generated curves over F2m (m prime)

{ Koblitz curves over F2m (m prime)

{ Randomly generated curves over Fp (p prime)

�Within each category, there are 3 subcategories:

{ Exercises

{ Level I challenges

{ Level II challenges

19

3. The ECDLP

Challenges { Random Curves Over F2m

Field size (bits) Prize (US$)

Exercises
ECC2-79 79 Book/Maple
ECC2-89 89 Book/Maple
ECC2-97 97 $ 5,000

Level I Challenges
ECC2-109 109 $10,000
ECC2-131 131 $20,000

Level II Challenges
ECC2-163 163 $30,000
ECC2-191 191 $40,000
ECC2-238 239 $50,000
ECC2-353 359 $100,000
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3. The ECDLP

Challenges { Koblitz Curves

Field size (bits) Prize (US$)

Exercises
ECC2K-95 97 $ 5,000

Level I Challenges
ECC2K-108 109 $10,000
ECC2K-130 131 $20,000

Level II Challenges
ECC2K-163 163 $30,000
ECC2K-238 239 $50,000
ECC2K-358 359 $100,000
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3. The ECDLP

Challenges { Random Curves Over Fp

Field size (bits) Prize (US$)

Exercises
ECCp-79 79 Book/Maple
ECCp-89 89 Book/Maple
ECCp-97 97 $ 5,000

Level I Challenges
ECCp-109 109 $10,000
ECCp-131 131 $20,000

Level II Challenges
ECCp-163 163 $30,000
ECCp-191 191 $40,000
ECCp-239 239 $50,000
ECCp-359 359 $100,000
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3. The ECDLP

Results To Date

(Robert Harley, INRIA; Adrian Escott, BT Labs)
Using parallelized Pollard-rho in software:

Challenge Date Time
solved (group ops)

ECCp-79 Dec 6 97 1:4 � 1012

ECC2-79 Dec 16 97 1:7 � 1012

ECCp-89 Jan 12 98 3:0 � 1013

ECC2-89 Feb 9 98 1:8 � 1013

ECCp-97 Mar 18 98 2:0 � 1014

ECC2K-95 May 21 98 2:2 � 1013

ECC2-97 Sep 22 99 1:2 � 1014

ECC2K-108 Apr 4 00 1:1 � 1014
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3. The ECDLP

Computational E�ort for ECC2-97

� 740 machines (mostly Pentiums and Alphas).

� 20 countries.

� 40 days.

� 1:2 � 1014 elliptic curve points computed.

� 127; 497 distinguished points collected.

� Computing power utilized: About 16,000 MIPS years.

�More than twice as much computing power as used for the
recent factorization of RSA-155.

24

3. The ECDLP

Future Results?

Estimated time to compute logarithms using Pollard-rho.

Challenge Time
(expected)

ECC2-109 2:2 � 1016

ECCp-109 2:2 � 1016

ECC2K-130 2:9 � 1018

ECC2-131 4:6 � 1019

ECCp-131 4:6 � 1019

25

4. ECC Protocols

ECC Protocols

� Elliptic curves can be used to design procotols for the basic
public-key functions of key agreement, key transport
(encryption), and digital signatures.

� Ideally, a protocol should have the following attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).

26

4. ECC Protocols

Elliptic Curve Digital Signature Algorithm
(ECDSA)

EC Key Pair Generation:

� Domain parameters: E, Fq , G 2 E(Fq), n = ord(G),
h = #E(Fq)=n.

� Each entity A does the following:

1. Select a random integer d in the interval [1; n� 1].

2. Compute Q = dG.

3. A's public key is Q; A's private key is d.

27

4. ECC Protocols

ECDSA Signature Generation

To sign a message m, A does the following:

1. Select a random integer k, 1 � k � n � 1.

2. Compute kG = (x1; y1) and r = x1 mod n.
If r = 0 then go to step 1.

3. Compute k�1 mod n.

4. Compute e = SHA-1(m).

5. Compute s = k�1fe + drg mod n.
If s = 0 then go to step 1.

6. A's signature for the message m is (r; s).

28

4. ECC Protocols

ECDSA Signature Veri�cation

To verify A's signature (r; s) on m, B should do the following:

1. Verify that r and s are integers in the interval [1; n� 1].

2. Compute e = SHA-1(m).

3. Compute w = s�1 mod n.

4. Compute u1 = ew mod n and u2 = rw mod n.

5. Compute u1G + u2Q = (x1; y1) and v = x1 mod n.

6. Accept the signature if and only if v = r.
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4. ECC Protocols

Security De�nition

�De�nition: A signature scheme is said to be secure if it is
existentially unforgeable against chosen-message attack by a
computationally bounded adversary.

� NOTE: The adversary has access to a signing oracle. Its
goal is to compute a single valid message/signature pair for
any message that was not previously given to the signing
oracle.

30

4. ECC Protocols

Security Proof for ECDSA

Theorem (Brown, 2000) ECDSA is existentially unforgeable
by chosen-message adversaries assuming that H is a
collision-resistant hash function, and that the underlying group
is a generic group.

31

4. ECC Protocols

ECDSA Standardization

ISO 14888-3

IEEE 1363-2000

ANSI X9.62

SECG

FIPS 186-2

32

4. ECC Protocols

ECDSA Summary

� ECDSA has the desired design attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).
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1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.

2

1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).

3

1. Discrete Logarithm Systems

EÆciency Requirements

Basic requirement: Computing ga from g and a should be
relatively easy.

� Group elements should have a compact representation.
Ideally, each group element should be represented using
� log2 n bits.

� Note: Representation of the group element can have
important security implications. After all, every cyclic group
of order n is isomorphic to (Zn;+) where the DLP is:
given 1 and a, �nd a.

� The group operation with respect to this representation
should be fast. (Then exponentiation can be eÆciently
performed using repeated square-and-multiply.)

4

1. Discrete Logarithm Systems

Cryptographically Suitable Groups

� DiÆe and Hellman �rst proposed using the multiplicative
group Z�p, where p is a prime.

� The existence of subexponential-time index-calculus methods
for solving the ECDLP in Z�p means that larger parameters
have to be used to avoid the best attacks known (e.g., a
1024-bit prime p).

� Fundamental question: Are there �nite groups for which:

(i) the group elements can be compactly represented;

(ii) the group operation can be eÆciently computed; and

(iii) the discrete logarithm problem cannot be solved in
subexponential time?
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2. Why Elliptic Curves?

Why Elliptic Curves?

[The following approach is due to Gerhard Frey]
Abelian Varieties

� Abelian varieties A (over �nite �elds Fq) provide a rich
source of �nite groups.

{ Set of solutions to a set of equations, together with a group law given
by rational functions.

{ Example (multiplicative group of Fq):
Equation: xy = 1
Group law: (x1; y1) + (x2; y2) = (x1y1; x2y2).

{ Example (elliptic curve group over Fp):
Equation: y2 = x3 + ax + b
Group law: usual tangent-and-chord formulas.

{ Problem: The number of variables and the degrees of the addition
formulas grow exponentially with the dimension of A.
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2. Why Elliptic Curves?

Jacobian Varieties

� Solution: Take special abelian varieties{ Jacobian variety JC
of an algebraic curve C over a �nite �eld Fq.

� JC can be viewed as the quotient group of zero divisors
modulo the principal divisors.

� By Riemann-Roch, each divisor class has a reduced divisor:
P1 + P2 + � � � + Pt � tP1, where t � g.

� Problem: The points in the support of D 2 JC(Fq) are not
necessarily de�ned over Fq . Also need an eÆcient method to
add 2 reduced divisors and convert the result to reduced
form.

7

2. Why Elliptic Curves?

Hyperelliptic Curves

� Solution: Consider the jacobian JC(Fq) of a hyperelliptic
curve C of genus g over Fq . (JC is a g-dimensional abelian
variety.) Note that #JC(Fq) � qg.

� C : v2 + h(u)v = f(u), h; f 2 Fq [u], deg h � g,
deg f = 2g + 1.

� Elements of JC(Fq) can be uniquely represented by a pair of
polynomials a; b 2 Fq [u], where deg b < deg a � g, a is

monic, and aj(b2 + bh� f).

� Cantor's algorithm eÆciently adds two elements in this form,
and provides the result in this same form.

8

2. Why Elliptic Curves?

Hyperelliptic Curves (2)

� Problem: For \large" genus hyperelliptic curves, there are
subexponential-time algorithms for the DLP in JC(Fq).
(Adleman-DeMarrais-Huang, M�uller-Stein-Thiel,
Enge-Gaudry.)

� Problem: For small genus g = 5; 6; 7; 8; : : : , Gaudry's
algorithm (2000) has a running time that is faster than
Pollard's rho algorithm.

� Problem: g = 4 is too close for comfort.

� Solution: Use g = 1; 2; 3 hyperelliptic curves.
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2. Why Elliptic Curves?

Genus 1, 2 and 3

� Problem: The group law for g = 3 is signi�cantly more
complicated than the group law for g = 2.

� Solution: Use g = 2.

{ Group law can be described by explicit & simple formulas.

{ However the group law for g = 2 is still more complicated
that the elliptic curve (g = 1) group law.

{ g = 2 has a potential advantage over g = 1 in that one
can use a smaller �nite �eld for the same level of
security{this may be advantageous for hardware.

{ However, in general g = 2 will be slower than g = 1.
There is no compelling reason (as yet) to use g = 2.

{ So, we are stuck with elliptic curves!

10

3. The ECDLP

The Elliptic Curve Discrete Logarithm Problem

� Let E be an elliptic curve over Fq with #E(Fq) = nh,
where n is prime and h is small. Let P 2 E(Fq),
ord(P ) = n. ECDLP: Given E, P , Q 2 hP i, �nd
l 2 [0; n� 1] such that Q = lP .

� In general, there is no subexponential-time algorithm known
for the DLP in E(Fq). The best algorithm known is
Pollard's rho which takes (

p
�n)=2 steps.
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3. The ECDLP

Special Cases

� (Weil & Tate pairing): EÆciently embed hP i in F�
qk

for

small k.

� (Prime �eld anomalous curves): If #E(Fp) = p, then
ECDLP in E(Fp) can be eÆciently calculated.

� (Frobenius endomorphism): Use equivalence classes of
points under Frobenius map to speed up Pollard's rho
algorithm for Koblitz curves over F2m by a factor of

p
m.
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3. The ECDLPWeil Descent Attack

� q = 2l, E=Fqn : y2 + xy = x3 + ax2 + b.

� Frey (1998); Galbraith & Smart (1999)

� Gaudry, Hess & Smart (2000)

E(Fqn)

C=Fq -A(Fq)
?

JC(Fq)

-

-

� A: n-dimensional abelian variety over Fq .
C: genus-g hyperelliptic curve which lies on A.
JC(Fq)

�= subgroup of E(Fqn).
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3. The ECDLP

Analysis

� Theorem (Gaudry, Hess & Smart, 2000) g = 2m�1 or
2m�1 � 1, where

m = m(b) = dimF2
(SpanF2f(1; b

1=2
0 ); : : : ; (1; b

1=2
n�1)g);

where bi = bq
i

, 0 � i � n� 1.

� Notes:
(a) 1 � m � n, so 1 � g � 2n�1.

(b) If m = 1, so g = 1, the reduction is useless.

(c) If m = n, so g = 2n�1, the reduction takes fully

exponential time (#JC(Fq) � q2
n�1

).
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3. The ECDLP

Analysis (2)

Theorem (Menezes & Qu, 2000) Let n be an odd prime,
t = ordn(2), s = (n� 1)=t, b 2 Fqn. Then

m(b) 2 f1; t + 1; 2t + 1; : : : ; st+ 1g:
Moreover, the number of b 2 Fqn with m(b) = it + 1 is

q
 s
i

!
(qt � 1)i.
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3. The ECDLP

Consequences

1. Koblitz curves (b 2 F2).

�m = 1, so g = 1.

� So, GHS attack is useless for Koblitz curves.

2. Non-Koblitz curves over F2n, n prime.

� If n 2 [160; 600], then m � 18, so g � 217 � 128; 000.

� So GHS attack fails for all elliptic curves over F2n,
where n is prime.

16

3. The ECDLP

3. Elliptic curves over F2155.

(a) q = 231, n = 5.

{ g = 1; 15 or 16.

{HCDLP in a genus 15 curve over F231 appears
infeasible (Smart, Eurocrypt 2001).

(b) q = 25, n = 31.

{m = 6, so g = 31 for a small fraction of elliptic curves
over F25.

{HCDLP in a genus 31 curve over F25 is feasible
(Jacobson, Menezes & Stein, 2001).
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3. The ECDLP

Certicom's ECC Challenge

� Launched on November 6, 1997.

� See http://www.certicom.com/
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3. The ECDLP

The Challenges

� The challenge curves are divided into three categories:

{ Randomly generated curves over F2m (m prime)

{ Koblitz curves over F2m (m prime)

{ Randomly generated curves over Fp (p prime)

�Within each category, there are 3 subcategories:

{ Exercises

{ Level I challenges

{ Level II challenges

19

3. The ECDLP

Challenges { Random Curves Over F2m

Field size (bits) Prize (US$)

Exercises
ECC2-79 79 Book/Maple
ECC2-89 89 Book/Maple
ECC2-97 97 $ 5,000

Level I Challenges
ECC2-109 109 $10,000
ECC2-131 131 $20,000

Level II Challenges
ECC2-163 163 $30,000
ECC2-191 191 $40,000
ECC2-238 239 $50,000
ECC2-353 359 $100,000
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3. The ECDLP

Challenges { Koblitz Curves

Field size (bits) Prize (US$)

Exercises
ECC2K-95 97 $ 5,000

Level I Challenges
ECC2K-108 109 $10,000
ECC2K-130 131 $20,000

Level II Challenges
ECC2K-163 163 $30,000
ECC2K-238 239 $50,000
ECC2K-358 359 $100,000
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3. The ECDLP

Challenges { Random Curves Over Fp

Field size (bits) Prize (US$)

Exercises
ECCp-79 79 Book/Maple
ECCp-89 89 Book/Maple
ECCp-97 97 $ 5,000

Level I Challenges
ECCp-109 109 $10,000
ECCp-131 131 $20,000

Level II Challenges
ECCp-163 163 $30,000
ECCp-191 191 $40,000
ECCp-239 239 $50,000
ECCp-359 359 $100,000
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3. The ECDLP

Results To Date

(Robert Harley, INRIA; Adrian Escott, BT Labs)
Using parallelized Pollard-rho in software:

Challenge Date Time
solved (group ops)

ECCp-79 Dec 6 97 1:4 � 1012

ECC2-79 Dec 16 97 1:7 � 1012

ECCp-89 Jan 12 98 3:0 � 1013

ECC2-89 Feb 9 98 1:8 � 1013

ECCp-97 Mar 18 98 2:0 � 1014

ECC2K-95 May 21 98 2:2 � 1013

ECC2-97 Sep 22 99 1:2 � 1014

ECC2K-108 Apr 4 00 1:1 � 1014
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3. The ECDLP

Computational E�ort for ECC2-97

� 740 machines (mostly Pentiums and Alphas).

� 20 countries.

� 40 days.

� 1:2 � 1014 elliptic curve points computed.

� 127; 497 distinguished points collected.

� Computing power utilized: About 16,000 MIPS years.

�More than twice as much computing power as used for the
recent factorization of RSA-155.
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3. The ECDLP

Future Results?

Estimated time to compute logarithms using Pollard-rho.

Challenge Time
(expected)

ECC2-109 2:2 � 1016

ECCp-109 2:2 � 1016

ECC2K-130 2:9 � 1018

ECC2-131 4:6 � 1019

ECCp-131 4:6 � 1019
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4. ECC Protocols

ECC Protocols

� Elliptic curves can be used to design procotols for the basic
public-key functions of key agreement, key transport
(encryption), and digital signatures.

� Ideally, a protocol should have the following attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).

26

4. ECC Protocols

Elliptic Curve Digital Signature Algorithm
(ECDSA)

EC Key Pair Generation:

� Domain parameters: E, Fq , G 2 E(Fq), n = ord(G),
h = #E(Fq)=n.

� Each entity A does the following:

1. Select a random integer d in the interval [1; n� 1].

2. Compute Q = dG.

3. A's public key is Q; A's private key is d.

27

4. ECC Protocols

ECDSA Signature Generation

To sign a message m, A does the following:

1. Select a random integer k, 1 � k � n � 1.

2. Compute kG = (x1; y1) and r = x1 mod n.
If r = 0 then go to step 1.

3. Compute k�1 mod n.

4. Compute e = SHA-1(m).

5. Compute s = k�1fe + drg mod n.
If s = 0 then go to step 1.

6. A's signature for the message m is (r; s).
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4. ECC Protocols

ECDSA Signature Veri�cation

To verify A's signature (r; s) on m, B should do the following:

1. Verify that r and s are integers in the interval [1; n� 1].

2. Compute e = SHA-1(m).

3. Compute w = s�1 mod n.

4. Compute u1 = ew mod n and u2 = rw mod n.

5. Compute u1G + u2Q = (x1; y1) and v = x1 mod n.

6. Accept the signature if and only if v = r.
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4. ECC Protocols

Security De�nition

�De�nition: A signature scheme is said to be secure if it is
existentially unforgeable against chosen-message attack by a
computationally bounded adversary.

� NOTE: The adversary has access to a signing oracle. Its
goal is to compute a single valid message/signature pair for
any message that was not previously given to the signing
oracle.
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4. ECC Protocols

Security Proof for ECDSA

Theorem (Brown, 2000) ECDSA is existentially unforgeable
by chosen-message adversaries assuming that H is a
collision-resistant hash function, and that the underlying group
is a generic group.
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4. ECC Protocols

ECDSA Standardization

ISO 14888-3

IEEE 1363-2000

ANSI X9.62

SECG

FIPS 186-2
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4. ECC Protocols

ECDSA Summary

� ECDSA has the desired design attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).
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5. ECC Implementation and Deployment

ECC Implementation and Deployment

� The absence of a subexponential-time algorithm for the
ECDLP means that signi�cantly smaller parameters can be
used in ECC than with competing technologies such as DSA
and RSA, but with equivalent levels of security.

� Advantages to be gained from smaller parameters include:
speed, and smaller keys and certi�cates.

� These advantages are especially important in environments
where at least one of the following resources are limited:
processing power, storage space, bandwidth, power.

� Thus, ECC is especially well-suited for constrained
environments smart cards, cellular phones, pagers, PDAs,
digital postal marks.
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5. ECC Implementation and Deployment

NIST Recommended Elliptic Curves

� Collection of elliptic curves recommended in FIPS 186-2 for
use with ECDSA by the US Federal Government.

� Recommended �elds:

Block cipher Block cipher Fp F2m RSA modulus
key length kpk m length

80 SKIPJACK 192 163 1,024
112 Triple-DES 224 233 2,048
128 AES Small 256 283 3,072
192 AES Medium 384 409 7,680
256 AES Large 521 571 15,360
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1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.
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1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).

3

1. Discrete Logarithm Systems

EÆciency Requirements

Basic requirement: Computing ga from g and a should be
relatively easy.

� Group elements should have a compact representation.
Ideally, each group element should be represented using
� log2 n bits.

� Note: Representation of the group element can have
important security implications. After all, every cyclic group
of order n is isomorphic to (Zn;+) where the DLP is:
given 1 and a, �nd a.

� The group operation with respect to this representation
should be fast. (Then exponentiation can be eÆciently
performed using repeated square-and-multiply.)
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1. Discrete Logarithm Systems

Cryptographically Suitable Groups

� DiÆe and Hellman �rst proposed using the multiplicative
group Z�p, where p is a prime.

� The existence of subexponential-time index-calculus methods
for solving the ECDLP in Z�p means that larger parameters
have to be used to avoid the best attacks known (e.g., a
1024-bit prime p).

� Fundamental question: Are there �nite groups for which:

(i) the group elements can be compactly represented;

(ii) the group operation can be eÆciently computed; and

(iii) the discrete logarithm problem cannot be solved in
subexponential time?
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2. Why Elliptic Curves?

Why Elliptic Curves?

[The following approach is due to Gerhard Frey]
Abelian Varieties

� Abelian varieties A (over �nite �elds Fq) provide a rich
source of �nite groups.

{ Set of solutions to a set of equations, together with a group law given
by rational functions.

{ Example (multiplicative group of Fq):
Equation: xy = 1
Group law: (x1; y1) + (x2; y2) = (x1y1; x2y2).

{ Example (elliptic curve group over Fp):
Equation: y2 = x3 + ax + b
Group law: usual tangent-and-chord formulas.

{ Problem: The number of variables and the degrees of the addition
formulas grow exponentially with the dimension of A.
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2. Why Elliptic Curves?

Jacobian Varieties

� Solution: Take special abelian varieties{ Jacobian variety JC
of an algebraic curve C over a �nite �eld Fq.

� JC can be viewed as the quotient group of zero divisors
modulo the principal divisors.

� By Riemann-Roch, each divisor class has a reduced divisor:
P1 + P2 + � � � + Pt � tP1, where t � g.

� Problem: The points in the support of D 2 JC(Fq) are not
necessarily de�ned over Fq . Also need an eÆcient method to
add 2 reduced divisors and convert the result to reduced
form.
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2. Why Elliptic Curves?

Hyperelliptic Curves

� Solution: Consider the jacobian JC(Fq) of a hyperelliptic
curve C of genus g over Fq . (JC is a g-dimensional abelian
variety.) Note that #JC(Fq) � qg.

� C : v2 + h(u)v = f(u), h; f 2 Fq [u], deg h � g,
deg f = 2g + 1.

� Elements of JC(Fq) can be uniquely represented by a pair of
polynomials a; b 2 Fq [u], where deg b < deg a � g, a is

monic, and aj(b2 + bh� f).

� Cantor's algorithm eÆciently adds two elements in this form,
and provides the result in this same form.
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2. Why Elliptic Curves?

Hyperelliptic Curves (2)

� Problem: For \large" genus hyperelliptic curves, there are
subexponential-time algorithms for the DLP in JC(Fq).
(Adleman-DeMarrais-Huang, M�uller-Stein-Thiel,
Enge-Gaudry.)

� Problem: For small genus g = 5; 6; 7; 8; : : : , Gaudry's
algorithm (2000) has a running time that is faster than
Pollard's rho algorithm.

� Problem: g = 4 is too close for comfort.

� Solution: Use g = 1; 2; 3 hyperelliptic curves.
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2. Why Elliptic Curves?

Genus 1, 2 and 3

� Problem: The group law for g = 3 is signi�cantly more
complicated than the group law for g = 2.

� Solution: Use g = 2.

{ Group law can be described by explicit & simple formulas.

{ However the group law for g = 2 is still more complicated
that the elliptic curve (g = 1) group law.

{ g = 2 has a potential advantage over g = 1 in that one
can use a smaller �nite �eld for the same level of
security{this may be advantageous for hardware.

{ However, in general g = 2 will be slower than g = 1.
There is no compelling reason (as yet) to use g = 2.

{ So, we are stuck with elliptic curves!
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3. The ECDLP

The Elliptic Curve Discrete Logarithm Problem

� Let E be an elliptic curve over Fq with #E(Fq) = nh,
where n is prime and h is small. Let P 2 E(Fq),
ord(P ) = n. ECDLP: Given E, P , Q 2 hP i, �nd
l 2 [0; n� 1] such that Q = lP .

� In general, there is no subexponential-time algorithm known
for the DLP in E(Fq). The best algorithm known is
Pollard's rho which takes (

p
�n)=2 steps.
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3. The ECDLP

Special Cases

� (Weil & Tate pairing): EÆciently embed hP i in F�
qk

for

small k.

� (Prime �eld anomalous curves): If #E(Fp) = p, then
ECDLP in E(Fp) can be eÆciently calculated.

� (Frobenius endomorphism): Use equivalence classes of
points under Frobenius map to speed up Pollard's rho
algorithm for Koblitz curves over F2m by a factor of

p
m.
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3. The ECDLPWeil Descent Attack

� q = 2l, E=Fqn : y2 + xy = x3 + ax2 + b.

� Frey (1998); Galbraith & Smart (1999)

� Gaudry, Hess & Smart (2000)

E(Fqn)

C=Fq -A(Fq)
?

JC(Fq)

-

-

� A: n-dimensional abelian variety over Fq .
C: genus-g hyperelliptic curve which lies on A.
JC(Fq)

�= subgroup of E(Fqn).
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3. The ECDLP

Analysis

� Theorem (Gaudry, Hess & Smart, 2000) g = 2m�1 or
2m�1 � 1, where

m = m(b) = dimF2
(SpanF2f(1; b

1=2
0 ); : : : ; (1; b

1=2
n�1)g);

where bi = bq
i

, 0 � i � n� 1.

� Notes:
(a) 1 � m � n, so 1 � g � 2n�1.

(b) If m = 1, so g = 1, the reduction is useless.

(c) If m = n, so g = 2n�1, the reduction takes fully

exponential time (#JC(Fq) � q2
n�1

).
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3. The ECDLP

Analysis (2)

Theorem (Menezes & Qu, 2000) Let n be an odd prime,
t = ordn(2), s = (n� 1)=t, b 2 Fqn. Then

m(b) 2 f1; t + 1; 2t + 1; : : : ; st+ 1g:
Moreover, the number of b 2 Fqn with m(b) = it + 1 is

q
 s
i

!
(qt � 1)i.
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3. The ECDLP

Consequences

1. Koblitz curves (b 2 F2).

�m = 1, so g = 1.

� So, GHS attack is useless for Koblitz curves.

2. Non-Koblitz curves over F2n, n prime.

� If n 2 [160; 600], then m � 18, so g � 217 � 128; 000.

� So GHS attack fails for all elliptic curves over F2n,
where n is prime.
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3. The ECDLP

3. Elliptic curves over F2155.

(a) q = 231, n = 5.

{ g = 1; 15 or 16.

{HCDLP in a genus 15 curve over F231 appears
infeasible (Smart, Eurocrypt 2001).

(b) q = 25, n = 31.

{m = 6, so g = 31 for a small fraction of elliptic curves
over F25.

{HCDLP in a genus 31 curve over F25 is feasible
(Jacobson, Menezes & Stein, 2001).
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3. The ECDLP

Certicom's ECC Challenge

� Launched on November 6, 1997.

� See http://www.certicom.com/
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3. The ECDLP

The Challenges

� The challenge curves are divided into three categories:

{ Randomly generated curves over F2m (m prime)

{ Koblitz curves over F2m (m prime)

{ Randomly generated curves over Fp (p prime)

�Within each category, there are 3 subcategories:

{ Exercises

{ Level I challenges

{ Level II challenges

19

3. The ECDLP

Challenges { Random Curves Over F2m

Field size (bits) Prize (US$)

Exercises
ECC2-79 79 Book/Maple
ECC2-89 89 Book/Maple
ECC2-97 97 $ 5,000

Level I Challenges
ECC2-109 109 $10,000
ECC2-131 131 $20,000

Level II Challenges
ECC2-163 163 $30,000
ECC2-191 191 $40,000
ECC2-238 239 $50,000
ECC2-353 359 $100,000
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3. The ECDLP

Challenges { Koblitz Curves

Field size (bits) Prize (US$)

Exercises
ECC2K-95 97 $ 5,000

Level I Challenges
ECC2K-108 109 $10,000
ECC2K-130 131 $20,000

Level II Challenges
ECC2K-163 163 $30,000
ECC2K-238 239 $50,000
ECC2K-358 359 $100,000
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3. The ECDLP

Challenges { Random Curves Over Fp

Field size (bits) Prize (US$)

Exercises
ECCp-79 79 Book/Maple
ECCp-89 89 Book/Maple
ECCp-97 97 $ 5,000

Level I Challenges
ECCp-109 109 $10,000
ECCp-131 131 $20,000

Level II Challenges
ECCp-163 163 $30,000
ECCp-191 191 $40,000
ECCp-239 239 $50,000
ECCp-359 359 $100,000

22

3. The ECDLP

Results To Date

(Robert Harley, INRIA; Adrian Escott, BT Labs)
Using parallelized Pollard-rho in software:

Challenge Date Time
solved (group ops)

ECCp-79 Dec 6 97 1:4 � 1012

ECC2-79 Dec 16 97 1:7 � 1012

ECCp-89 Jan 12 98 3:0 � 1013

ECC2-89 Feb 9 98 1:8 � 1013

ECCp-97 Mar 18 98 2:0 � 1014

ECC2K-95 May 21 98 2:2 � 1013

ECC2-97 Sep 22 99 1:2 � 1014

ECC2K-108 Apr 4 00 1:1 � 1014
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3. The ECDLP

Computational E�ort for ECC2-97

� 740 machines (mostly Pentiums and Alphas).

� 20 countries.

� 40 days.

� 1:2 � 1014 elliptic curve points computed.

� 127; 497 distinguished points collected.

� Computing power utilized: About 16,000 MIPS years.

�More than twice as much computing power as used for the
recent factorization of RSA-155.
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3. The ECDLP

Future Results?

Estimated time to compute logarithms using Pollard-rho.

Challenge Time
(expected)

ECC2-109 2:2 � 1016

ECCp-109 2:2 � 1016

ECC2K-130 2:9 � 1018

ECC2-131 4:6 � 1019

ECCp-131 4:6 � 1019
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4. ECC Protocols

ECC Protocols

� Elliptic curves can be used to design procotols for the basic
public-key functions of key agreement, key transport
(encryption), and digital signatures.

� Ideally, a protocol should have the following attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).
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4. ECC Protocols

Elliptic Curve Digital Signature Algorithm
(ECDSA)

EC Key Pair Generation:

� Domain parameters: E, Fq , G 2 E(Fq), n = ord(G),
h = #E(Fq)=n.

� Each entity A does the following:

1. Select a random integer d in the interval [1; n� 1].

2. Compute Q = dG.

3. A's public key is Q; A's private key is d.
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4. ECC Protocols

ECDSA Signature Generation

To sign a message m, A does the following:

1. Select a random integer k, 1 � k � n � 1.

2. Compute kG = (x1; y1) and r = x1 mod n.
If r = 0 then go to step 1.

3. Compute k�1 mod n.

4. Compute e = SHA-1(m).

5. Compute s = k�1fe + drg mod n.
If s = 0 then go to step 1.

6. A's signature for the message m is (r; s).
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4. ECC Protocols

ECDSA Signature Veri�cation

To verify A's signature (r; s) on m, B should do the following:

1. Verify that r and s are integers in the interval [1; n� 1].

2. Compute e = SHA-1(m).

3. Compute w = s�1 mod n.

4. Compute u1 = ew mod n and u2 = rw mod n.

5. Compute u1G + u2Q = (x1; y1) and v = x1 mod n.

6. Accept the signature if and only if v = r.
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4. ECC Protocols

Security De�nition

�De�nition: A signature scheme is said to be secure if it is
existentially unforgeable against chosen-message attack by a
computationally bounded adversary.

� NOTE: The adversary has access to a signing oracle. Its
goal is to compute a single valid message/signature pair for
any message that was not previously given to the signing
oracle.
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4. ECC Protocols

Security Proof for ECDSA

Theorem (Brown, 2000) ECDSA is existentially unforgeable
by chosen-message adversaries assuming that H is a
collision-resistant hash function, and that the underlying group
is a generic group.
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4. ECC Protocols

ECDSA Standardization

ISO 14888-3

IEEE 1363-2000

ANSI X9.62

SECG

FIPS 186-2
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4. ECC Protocols

ECDSA Summary

� ECDSA has the desired design attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).
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5. ECC Implementation and Deployment

ECC Implementation and Deployment

� The absence of a subexponential-time algorithm for the
ECDLP means that signi�cantly smaller parameters can be
used in ECC than with competing technologies such as DSA
and RSA, but with equivalent levels of security.

� Advantages to be gained from smaller parameters include:
speed, and smaller keys and certi�cates.

� These advantages are especially important in environments
where at least one of the following resources are limited:
processing power, storage space, bandwidth, power.

� Thus, ECC is especially well-suited for constrained
environments smart cards, cellular phones, pagers, PDAs,
digital postal marks.
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5. ECC Implementation and Deployment

NIST Recommended Elliptic Curves

� Collection of elliptic curves recommended in FIPS 186-2 for
use with ECDSA by the US Federal Government.

� Recommended �elds:

Block cipher Block cipher Fp F2m RSA modulus
key length kpk m length

80 SKIPJACK 192 163 1,024
112 Triple-DES 224 233 2,048
128 AES Small 256 283 3,072
192 AES Medium 384 409 7,680
256 AES Large 521 571 15,360
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5. ECC Implementation and Deployment

Reduction Polynomials for F2m

� f(x) = x163 + x7 + x6 + x3 + 1

� f(x) = x233 + x74 + 1

� f(x) = x283 + x12 + x7 + x5 + 1

� f(x) = x409 + x87 + 1

� f(x) = x571 + x10 + x5 + x2 + 1

36

5. ECC Implementation and Deployment

Recommended Curves Over F2m

� K-163: y2 + xy = x3 + x2 + 1 over F2163, cofactor=2.

� K-233: y2 + xy = x3 + 1 over F2233, cofactor=4.

� K-283: y2 + xy = x3 + 1 over F2283, cofactor=4.

� K-409: y2 + xy = x3 + 1 over F2409, cofactor=4.

� K-571: y2 + xy = x3 + 1 over F2571, cofactor=4.

� Also, 1 randomly generated curve over each of these �elds,
each having cofactor 2: y2 + xy = x3 + x2 + b.
B-163, B-233, B-283, B-409, B-571.
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1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.

2

1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).

3

1. Discrete Logarithm Systems

EÆciency Requirements

Basic requirement: Computing ga from g and a should be
relatively easy.

� Group elements should have a compact representation.
Ideally, each group element should be represented using
� log2 n bits.

� Note: Representation of the group element can have
important security implications. After all, every cyclic group
of order n is isomorphic to (Zn;+) where the DLP is:
given 1 and a, �nd a.

� The group operation with respect to this representation
should be fast. (Then exponentiation can be eÆciently
performed using repeated square-and-multiply.)

4

1. Discrete Logarithm Systems

Cryptographically Suitable Groups

� DiÆe and Hellman �rst proposed using the multiplicative
group Z�p, where p is a prime.

� The existence of subexponential-time index-calculus methods
for solving the ECDLP in Z�p means that larger parameters
have to be used to avoid the best attacks known (e.g., a
1024-bit prime p).

� Fundamental question: Are there �nite groups for which:

(i) the group elements can be compactly represented;

(ii) the group operation can be eÆciently computed; and

(iii) the discrete logarithm problem cannot be solved in
subexponential time?
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2. Why Elliptic Curves?

Why Elliptic Curves?

[The following approach is due to Gerhard Frey]
Abelian Varieties

� Abelian varieties A (over �nite �elds Fq) provide a rich
source of �nite groups.

{ Set of solutions to a set of equations, together with a group law given
by rational functions.

{ Example (multiplicative group of Fq):
Equation: xy = 1
Group law: (x1; y1) + (x2; y2) = (x1y1; x2y2).

{ Example (elliptic curve group over Fp):
Equation: y2 = x3 + ax + b
Group law: usual tangent-and-chord formulas.

{ Problem: The number of variables and the degrees of the addition
formulas grow exponentially with the dimension of A.

6

2. Why Elliptic Curves?

Jacobian Varieties

� Solution: Take special abelian varieties{ Jacobian variety JC
of an algebraic curve C over a �nite �eld Fq.

� JC can be viewed as the quotient group of zero divisors
modulo the principal divisors.

� By Riemann-Roch, each divisor class has a reduced divisor:
P1 + P2 + � � � + Pt � tP1, where t � g.

� Problem: The points in the support of D 2 JC(Fq) are not
necessarily de�ned over Fq . Also need an eÆcient method to
add 2 reduced divisors and convert the result to reduced
form.
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2. Why Elliptic Curves?

Hyperelliptic Curves

� Solution: Consider the jacobian JC(Fq) of a hyperelliptic
curve C of genus g over Fq . (JC is a g-dimensional abelian
variety.) Note that #JC(Fq) � qg.

� C : v2 + h(u)v = f(u), h; f 2 Fq [u], deg h � g,
deg f = 2g + 1.

� Elements of JC(Fq) can be uniquely represented by a pair of
polynomials a; b 2 Fq [u], where deg b < deg a � g, a is

monic, and aj(b2 + bh� f).

� Cantor's algorithm eÆciently adds two elements in this form,
and provides the result in this same form.
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2. Why Elliptic Curves?

Hyperelliptic Curves (2)

� Problem: For \large" genus hyperelliptic curves, there are
subexponential-time algorithms for the DLP in JC(Fq).
(Adleman-DeMarrais-Huang, M�uller-Stein-Thiel,
Enge-Gaudry.)

� Problem: For small genus g = 5; 6; 7; 8; : : : , Gaudry's
algorithm (2000) has a running time that is faster than
Pollard's rho algorithm.

� Problem: g = 4 is too close for comfort.

� Solution: Use g = 1; 2; 3 hyperelliptic curves.
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2. Why Elliptic Curves?

Genus 1, 2 and 3

� Problem: The group law for g = 3 is signi�cantly more
complicated than the group law for g = 2.

� Solution: Use g = 2.

{ Group law can be described by explicit & simple formulas.

{ However the group law for g = 2 is still more complicated
that the elliptic curve (g = 1) group law.

{ g = 2 has a potential advantage over g = 1 in that one
can use a smaller �nite �eld for the same level of
security{this may be advantageous for hardware.

{ However, in general g = 2 will be slower than g = 1.
There is no compelling reason (as yet) to use g = 2.

{ So, we are stuck with elliptic curves!

10

3. The ECDLP

The Elliptic Curve Discrete Logarithm Problem

� Let E be an elliptic curve over Fq with #E(Fq) = nh,
where n is prime and h is small. Let P 2 E(Fq),
ord(P ) = n. ECDLP: Given E, P , Q 2 hP i, �nd
l 2 [0; n� 1] such that Q = lP .

� In general, there is no subexponential-time algorithm known
for the DLP in E(Fq). The best algorithm known is
Pollard's rho which takes (

p
�n)=2 steps.
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3. The ECDLP

Special Cases

� (Weil & Tate pairing): EÆciently embed hP i in F�
qk

for

small k.

� (Prime �eld anomalous curves): If #E(Fp) = p, then
ECDLP in E(Fp) can be eÆciently calculated.

� (Frobenius endomorphism): Use equivalence classes of
points under Frobenius map to speed up Pollard's rho
algorithm for Koblitz curves over F2m by a factor of

p
m.
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3. The ECDLPWeil Descent Attack

� q = 2l, E=Fqn : y2 + xy = x3 + ax2 + b.

� Frey (1998); Galbraith & Smart (1999)

� Gaudry, Hess & Smart (2000)

E(Fqn)

C=Fq -A(Fq)
?

JC(Fq)

-

-

� A: n-dimensional abelian variety over Fq .
C: genus-g hyperelliptic curve which lies on A.
JC(Fq)

�= subgroup of E(Fqn).

13

3. The ECDLP

Analysis

� Theorem (Gaudry, Hess & Smart, 2000) g = 2m�1 or
2m�1 � 1, where

m = m(b) = dimF2
(SpanF2f(1; b

1=2
0 ); : : : ; (1; b

1=2
n�1)g);

where bi = bq
i

, 0 � i � n� 1.

� Notes:
(a) 1 � m � n, so 1 � g � 2n�1.

(b) If m = 1, so g = 1, the reduction is useless.

(c) If m = n, so g = 2n�1, the reduction takes fully

exponential time (#JC(Fq) � q2
n�1

).
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3. The ECDLP

Analysis (2)

Theorem (Menezes & Qu, 2000) Let n be an odd prime,
t = ordn(2), s = (n� 1)=t, b 2 Fqn. Then

m(b) 2 f1; t + 1; 2t + 1; : : : ; st+ 1g:
Moreover, the number of b 2 Fqn with m(b) = it + 1 is

q
 s
i

!
(qt � 1)i.
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3. The ECDLP

Consequences

1. Koblitz curves (b 2 F2).

�m = 1, so g = 1.

� So, GHS attack is useless for Koblitz curves.

2. Non-Koblitz curves over F2n, n prime.

� If n 2 [160; 600], then m � 18, so g � 217 � 128; 000.

� So GHS attack fails for all elliptic curves over F2n,
where n is prime.
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3. The ECDLP

3. Elliptic curves over F2155.

(a) q = 231, n = 5.

{ g = 1; 15 or 16.

{HCDLP in a genus 15 curve over F231 appears
infeasible (Smart, Eurocrypt 2001).

(b) q = 25, n = 31.

{m = 6, so g = 31 for a small fraction of elliptic curves
over F25.

{HCDLP in a genus 31 curve over F25 is feasible
(Jacobson, Menezes & Stein, 2001).
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3. The ECDLP

Certicom's ECC Challenge

� Launched on November 6, 1997.

� See http://www.certicom.com/
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3. The ECDLP

The Challenges

� The challenge curves are divided into three categories:

{ Randomly generated curves over F2m (m prime)

{ Koblitz curves over F2m (m prime)

{ Randomly generated curves over Fp (p prime)

�Within each category, there are 3 subcategories:

{ Exercises

{ Level I challenges

{ Level II challenges

19

3. The ECDLP

Challenges { Random Curves Over F2m

Field size (bits) Prize (US$)

Exercises
ECC2-79 79 Book/Maple
ECC2-89 89 Book/Maple
ECC2-97 97 $ 5,000

Level I Challenges
ECC2-109 109 $10,000
ECC2-131 131 $20,000

Level II Challenges
ECC2-163 163 $30,000
ECC2-191 191 $40,000
ECC2-238 239 $50,000
ECC2-353 359 $100,000
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3. The ECDLP

Challenges { Koblitz Curves

Field size (bits) Prize (US$)

Exercises
ECC2K-95 97 $ 5,000

Level I Challenges
ECC2K-108 109 $10,000
ECC2K-130 131 $20,000

Level II Challenges
ECC2K-163 163 $30,000
ECC2K-238 239 $50,000
ECC2K-358 359 $100,000
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3. The ECDLP

Challenges { Random Curves Over Fp

Field size (bits) Prize (US$)

Exercises
ECCp-79 79 Book/Maple
ECCp-89 89 Book/Maple
ECCp-97 97 $ 5,000

Level I Challenges
ECCp-109 109 $10,000
ECCp-131 131 $20,000

Level II Challenges
ECCp-163 163 $30,000
ECCp-191 191 $40,000
ECCp-239 239 $50,000
ECCp-359 359 $100,000
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3. The ECDLP

Results To Date

(Robert Harley, INRIA; Adrian Escott, BT Labs)
Using parallelized Pollard-rho in software:

Challenge Date Time
solved (group ops)

ECCp-79 Dec 6 97 1:4 � 1012

ECC2-79 Dec 16 97 1:7 � 1012

ECCp-89 Jan 12 98 3:0 � 1013

ECC2-89 Feb 9 98 1:8 � 1013

ECCp-97 Mar 18 98 2:0 � 1014

ECC2K-95 May 21 98 2:2 � 1013

ECC2-97 Sep 22 99 1:2 � 1014

ECC2K-108 Apr 4 00 1:1 � 1014
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3. The ECDLP

Computational E�ort for ECC2-97

� 740 machines (mostly Pentiums and Alphas).

� 20 countries.

� 40 days.

� 1:2 � 1014 elliptic curve points computed.

� 127; 497 distinguished points collected.

� Computing power utilized: About 16,000 MIPS years.

�More than twice as much computing power as used for the
recent factorization of RSA-155.
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3. The ECDLP

Future Results?

Estimated time to compute logarithms using Pollard-rho.

Challenge Time
(expected)

ECC2-109 2:2 � 1016

ECCp-109 2:2 � 1016

ECC2K-130 2:9 � 1018

ECC2-131 4:6 � 1019

ECCp-131 4:6 � 1019
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4. ECC Protocols

ECC Protocols

� Elliptic curves can be used to design procotols for the basic
public-key functions of key agreement, key transport
(encryption), and digital signatures.

� Ideally, a protocol should have the following attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).

26

4. ECC Protocols

Elliptic Curve Digital Signature Algorithm
(ECDSA)

EC Key Pair Generation:

� Domain parameters: E, Fq , G 2 E(Fq), n = ord(G),
h = #E(Fq)=n.

� Each entity A does the following:

1. Select a random integer d in the interval [1; n� 1].

2. Compute Q = dG.

3. A's public key is Q; A's private key is d.
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4. ECC Protocols

ECDSA Signature Generation

To sign a message m, A does the following:

1. Select a random integer k, 1 � k � n � 1.

2. Compute kG = (x1; y1) and r = x1 mod n.
If r = 0 then go to step 1.

3. Compute k�1 mod n.

4. Compute e = SHA-1(m).

5. Compute s = k�1fe + drg mod n.
If s = 0 then go to step 1.

6. A's signature for the message m is (r; s).
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4. ECC Protocols

ECDSA Signature Veri�cation

To verify A's signature (r; s) on m, B should do the following:

1. Verify that r and s are integers in the interval [1; n� 1].

2. Compute e = SHA-1(m).

3. Compute w = s�1 mod n.

4. Compute u1 = ew mod n and u2 = rw mod n.

5. Compute u1G + u2Q = (x1; y1) and v = x1 mod n.

6. Accept the signature if and only if v = r.
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4. ECC Protocols

Security De�nition

�De�nition: A signature scheme is said to be secure if it is
existentially unforgeable against chosen-message attack by a
computationally bounded adversary.

� NOTE: The adversary has access to a signing oracle. Its
goal is to compute a single valid message/signature pair for
any message that was not previously given to the signing
oracle.
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4. ECC Protocols

Security Proof for ECDSA

Theorem (Brown, 2000) ECDSA is existentially unforgeable
by chosen-message adversaries assuming that H is a
collision-resistant hash function, and that the underlying group
is a generic group.
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4. ECC Protocols

ECDSA Standardization

ISO 14888-3

IEEE 1363-2000

ANSI X9.62

SECG

FIPS 186-2

32

4. ECC Protocols

ECDSA Summary

� ECDSA has the desired design attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).
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5. ECC Implementation and Deployment

ECC Implementation and Deployment

� The absence of a subexponential-time algorithm for the
ECDLP means that signi�cantly smaller parameters can be
used in ECC than with competing technologies such as DSA
and RSA, but with equivalent levels of security.

� Advantages to be gained from smaller parameters include:
speed, and smaller keys and certi�cates.

� These advantages are especially important in environments
where at least one of the following resources are limited:
processing power, storage space, bandwidth, power.

� Thus, ECC is especially well-suited for constrained
environments smart cards, cellular phones, pagers, PDAs,
digital postal marks.
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5. ECC Implementation and Deployment

NIST Recommended Elliptic Curves

� Collection of elliptic curves recommended in FIPS 186-2 for
use with ECDSA by the US Federal Government.

� Recommended �elds:

Block cipher Block cipher Fp F2m RSA modulus
key length kpk m length

80 SKIPJACK 192 163 1,024
112 Triple-DES 224 233 2,048
128 AES Small 256 283 3,072
192 AES Medium 384 409 7,680
256 AES Large 521 571 15,360
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5. ECC Implementation and Deployment

Reduction Polynomials for F2m

� f(x) = x163 + x7 + x6 + x3 + 1

� f(x) = x233 + x74 + 1

� f(x) = x283 + x12 + x7 + x5 + 1

� f(x) = x409 + x87 + 1

� f(x) = x571 + x10 + x5 + x2 + 1

36

5. ECC Implementation and Deployment

Recommended Curves Over F2m

� K-163: y2 + xy = x3 + x2 + 1 over F2163, cofactor=2.

� K-233: y2 + xy = x3 + 1 over F2233, cofactor=4.

� K-283: y2 + xy = x3 + 1 over F2283, cofactor=4.

� K-409: y2 + xy = x3 + 1 over F2409, cofactor=4.

� K-571: y2 + xy = x3 + 1 over F2571, cofactor=4.

� Also, 1 randomly generated curve over each of these �elds,
each having cofactor 2: y2 + xy = x3 + x2 + b.
B-163, B-233, B-283, B-409, B-571.
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5. ECC Implementation and Deployment

Recommended Curves Over Fp

� Field sizes:

{ p = 2192 � 264 � 1.

{ p = 2224 � 296 + 1.

{ p = 2256 � 2224 + 2192 + 296 � 1.

{ p = 2384 � 2128 � 296 + 232 � 1.

{ p = 2521 � 1.

� All curves were randomly generated and have prime order.

� y2 = x3 � 3x + b.

� P-192, P-224, P-256, P-384, P-521.
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5. ECC Implementation and Deployment

RIM Pager

� Custom-built Intel 386 processor, 10 MHz.

� 2 Mbytes of 
ash memory, 304 Kbytes of SRAM.

� Single AA battery which lasts roughly three weeks.

� Runs on the Mobitex network.

�Multitasking is cooperative { failure to yield control within
10 seconds can trigger a pager reset.
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1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.

2

1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).

3

1. Discrete Logarithm Systems

EÆciency Requirements

Basic requirement: Computing ga from g and a should be
relatively easy.

� Group elements should have a compact representation.
Ideally, each group element should be represented using
� log2 n bits.

� Note: Representation of the group element can have
important security implications. After all, every cyclic group
of order n is isomorphic to (Zn;+) where the DLP is:
given 1 and a, �nd a.

� The group operation with respect to this representation
should be fast. (Then exponentiation can be eÆciently
performed using repeated square-and-multiply.)
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1. Discrete Logarithm Systems

Cryptographically Suitable Groups

� DiÆe and Hellman �rst proposed using the multiplicative
group Z�p, where p is a prime.

� The existence of subexponential-time index-calculus methods
for solving the ECDLP in Z�p means that larger parameters
have to be used to avoid the best attacks known (e.g., a
1024-bit prime p).

� Fundamental question: Are there �nite groups for which:

(i) the group elements can be compactly represented;

(ii) the group operation can be eÆciently computed; and

(iii) the discrete logarithm problem cannot be solved in
subexponential time?
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2. Why Elliptic Curves?

Why Elliptic Curves?

[The following approach is due to Gerhard Frey]
Abelian Varieties

� Abelian varieties A (over �nite �elds Fq) provide a rich
source of �nite groups.

{ Set of solutions to a set of equations, together with a group law given
by rational functions.

{ Example (multiplicative group of Fq):
Equation: xy = 1
Group law: (x1; y1) + (x2; y2) = (x1y1; x2y2).

{ Example (elliptic curve group over Fp):
Equation: y2 = x3 + ax + b
Group law: usual tangent-and-chord formulas.

{ Problem: The number of variables and the degrees of the addition
formulas grow exponentially with the dimension of A.
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2. Why Elliptic Curves?

Jacobian Varieties

� Solution: Take special abelian varieties{ Jacobian variety JC
of an algebraic curve C over a �nite �eld Fq.

� JC can be viewed as the quotient group of zero divisors
modulo the principal divisors.

� By Riemann-Roch, each divisor class has a reduced divisor:
P1 + P2 + � � � + Pt � tP1, where t � g.

� Problem: The points in the support of D 2 JC(Fq) are not
necessarily de�ned over Fq . Also need an eÆcient method to
add 2 reduced divisors and convert the result to reduced
form.
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2. Why Elliptic Curves?

Hyperelliptic Curves

� Solution: Consider the jacobian JC(Fq) of a hyperelliptic
curve C of genus g over Fq . (JC is a g-dimensional abelian
variety.) Note that #JC(Fq) � qg.

� C : v2 + h(u)v = f(u), h; f 2 Fq [u], deg h � g,
deg f = 2g + 1.

� Elements of JC(Fq) can be uniquely represented by a pair of
polynomials a; b 2 Fq [u], where deg b < deg a � g, a is

monic, and aj(b2 + bh� f).

� Cantor's algorithm eÆciently adds two elements in this form,
and provides the result in this same form.
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2. Why Elliptic Curves?

Hyperelliptic Curves (2)

� Problem: For \large" genus hyperelliptic curves, there are
subexponential-time algorithms for the DLP in JC(Fq).
(Adleman-DeMarrais-Huang, M�uller-Stein-Thiel,
Enge-Gaudry.)

� Problem: For small genus g = 5; 6; 7; 8; : : : , Gaudry's
algorithm (2000) has a running time that is faster than
Pollard's rho algorithm.

� Problem: g = 4 is too close for comfort.

� Solution: Use g = 1; 2; 3 hyperelliptic curves.
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2. Why Elliptic Curves?

Genus 1, 2 and 3

� Problem: The group law for g = 3 is signi�cantly more
complicated than the group law for g = 2.

� Solution: Use g = 2.

{ Group law can be described by explicit & simple formulas.

{ However the group law for g = 2 is still more complicated
that the elliptic curve (g = 1) group law.

{ g = 2 has a potential advantage over g = 1 in that one
can use a smaller �nite �eld for the same level of
security{this may be advantageous for hardware.

{ However, in general g = 2 will be slower than g = 1.
There is no compelling reason (as yet) to use g = 2.

{ So, we are stuck with elliptic curves!

10

3. The ECDLP

The Elliptic Curve Discrete Logarithm Problem

� Let E be an elliptic curve over Fq with #E(Fq) = nh,
where n is prime and h is small. Let P 2 E(Fq),
ord(P ) = n. ECDLP: Given E, P , Q 2 hP i, �nd
l 2 [0; n� 1] such that Q = lP .

� In general, there is no subexponential-time algorithm known
for the DLP in E(Fq). The best algorithm known is
Pollard's rho which takes (

p
�n)=2 steps.
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3. The ECDLP

Special Cases

� (Weil & Tate pairing): EÆciently embed hP i in F�
qk

for

small k.

� (Prime �eld anomalous curves): If #E(Fp) = p, then
ECDLP in E(Fp) can be eÆciently calculated.

� (Frobenius endomorphism): Use equivalence classes of
points under Frobenius map to speed up Pollard's rho
algorithm for Koblitz curves over F2m by a factor of

p
m.
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3. The ECDLPWeil Descent Attack

� q = 2l, E=Fqn : y2 + xy = x3 + ax2 + b.

� Frey (1998); Galbraith & Smart (1999)

� Gaudry, Hess & Smart (2000)

E(Fqn)

C=Fq -A(Fq)
?

JC(Fq)

-

-

� A: n-dimensional abelian variety over Fq .
C: genus-g hyperelliptic curve which lies on A.
JC(Fq)

�= subgroup of E(Fqn).

13

3. The ECDLP

Analysis

� Theorem (Gaudry, Hess & Smart, 2000) g = 2m�1 or
2m�1 � 1, where

m = m(b) = dimF2
(SpanF2f(1; b

1=2
0 ); : : : ; (1; b

1=2
n�1)g);

where bi = bq
i

, 0 � i � n� 1.

� Notes:
(a) 1 � m � n, so 1 � g � 2n�1.

(b) If m = 1, so g = 1, the reduction is useless.

(c) If m = n, so g = 2n�1, the reduction takes fully

exponential time (#JC(Fq) � q2
n�1

).
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3. The ECDLP

Analysis (2)

Theorem (Menezes & Qu, 2000) Let n be an odd prime,
t = ordn(2), s = (n� 1)=t, b 2 Fqn. Then

m(b) 2 f1; t + 1; 2t + 1; : : : ; st+ 1g:
Moreover, the number of b 2 Fqn with m(b) = it + 1 is

q
 s
i

!
(qt � 1)i.
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3. The ECDLP

Consequences

1. Koblitz curves (b 2 F2).

�m = 1, so g = 1.

� So, GHS attack is useless for Koblitz curves.

2. Non-Koblitz curves over F2n, n prime.

� If n 2 [160; 600], then m � 18, so g � 217 � 128; 000.

� So GHS attack fails for all elliptic curves over F2n,
where n is prime.

16

3. The ECDLP

3. Elliptic curves over F2155.

(a) q = 231, n = 5.

{ g = 1; 15 or 16.

{HCDLP in a genus 15 curve over F231 appears
infeasible (Smart, Eurocrypt 2001).

(b) q = 25, n = 31.

{m = 6, so g = 31 for a small fraction of elliptic curves
over F25.

{HCDLP in a genus 31 curve over F25 is feasible
(Jacobson, Menezes & Stein, 2001).
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3. The ECDLP

Certicom's ECC Challenge

� Launched on November 6, 1997.

� See http://www.certicom.com/
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3. The ECDLP

The Challenges

� The challenge curves are divided into three categories:

{ Randomly generated curves over F2m (m prime)

{ Koblitz curves over F2m (m prime)

{ Randomly generated curves over Fp (p prime)

�Within each category, there are 3 subcategories:

{ Exercises

{ Level I challenges

{ Level II challenges

19

3. The ECDLP

Challenges { Random Curves Over F2m

Field size (bits) Prize (US$)

Exercises
ECC2-79 79 Book/Maple
ECC2-89 89 Book/Maple
ECC2-97 97 $ 5,000

Level I Challenges
ECC2-109 109 $10,000
ECC2-131 131 $20,000

Level II Challenges
ECC2-163 163 $30,000
ECC2-191 191 $40,000
ECC2-238 239 $50,000
ECC2-353 359 $100,000
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3. The ECDLP

Challenges { Koblitz Curves

Field size (bits) Prize (US$)

Exercises
ECC2K-95 97 $ 5,000

Level I Challenges
ECC2K-108 109 $10,000
ECC2K-130 131 $20,000

Level II Challenges
ECC2K-163 163 $30,000
ECC2K-238 239 $50,000
ECC2K-358 359 $100,000
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3. The ECDLP

Challenges { Random Curves Over Fp

Field size (bits) Prize (US$)

Exercises
ECCp-79 79 Book/Maple
ECCp-89 89 Book/Maple
ECCp-97 97 $ 5,000

Level I Challenges
ECCp-109 109 $10,000
ECCp-131 131 $20,000

Level II Challenges
ECCp-163 163 $30,000
ECCp-191 191 $40,000
ECCp-239 239 $50,000
ECCp-359 359 $100,000
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3. The ECDLP

Results To Date

(Robert Harley, INRIA; Adrian Escott, BT Labs)
Using parallelized Pollard-rho in software:

Challenge Date Time
solved (group ops)

ECCp-79 Dec 6 97 1:4 � 1012

ECC2-79 Dec 16 97 1:7 � 1012

ECCp-89 Jan 12 98 3:0 � 1013

ECC2-89 Feb 9 98 1:8 � 1013

ECCp-97 Mar 18 98 2:0 � 1014

ECC2K-95 May 21 98 2:2 � 1013

ECC2-97 Sep 22 99 1:2 � 1014

ECC2K-108 Apr 4 00 1:1 � 1014
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3. The ECDLP

Computational E�ort for ECC2-97

� 740 machines (mostly Pentiums and Alphas).

� 20 countries.

� 40 days.

� 1:2 � 1014 elliptic curve points computed.

� 127; 497 distinguished points collected.

� Computing power utilized: About 16,000 MIPS years.

�More than twice as much computing power as used for the
recent factorization of RSA-155.
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3. The ECDLP

Future Results?

Estimated time to compute logarithms using Pollard-rho.

Challenge Time
(expected)

ECC2-109 2:2 � 1016

ECCp-109 2:2 � 1016

ECC2K-130 2:9 � 1018

ECC2-131 4:6 � 1019

ECCp-131 4:6 � 1019
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4. ECC Protocols

ECC Protocols

� Elliptic curves can be used to design procotols for the basic
public-key functions of key agreement, key transport
(encryption), and digital signatures.

� Ideally, a protocol should have the following attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).
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4. ECC Protocols

Elliptic Curve Digital Signature Algorithm
(ECDSA)

EC Key Pair Generation:

� Domain parameters: E, Fq , G 2 E(Fq), n = ord(G),
h = #E(Fq)=n.

� Each entity A does the following:

1. Select a random integer d in the interval [1; n� 1].

2. Compute Q = dG.

3. A's public key is Q; A's private key is d.
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4. ECC Protocols

ECDSA Signature Generation

To sign a message m, A does the following:

1. Select a random integer k, 1 � k � n � 1.

2. Compute kG = (x1; y1) and r = x1 mod n.
If r = 0 then go to step 1.

3. Compute k�1 mod n.

4. Compute e = SHA-1(m).

5. Compute s = k�1fe + drg mod n.
If s = 0 then go to step 1.

6. A's signature for the message m is (r; s).
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4. ECC Protocols

ECDSA Signature Veri�cation

To verify A's signature (r; s) on m, B should do the following:

1. Verify that r and s are integers in the interval [1; n� 1].

2. Compute e = SHA-1(m).

3. Compute w = s�1 mod n.

4. Compute u1 = ew mod n and u2 = rw mod n.

5. Compute u1G + u2Q = (x1; y1) and v = x1 mod n.

6. Accept the signature if and only if v = r.
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4. ECC Protocols

Security De�nition

�De�nition: A signature scheme is said to be secure if it is
existentially unforgeable against chosen-message attack by a
computationally bounded adversary.

� NOTE: The adversary has access to a signing oracle. Its
goal is to compute a single valid message/signature pair for
any message that was not previously given to the signing
oracle.
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4. ECC Protocols

Security Proof for ECDSA

Theorem (Brown, 2000) ECDSA is existentially unforgeable
by chosen-message adversaries assuming that H is a
collision-resistant hash function, and that the underlying group
is a generic group.
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4. ECC Protocols

ECDSA Standardization

ISO 14888-3

IEEE 1363-2000

ANSI X9.62

SECG

FIPS 186-2
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4. ECC Protocols

ECDSA Summary

� ECDSA has the desired design attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).
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5. ECC Implementation and Deployment

ECC Implementation and Deployment

� The absence of a subexponential-time algorithm for the
ECDLP means that signi�cantly smaller parameters can be
used in ECC than with competing technologies such as DSA
and RSA, but with equivalent levels of security.

� Advantages to be gained from smaller parameters include:
speed, and smaller keys and certi�cates.

� These advantages are especially important in environments
where at least one of the following resources are limited:
processing power, storage space, bandwidth, power.

� Thus, ECC is especially well-suited for constrained
environments smart cards, cellular phones, pagers, PDAs,
digital postal marks.
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5. ECC Implementation and Deployment

NIST Recommended Elliptic Curves

� Collection of elliptic curves recommended in FIPS 186-2 for
use with ECDSA by the US Federal Government.

� Recommended �elds:

Block cipher Block cipher Fp F2m RSA modulus
key length kpk m length

80 SKIPJACK 192 163 1,024
112 Triple-DES 224 233 2,048
128 AES Small 256 283 3,072
192 AES Medium 384 409 7,680
256 AES Large 521 571 15,360
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5. ECC Implementation and Deployment

Reduction Polynomials for F2m

� f(x) = x163 + x7 + x6 + x3 + 1

� f(x) = x233 + x74 + 1

� f(x) = x283 + x12 + x7 + x5 + 1

� f(x) = x409 + x87 + 1

� f(x) = x571 + x10 + x5 + x2 + 1
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5. ECC Implementation and Deployment

Recommended Curves Over F2m

� K-163: y2 + xy = x3 + x2 + 1 over F2163, cofactor=2.

� K-233: y2 + xy = x3 + 1 over F2233, cofactor=4.

� K-283: y2 + xy = x3 + 1 over F2283, cofactor=4.

� K-409: y2 + xy = x3 + 1 over F2409, cofactor=4.

� K-571: y2 + xy = x3 + 1 over F2571, cofactor=4.

� Also, 1 randomly generated curve over each of these �elds,
each having cofactor 2: y2 + xy = x3 + x2 + b.
B-163, B-233, B-283, B-409, B-571.
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5. ECC Implementation and Deployment

Recommended Curves Over Fp

� Field sizes:

{ p = 2192 � 264 � 1.

{ p = 2224 � 296 + 1.

{ p = 2256 � 2224 + 2192 + 296 � 1.

{ p = 2384 � 2128 � 296 + 232 � 1.

{ p = 2521 � 1.

� All curves were randomly generated and have prime order.

� y2 = x3 � 3x + b.

� P-192, P-224, P-256, P-384, P-521.
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5. ECC Implementation and Deployment

RIM Pager

� Custom-built Intel 386 processor, 10 MHz.

� 2 Mbytes of 
ash memory, 304 Kbytes of SRAM.

� Single AA battery which lasts roughly three weeks.

� Runs on the Mobitex network.

�Multitasking is cooperative { failure to yield control within
10 seconds can trigger a pager reset.
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5. ECC Implementation and Deployment

Palm Pilot

� Palm VII is wireless.

� 16 MHz Motorola 68000-type Dragonball processor.

� 2-8 MB of memory.

� Code segment and stack restrictions.

40

5. ECC Implementation and Deployment

Timings (in ms)

K-163 B-163 RSA-1024
RIM Pilot PII RIM Pilot PII RIM Pilot PII

Key gen 751 1,334 1.47 1,085 1,891 2.12 580,405 1,705,442 2,740
Encrypt 1,759 2,928 4.37 3,132 5,458 6.67 533 1,023 2.70
Decrypt 1,065 1,610 2.85 2,114 3,564 4.69 15,901 36,284 67
Signing 1,011 1,793 2.11 1,335 2,230 2.64 15,889 36,130 67
Verifying 1,826 3,263 4.09 3,243 5,370 6.46 301 729 1.23

� ECC and RSA code optimized for a Pentium II.

� Ported without further optimizations to the Palm Pilot and
the RIM pager.

� ECC: Fixed curve (no point counting).

� RSA code from OpenSSL (Eric Young); e = 3.
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1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.

2

1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).
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1. Discrete Logarithm Systems

EÆciency Requirements

Basic requirement: Computing ga from g and a should be
relatively easy.

� Group elements should have a compact representation.
Ideally, each group element should be represented using
� log2 n bits.

� Note: Representation of the group element can have
important security implications. After all, every cyclic group
of order n is isomorphic to (Zn;+) where the DLP is:
given 1 and a, �nd a.

� The group operation with respect to this representation
should be fast. (Then exponentiation can be eÆciently
performed using repeated square-and-multiply.)
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1. Discrete Logarithm Systems

Cryptographically Suitable Groups

� DiÆe and Hellman �rst proposed using the multiplicative
group Z�p, where p is a prime.

� The existence of subexponential-time index-calculus methods
for solving the ECDLP in Z�p means that larger parameters
have to be used to avoid the best attacks known (e.g., a
1024-bit prime p).

� Fundamental question: Are there �nite groups for which:

(i) the group elements can be compactly represented;

(ii) the group operation can be eÆciently computed; and

(iii) the discrete logarithm problem cannot be solved in
subexponential time?
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2. Why Elliptic Curves?

Why Elliptic Curves?

[The following approach is due to Gerhard Frey]
Abelian Varieties

� Abelian varieties A (over �nite �elds Fq) provide a rich
source of �nite groups.

{ Set of solutions to a set of equations, together with a group law given
by rational functions.

{ Example (multiplicative group of Fq):
Equation: xy = 1
Group law: (x1; y1) + (x2; y2) = (x1y1; x2y2).

{ Example (elliptic curve group over Fp):
Equation: y2 = x3 + ax + b
Group law: usual tangent-and-chord formulas.

{ Problem: The number of variables and the degrees of the addition
formulas grow exponentially with the dimension of A.

6

2. Why Elliptic Curves?

Jacobian Varieties

� Solution: Take special abelian varieties{ Jacobian variety JC
of an algebraic curve C over a �nite �eld Fq.

� JC can be viewed as the quotient group of zero divisors
modulo the principal divisors.

� By Riemann-Roch, each divisor class has a reduced divisor:
P1 + P2 + � � � + Pt � tP1, where t � g.

� Problem: The points in the support of D 2 JC(Fq) are not
necessarily de�ned over Fq . Also need an eÆcient method to
add 2 reduced divisors and convert the result to reduced
form.
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2. Why Elliptic Curves?

Hyperelliptic Curves

� Solution: Consider the jacobian JC(Fq) of a hyperelliptic
curve C of genus g over Fq . (JC is a g-dimensional abelian
variety.) Note that #JC(Fq) � qg.

� C : v2 + h(u)v = f(u), h; f 2 Fq [u], deg h � g,
deg f = 2g + 1.

� Elements of JC(Fq) can be uniquely represented by a pair of
polynomials a; b 2 Fq [u], where deg b < deg a � g, a is

monic, and aj(b2 + bh� f).

� Cantor's algorithm eÆciently adds two elements in this form,
and provides the result in this same form.
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2. Why Elliptic Curves?

Hyperelliptic Curves (2)

� Problem: For \large" genus hyperelliptic curves, there are
subexponential-time algorithms for the DLP in JC(Fq).
(Adleman-DeMarrais-Huang, M�uller-Stein-Thiel,
Enge-Gaudry.)

� Problem: For small genus g = 5; 6; 7; 8; : : : , Gaudry's
algorithm (2000) has a running time that is faster than
Pollard's rho algorithm.

� Problem: g = 4 is too close for comfort.

� Solution: Use g = 1; 2; 3 hyperelliptic curves.
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2. Why Elliptic Curves?

Genus 1, 2 and 3

� Problem: The group law for g = 3 is signi�cantly more
complicated than the group law for g = 2.

� Solution: Use g = 2.

{ Group law can be described by explicit & simple formulas.

{ However the group law for g = 2 is still more complicated
that the elliptic curve (g = 1) group law.

{ g = 2 has a potential advantage over g = 1 in that one
can use a smaller �nite �eld for the same level of
security{this may be advantageous for hardware.

{ However, in general g = 2 will be slower than g = 1.
There is no compelling reason (as yet) to use g = 2.

{ So, we are stuck with elliptic curves!
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3. The ECDLP

The Elliptic Curve Discrete Logarithm Problem

� Let E be an elliptic curve over Fq with #E(Fq) = nh,
where n is prime and h is small. Let P 2 E(Fq),
ord(P ) = n. ECDLP: Given E, P , Q 2 hP i, �nd
l 2 [0; n� 1] such that Q = lP .

� In general, there is no subexponential-time algorithm known
for the DLP in E(Fq). The best algorithm known is
Pollard's rho which takes (

p
�n)=2 steps.
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3. The ECDLP

Special Cases

� (Weil & Tate pairing): EÆciently embed hP i in F�
qk

for

small k.

� (Prime �eld anomalous curves): If #E(Fp) = p, then
ECDLP in E(Fp) can be eÆciently calculated.

� (Frobenius endomorphism): Use equivalence classes of
points under Frobenius map to speed up Pollard's rho
algorithm for Koblitz curves over F2m by a factor of

p
m.
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3. The ECDLPWeil Descent Attack

� q = 2l, E=Fqn : y2 + xy = x3 + ax2 + b.

� Frey (1998); Galbraith & Smart (1999)

� Gaudry, Hess & Smart (2000)

E(Fqn)

C=Fq -A(Fq)
?

JC(Fq)

-

-

� A: n-dimensional abelian variety over Fq .
C: genus-g hyperelliptic curve which lies on A.
JC(Fq)

�= subgroup of E(Fqn).
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3. The ECDLP

Analysis

� Theorem (Gaudry, Hess & Smart, 2000) g = 2m�1 or
2m�1 � 1, where

m = m(b) = dimF2
(SpanF2f(1; b

1=2
0 ); : : : ; (1; b

1=2
n�1)g);

where bi = bq
i

, 0 � i � n� 1.

� Notes:
(a) 1 � m � n, so 1 � g � 2n�1.

(b) If m = 1, so g = 1, the reduction is useless.

(c) If m = n, so g = 2n�1, the reduction takes fully

exponential time (#JC(Fq) � q2
n�1

).
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3. The ECDLP

Analysis (2)

Theorem (Menezes & Qu, 2000) Let n be an odd prime,
t = ordn(2), s = (n� 1)=t, b 2 Fqn. Then

m(b) 2 f1; t + 1; 2t + 1; : : : ; st+ 1g:
Moreover, the number of b 2 Fqn with m(b) = it + 1 is

q
 s
i

!
(qt � 1)i.
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3. The ECDLP

Consequences

1. Koblitz curves (b 2 F2).

�m = 1, so g = 1.

� So, GHS attack is useless for Koblitz curves.

2. Non-Koblitz curves over F2n, n prime.

� If n 2 [160; 600], then m � 18, so g � 217 � 128; 000.

� So GHS attack fails for all elliptic curves over F2n,
where n is prime.
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3. The ECDLP

3. Elliptic curves over F2155.

(a) q = 231, n = 5.

{ g = 1; 15 or 16.

{HCDLP in a genus 15 curve over F231 appears
infeasible (Smart, Eurocrypt 2001).

(b) q = 25, n = 31.

{m = 6, so g = 31 for a small fraction of elliptic curves
over F25.

{HCDLP in a genus 31 curve over F25 is feasible
(Jacobson, Menezes & Stein, 2001).
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3. The ECDLP

Certicom's ECC Challenge

� Launched on November 6, 1997.

� See http://www.certicom.com/
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3. The ECDLP

The Challenges

� The challenge curves are divided into three categories:

{ Randomly generated curves over F2m (m prime)

{ Koblitz curves over F2m (m prime)

{ Randomly generated curves over Fp (p prime)

�Within each category, there are 3 subcategories:

{ Exercises

{ Level I challenges

{ Level II challenges
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3. The ECDLP

Challenges { Random Curves Over F2m

Field size (bits) Prize (US$)

Exercises
ECC2-79 79 Book/Maple
ECC2-89 89 Book/Maple
ECC2-97 97 $ 5,000

Level I Challenges
ECC2-109 109 $10,000
ECC2-131 131 $20,000

Level II Challenges
ECC2-163 163 $30,000
ECC2-191 191 $40,000
ECC2-238 239 $50,000
ECC2-353 359 $100,000
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3. The ECDLP

Challenges { Koblitz Curves

Field size (bits) Prize (US$)

Exercises
ECC2K-95 97 $ 5,000

Level I Challenges
ECC2K-108 109 $10,000
ECC2K-130 131 $20,000

Level II Challenges
ECC2K-163 163 $30,000
ECC2K-238 239 $50,000
ECC2K-358 359 $100,000
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3. The ECDLP

Challenges { Random Curves Over Fp

Field size (bits) Prize (US$)

Exercises
ECCp-79 79 Book/Maple
ECCp-89 89 Book/Maple
ECCp-97 97 $ 5,000

Level I Challenges
ECCp-109 109 $10,000
ECCp-131 131 $20,000

Level II Challenges
ECCp-163 163 $30,000
ECCp-191 191 $40,000
ECCp-239 239 $50,000
ECCp-359 359 $100,000
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3. The ECDLP

Results To Date

(Robert Harley, INRIA; Adrian Escott, BT Labs)
Using parallelized Pollard-rho in software:

Challenge Date Time
solved (group ops)

ECCp-79 Dec 6 97 1:4 � 1012

ECC2-79 Dec 16 97 1:7 � 1012

ECCp-89 Jan 12 98 3:0 � 1013

ECC2-89 Feb 9 98 1:8 � 1013

ECCp-97 Mar 18 98 2:0 � 1014

ECC2K-95 May 21 98 2:2 � 1013

ECC2-97 Sep 22 99 1:2 � 1014

ECC2K-108 Apr 4 00 1:1 � 1014
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3. The ECDLP

Computational E�ort for ECC2-97

� 740 machines (mostly Pentiums and Alphas).

� 20 countries.

� 40 days.

� 1:2 � 1014 elliptic curve points computed.

� 127; 497 distinguished points collected.

� Computing power utilized: About 16,000 MIPS years.

�More than twice as much computing power as used for the
recent factorization of RSA-155.
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3. The ECDLP

Future Results?

Estimated time to compute logarithms using Pollard-rho.

Challenge Time
(expected)

ECC2-109 2:2 � 1016

ECCp-109 2:2 � 1016

ECC2K-130 2:9 � 1018

ECC2-131 4:6 � 1019

ECCp-131 4:6 � 1019
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4. ECC Protocols

ECC Protocols

� Elliptic curves can be used to design procotols for the basic
public-key functions of key agreement, key transport
(encryption), and digital signatures.

� Ideally, a protocol should have the following attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).
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4. ECC Protocols

Elliptic Curve Digital Signature Algorithm
(ECDSA)

EC Key Pair Generation:

� Domain parameters: E, Fq , G 2 E(Fq), n = ord(G),
h = #E(Fq)=n.

� Each entity A does the following:

1. Select a random integer d in the interval [1; n� 1].

2. Compute Q = dG.

3. A's public key is Q; A's private key is d.
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4. ECC Protocols

ECDSA Signature Generation

To sign a message m, A does the following:

1. Select a random integer k, 1 � k � n � 1.

2. Compute kG = (x1; y1) and r = x1 mod n.
If r = 0 then go to step 1.

3. Compute k�1 mod n.

4. Compute e = SHA-1(m).

5. Compute s = k�1fe + drg mod n.
If s = 0 then go to step 1.

6. A's signature for the message m is (r; s).
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4. ECC Protocols

ECDSA Signature Veri�cation

To verify A's signature (r; s) on m, B should do the following:

1. Verify that r and s are integers in the interval [1; n� 1].

2. Compute e = SHA-1(m).

3. Compute w = s�1 mod n.

4. Compute u1 = ew mod n and u2 = rw mod n.

5. Compute u1G + u2Q = (x1; y1) and v = x1 mod n.

6. Accept the signature if and only if v = r.
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4. ECC Protocols

Security De�nition

�De�nition: A signature scheme is said to be secure if it is
existentially unforgeable against chosen-message attack by a
computationally bounded adversary.

� NOTE: The adversary has access to a signing oracle. Its
goal is to compute a single valid message/signature pair for
any message that was not previously given to the signing
oracle.
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4. ECC Protocols

Security Proof for ECDSA

Theorem (Brown, 2000) ECDSA is existentially unforgeable
by chosen-message adversaries assuming that H is a
collision-resistant hash function, and that the underlying group
is a generic group.
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4. ECC Protocols

ECDSA Standardization

ISO 14888-3

IEEE 1363-2000

ANSI X9.62

SECG

FIPS 186-2
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4. ECC Protocols

ECDSA Summary

� ECDSA has the desired design attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).
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5. ECC Implementation and Deployment

ECC Implementation and Deployment

� The absence of a subexponential-time algorithm for the
ECDLP means that signi�cantly smaller parameters can be
used in ECC than with competing technologies such as DSA
and RSA, but with equivalent levels of security.

� Advantages to be gained from smaller parameters include:
speed, and smaller keys and certi�cates.

� These advantages are especially important in environments
where at least one of the following resources are limited:
processing power, storage space, bandwidth, power.

� Thus, ECC is especially well-suited for constrained
environments smart cards, cellular phones, pagers, PDAs,
digital postal marks.
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5. ECC Implementation and Deployment

NIST Recommended Elliptic Curves

� Collection of elliptic curves recommended in FIPS 186-2 for
use with ECDSA by the US Federal Government.

� Recommended �elds:

Block cipher Block cipher Fp F2m RSA modulus
key length kpk m length

80 SKIPJACK 192 163 1,024
112 Triple-DES 224 233 2,048
128 AES Small 256 283 3,072
192 AES Medium 384 409 7,680
256 AES Large 521 571 15,360
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5. ECC Implementation and Deployment

Reduction Polynomials for F2m

� f(x) = x163 + x7 + x6 + x3 + 1

� f(x) = x233 + x74 + 1

� f(x) = x283 + x12 + x7 + x5 + 1

� f(x) = x409 + x87 + 1

� f(x) = x571 + x10 + x5 + x2 + 1
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5. ECC Implementation and Deployment

Recommended Curves Over F2m

� K-163: y2 + xy = x3 + x2 + 1 over F2163, cofactor=2.

� K-233: y2 + xy = x3 + 1 over F2233, cofactor=4.

� K-283: y2 + xy = x3 + 1 over F2283, cofactor=4.

� K-409: y2 + xy = x3 + 1 over F2409, cofactor=4.

� K-571: y2 + xy = x3 + 1 over F2571, cofactor=4.

� Also, 1 randomly generated curve over each of these �elds,
each having cofactor 2: y2 + xy = x3 + x2 + b.
B-163, B-233, B-283, B-409, B-571.
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5. ECC Implementation and Deployment

Recommended Curves Over Fp

� Field sizes:

{ p = 2192 � 264 � 1.

{ p = 2224 � 296 + 1.

{ p = 2256 � 2224 + 2192 + 296 � 1.

{ p = 2384 � 2128 � 296 + 232 � 1.

{ p = 2521 � 1.

� All curves were randomly generated and have prime order.

� y2 = x3 � 3x + b.

� P-192, P-224, P-256, P-384, P-521.
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5. ECC Implementation and Deployment

RIM Pager

� Custom-built Intel 386 processor, 10 MHz.

� 2 Mbytes of 
ash memory, 304 Kbytes of SRAM.

� Single AA battery which lasts roughly three weeks.

� Runs on the Mobitex network.

�Multitasking is cooperative { failure to yield control within
10 seconds can trigger a pager reset.
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5. ECC Implementation and Deployment

Palm Pilot

� Palm VII is wireless.

� 16 MHz Motorola 68000-type Dragonball processor.

� 2-8 MB of memory.

� Code segment and stack restrictions.
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5. ECC Implementation and Deployment

Timings (in ms)

K-163 B-163 RSA-1024
RIM Pilot PII RIM Pilot PII RIM Pilot PII

Key gen 751 1,334 1.47 1,085 1,891 2.12 580,405 1,705,442 2,740
Encrypt 1,759 2,928 4.37 3,132 5,458 6.67 533 1,023 2.70
Decrypt 1,065 1,610 2.85 2,114 3,564 4.69 15,901 36,284 67
Signing 1,011 1,793 2.11 1,335 2,230 2.64 15,889 36,130 67
Verifying 1,826 3,263 4.09 3,243 5,370 6.46 301 729 1.23

� ECC and RSA code optimized for a Pentium II.

� Ported without further optimizations to the Palm Pilot and
the RIM pager.

� ECC: Fixed curve (no point counting).

� RSA code from OpenSSL (Eric Young); e = 3.
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5. ECC Implementation and Deployment

Timings (in ms)

K-233 B-233 RSA-2048
RIM Pilot PII RIM Pilot PII RIM Pilot PII

Key gen 1,552 2,573 3.11 2,478 3,948 4.58 | | 26,442
Encrypt 3,475 5,563 7.83 6,914 11,373 13.99 1,586 3,431 7.26
Decrypt 2,000 2,969 4.85 4,593 7,551 9.55 112,091 292,041 440
Signing 1,910 3,080 4.03 3,066 4,407 5.52 111,956 288,236 440
Verifying 3,701 5,878 7.87 7,321 11,964 14.08 1,087 2,392 4.20
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5. ECC Implementation and Deployment

Timings (in ms)

K-283 B-283
RIM Pilot Pent II RIM Pilot Pent II

Key gen 2,369 4,062 4.50 3,857 6,245 6.88
Encrypt 5,227 8,579 11.02 11,264 18,273 20.86
Decrypt 2,932 4,495 6.78 7,498 12,046 13.88
Signing 2,760 4,716 5.64 4,264 6,816 8.08
Verifying 5,485 9,059 11.46 11,587 18,753 21.15

43



THE FUTURE OF
ELLIPTIC CURVE CRYPTOGRAPHY

Scott Vanstone

Certicom Corp &
University of Waterloo

May 22, 2001

Outline

Outline

1. Discrete Logarithm Systems

2. Why Elliptic Curves?

3. The Elliptic Curve Discrete Logarithm Problem

4. ECC Protocols

5. ECC Implementation and Deployment

6. Conclusions

1

1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.
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1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).

3

1. Discrete Logarithm Systems

EÆciency Requirements

Basic requirement: Computing ga from g and a should be
relatively easy.

� Group elements should have a compact representation.
Ideally, each group element should be represented using
� log2 n bits.

� Note: Representation of the group element can have
important security implications. After all, every cyclic group
of order n is isomorphic to (Zn;+) where the DLP is:
given 1 and a, �nd a.

� The group operation with respect to this representation
should be fast. (Then exponentiation can be eÆciently
performed using repeated square-and-multiply.)
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1. Discrete Logarithm Systems

Cryptographically Suitable Groups

� DiÆe and Hellman �rst proposed using the multiplicative
group Z�p, where p is a prime.

� The existence of subexponential-time index-calculus methods
for solving the ECDLP in Z�p means that larger parameters
have to be used to avoid the best attacks known (e.g., a
1024-bit prime p).

� Fundamental question: Are there �nite groups for which:

(i) the group elements can be compactly represented;

(ii) the group operation can be eÆciently computed; and

(iii) the discrete logarithm problem cannot be solved in
subexponential time?
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2. Why Elliptic Curves?

Why Elliptic Curves?

[The following approach is due to Gerhard Frey]
Abelian Varieties

� Abelian varieties A (over �nite �elds Fq) provide a rich
source of �nite groups.

{ Set of solutions to a set of equations, together with a group law given
by rational functions.

{ Example (multiplicative group of Fq):
Equation: xy = 1
Group law: (x1; y1) + (x2; y2) = (x1y1; x2y2).

{ Example (elliptic curve group over Fp):
Equation: y2 = x3 + ax + b
Group law: usual tangent-and-chord formulas.

{ Problem: The number of variables and the degrees of the addition
formulas grow exponentially with the dimension of A.
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2. Why Elliptic Curves?

Jacobian Varieties

� Solution: Take special abelian varieties{ Jacobian variety JC
of an algebraic curve C over a �nite �eld Fq.

� JC can be viewed as the quotient group of zero divisors
modulo the principal divisors.

� By Riemann-Roch, each divisor class has a reduced divisor:
P1 + P2 + � � � + Pt � tP1, where t � g.

� Problem: The points in the support of D 2 JC(Fq) are not
necessarily de�ned over Fq . Also need an eÆcient method to
add 2 reduced divisors and convert the result to reduced
form.
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2. Why Elliptic Curves?

Hyperelliptic Curves

� Solution: Consider the jacobian JC(Fq) of a hyperelliptic
curve C of genus g over Fq . (JC is a g-dimensional abelian
variety.) Note that #JC(Fq) � qg.

� C : v2 + h(u)v = f(u), h; f 2 Fq [u], deg h � g,
deg f = 2g + 1.

� Elements of JC(Fq) can be uniquely represented by a pair of
polynomials a; b 2 Fq [u], where deg b < deg a � g, a is

monic, and aj(b2 + bh� f).

� Cantor's algorithm eÆciently adds two elements in this form,
and provides the result in this same form.
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2. Why Elliptic Curves?

Hyperelliptic Curves (2)

� Problem: For \large" genus hyperelliptic curves, there are
subexponential-time algorithms for the DLP in JC(Fq).
(Adleman-DeMarrais-Huang, M�uller-Stein-Thiel,
Enge-Gaudry.)

� Problem: For small genus g = 5; 6; 7; 8; : : : , Gaudry's
algorithm (2000) has a running time that is faster than
Pollard's rho algorithm.

� Problem: g = 4 is too close for comfort.

� Solution: Use g = 1; 2; 3 hyperelliptic curves.
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2. Why Elliptic Curves?

Genus 1, 2 and 3

� Problem: The group law for g = 3 is signi�cantly more
complicated than the group law for g = 2.

� Solution: Use g = 2.

{ Group law can be described by explicit & simple formulas.

{ However the group law for g = 2 is still more complicated
that the elliptic curve (g = 1) group law.

{ g = 2 has a potential advantage over g = 1 in that one
can use a smaller �nite �eld for the same level of
security{this may be advantageous for hardware.

{ However, in general g = 2 will be slower than g = 1.
There is no compelling reason (as yet) to use g = 2.

{ So, we are stuck with elliptic curves!
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3. The ECDLP

The Elliptic Curve Discrete Logarithm Problem

� Let E be an elliptic curve over Fq with #E(Fq) = nh,
where n is prime and h is small. Let P 2 E(Fq),
ord(P ) = n. ECDLP: Given E, P , Q 2 hP i, �nd
l 2 [0; n� 1] such that Q = lP .

� In general, there is no subexponential-time algorithm known
for the DLP in E(Fq). The best algorithm known is
Pollard's rho which takes (

p
�n)=2 steps.
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3. The ECDLP

Special Cases

� (Weil & Tate pairing): EÆciently embed hP i in F�
qk

for

small k.

� (Prime �eld anomalous curves): If #E(Fp) = p, then
ECDLP in E(Fp) can be eÆciently calculated.

� (Frobenius endomorphism): Use equivalence classes of
points under Frobenius map to speed up Pollard's rho
algorithm for Koblitz curves over F2m by a factor of

p
m.
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3. The ECDLPWeil Descent Attack

� q = 2l, E=Fqn : y2 + xy = x3 + ax2 + b.

� Frey (1998); Galbraith & Smart (1999)

� Gaudry, Hess & Smart (2000)

E(Fqn)

C=Fq -A(Fq)
?

JC(Fq)

-

-

� A: n-dimensional abelian variety over Fq .
C: genus-g hyperelliptic curve which lies on A.
JC(Fq)

�= subgroup of E(Fqn).
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3. The ECDLP

Analysis

� Theorem (Gaudry, Hess & Smart, 2000) g = 2m�1 or
2m�1 � 1, where

m = m(b) = dimF2
(SpanF2f(1; b

1=2
0 ); : : : ; (1; b

1=2
n�1)g);

where bi = bq
i

, 0 � i � n� 1.

� Notes:
(a) 1 � m � n, so 1 � g � 2n�1.

(b) If m = 1, so g = 1, the reduction is useless.

(c) If m = n, so g = 2n�1, the reduction takes fully

exponential time (#JC(Fq) � q2
n�1

).
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3. The ECDLP

Analysis (2)

Theorem (Menezes & Qu, 2000) Let n be an odd prime,
t = ordn(2), s = (n� 1)=t, b 2 Fqn. Then

m(b) 2 f1; t + 1; 2t + 1; : : : ; st+ 1g:
Moreover, the number of b 2 Fqn with m(b) = it + 1 is

q
 s
i

!
(qt � 1)i.
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3. The ECDLP

Consequences

1. Koblitz curves (b 2 F2).

�m = 1, so g = 1.

� So, GHS attack is useless for Koblitz curves.

2. Non-Koblitz curves over F2n, n prime.

� If n 2 [160; 600], then m � 18, so g � 217 � 128; 000.

� So GHS attack fails for all elliptic curves over F2n,
where n is prime.
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3. The ECDLP

3. Elliptic curves over F2155.

(a) q = 231, n = 5.

{ g = 1; 15 or 16.

{HCDLP in a genus 15 curve over F231 appears
infeasible (Smart, Eurocrypt 2001).

(b) q = 25, n = 31.

{m = 6, so g = 31 for a small fraction of elliptic curves
over F25.

{HCDLP in a genus 31 curve over F25 is feasible
(Jacobson, Menezes & Stein, 2001).
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3. The ECDLP

Certicom's ECC Challenge

� Launched on November 6, 1997.

� See http://www.certicom.com/
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3. The ECDLP

The Challenges

� The challenge curves are divided into three categories:

{ Randomly generated curves over F2m (m prime)

{ Koblitz curves over F2m (m prime)

{ Randomly generated curves over Fp (p prime)

�Within each category, there are 3 subcategories:

{ Exercises

{ Level I challenges

{ Level II challenges
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3. The ECDLP

Challenges { Random Curves Over F2m

Field size (bits) Prize (US$)

Exercises
ECC2-79 79 Book/Maple
ECC2-89 89 Book/Maple
ECC2-97 97 $ 5,000

Level I Challenges
ECC2-109 109 $10,000
ECC2-131 131 $20,000

Level II Challenges
ECC2-163 163 $30,000
ECC2-191 191 $40,000
ECC2-238 239 $50,000
ECC2-353 359 $100,000
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3. The ECDLP

Challenges { Koblitz Curves

Field size (bits) Prize (US$)

Exercises
ECC2K-95 97 $ 5,000

Level I Challenges
ECC2K-108 109 $10,000
ECC2K-130 131 $20,000

Level II Challenges
ECC2K-163 163 $30,000
ECC2K-238 239 $50,000
ECC2K-358 359 $100,000
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3. The ECDLP

Challenges { Random Curves Over Fp

Field size (bits) Prize (US$)

Exercises
ECCp-79 79 Book/Maple
ECCp-89 89 Book/Maple
ECCp-97 97 $ 5,000

Level I Challenges
ECCp-109 109 $10,000
ECCp-131 131 $20,000

Level II Challenges
ECCp-163 163 $30,000
ECCp-191 191 $40,000
ECCp-239 239 $50,000
ECCp-359 359 $100,000
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3. The ECDLP

Results To Date

(Robert Harley, INRIA; Adrian Escott, BT Labs)
Using parallelized Pollard-rho in software:

Challenge Date Time
solved (group ops)

ECCp-79 Dec 6 97 1:4 � 1012

ECC2-79 Dec 16 97 1:7 � 1012

ECCp-89 Jan 12 98 3:0 � 1013

ECC2-89 Feb 9 98 1:8 � 1013

ECCp-97 Mar 18 98 2:0 � 1014

ECC2K-95 May 21 98 2:2 � 1013

ECC2-97 Sep 22 99 1:2 � 1014

ECC2K-108 Apr 4 00 1:1 � 1014
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3. The ECDLP

Computational E�ort for ECC2-97

� 740 machines (mostly Pentiums and Alphas).

� 20 countries.

� 40 days.

� 1:2 � 1014 elliptic curve points computed.

� 127; 497 distinguished points collected.

� Computing power utilized: About 16,000 MIPS years.

�More than twice as much computing power as used for the
recent factorization of RSA-155.
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3. The ECDLP

Future Results?

Estimated time to compute logarithms using Pollard-rho.

Challenge Time
(expected)

ECC2-109 2:2 � 1016

ECCp-109 2:2 � 1016

ECC2K-130 2:9 � 1018

ECC2-131 4:6 � 1019

ECCp-131 4:6 � 1019
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4. ECC Protocols

ECC Protocols

� Elliptic curves can be used to design procotols for the basic
public-key functions of key agreement, key transport
(encryption), and digital signatures.

� Ideally, a protocol should have the following attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).
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4. ECC Protocols

Elliptic Curve Digital Signature Algorithm
(ECDSA)

EC Key Pair Generation:

� Domain parameters: E, Fq , G 2 E(Fq), n = ord(G),
h = #E(Fq)=n.

� Each entity A does the following:

1. Select a random integer d in the interval [1; n� 1].

2. Compute Q = dG.

3. A's public key is Q; A's private key is d.
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4. ECC Protocols

ECDSA Signature Generation

To sign a message m, A does the following:

1. Select a random integer k, 1 � k � n � 1.

2. Compute kG = (x1; y1) and r = x1 mod n.
If r = 0 then go to step 1.

3. Compute k�1 mod n.

4. Compute e = SHA-1(m).

5. Compute s = k�1fe + drg mod n.
If s = 0 then go to step 1.

6. A's signature for the message m is (r; s).
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4. ECC Protocols

ECDSA Signature Veri�cation

To verify A's signature (r; s) on m, B should do the following:

1. Verify that r and s are integers in the interval [1; n� 1].

2. Compute e = SHA-1(m).

3. Compute w = s�1 mod n.

4. Compute u1 = ew mod n and u2 = rw mod n.

5. Compute u1G + u2Q = (x1; y1) and v = x1 mod n.

6. Accept the signature if and only if v = r.
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4. ECC Protocols

Security De�nition

�De�nition: A signature scheme is said to be secure if it is
existentially unforgeable against chosen-message attack by a
computationally bounded adversary.

� NOTE: The adversary has access to a signing oracle. Its
goal is to compute a single valid message/signature pair for
any message that was not previously given to the signing
oracle.
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4. ECC Protocols

Security Proof for ECDSA

Theorem (Brown, 2000) ECDSA is existentially unforgeable
by chosen-message adversaries assuming that H is a
collision-resistant hash function, and that the underlying group
is a generic group.
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4. ECC Protocols

ECDSA Standardization

ISO 14888-3

IEEE 1363-2000

ANSI X9.62

SECG

FIPS 186-2
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4. ECC Protocols

ECDSA Summary

� ECDSA has the desired design attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).
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5. ECC Implementation and Deployment

ECC Implementation and Deployment

� The absence of a subexponential-time algorithm for the
ECDLP means that signi�cantly smaller parameters can be
used in ECC than with competing technologies such as DSA
and RSA, but with equivalent levels of security.

� Advantages to be gained from smaller parameters include:
speed, and smaller keys and certi�cates.

� These advantages are especially important in environments
where at least one of the following resources are limited:
processing power, storage space, bandwidth, power.

� Thus, ECC is especially well-suited for constrained
environments smart cards, cellular phones, pagers, PDAs,
digital postal marks.
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5. ECC Implementation and Deployment

NIST Recommended Elliptic Curves

� Collection of elliptic curves recommended in FIPS 186-2 for
use with ECDSA by the US Federal Government.

� Recommended �elds:

Block cipher Block cipher Fp F2m RSA modulus
key length kpk m length

80 SKIPJACK 192 163 1,024
112 Triple-DES 224 233 2,048
128 AES Small 256 283 3,072
192 AES Medium 384 409 7,680
256 AES Large 521 571 15,360
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5. ECC Implementation and Deployment

Reduction Polynomials for F2m

� f(x) = x163 + x7 + x6 + x3 + 1

� f(x) = x233 + x74 + 1

� f(x) = x283 + x12 + x7 + x5 + 1

� f(x) = x409 + x87 + 1

� f(x) = x571 + x10 + x5 + x2 + 1
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5. ECC Implementation and Deployment

Recommended Curves Over F2m

� K-163: y2 + xy = x3 + x2 + 1 over F2163, cofactor=2.

� K-233: y2 + xy = x3 + 1 over F2233, cofactor=4.

� K-283: y2 + xy = x3 + 1 over F2283, cofactor=4.

� K-409: y2 + xy = x3 + 1 over F2409, cofactor=4.

� K-571: y2 + xy = x3 + 1 over F2571, cofactor=4.

� Also, 1 randomly generated curve over each of these �elds,
each having cofactor 2: y2 + xy = x3 + x2 + b.
B-163, B-233, B-283, B-409, B-571.
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5. ECC Implementation and Deployment

Recommended Curves Over Fp

� Field sizes:

{ p = 2192 � 264 � 1.

{ p = 2224 � 296 + 1.

{ p = 2256 � 2224 + 2192 + 296 � 1.

{ p = 2384 � 2128 � 296 + 232 � 1.

{ p = 2521 � 1.

� All curves were randomly generated and have prime order.

� y2 = x3 � 3x + b.

� P-192, P-224, P-256, P-384, P-521.
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5. ECC Implementation and Deployment

RIM Pager

� Custom-built Intel 386 processor, 10 MHz.

� 2 Mbytes of 
ash memory, 304 Kbytes of SRAM.

� Single AA battery which lasts roughly three weeks.

� Runs on the Mobitex network.

�Multitasking is cooperative { failure to yield control within
10 seconds can trigger a pager reset.
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5. ECC Implementation and Deployment

Palm Pilot

� Palm VII is wireless.

� 16 MHz Motorola 68000-type Dragonball processor.

� 2-8 MB of memory.

� Code segment and stack restrictions.
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5. ECC Implementation and Deployment

Timings (in ms)

K-163 B-163 RSA-1024
RIM Pilot PII RIM Pilot PII RIM Pilot PII

Key gen 751 1,334 1.47 1,085 1,891 2.12 580,405 1,705,442 2,740
Encrypt 1,759 2,928 4.37 3,132 5,458 6.67 533 1,023 2.70
Decrypt 1,065 1,610 2.85 2,114 3,564 4.69 15,901 36,284 67
Signing 1,011 1,793 2.11 1,335 2,230 2.64 15,889 36,130 67
Verifying 1,826 3,263 4.09 3,243 5,370 6.46 301 729 1.23

� ECC and RSA code optimized for a Pentium II.

� Ported without further optimizations to the Palm Pilot and
the RIM pager.

� ECC: Fixed curve (no point counting).

� RSA code from OpenSSL (Eric Young); e = 3.
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5. ECC Implementation and Deployment

Timings (in ms)

K-233 B-233 RSA-2048
RIM Pilot PII RIM Pilot PII RIM Pilot PII

Key gen 1,552 2,573 3.11 2,478 3,948 4.58 | | 26,442
Encrypt 3,475 5,563 7.83 6,914 11,373 13.99 1,586 3,431 7.26
Decrypt 2,000 2,969 4.85 4,593 7,551 9.55 112,091 292,041 440
Signing 1,910 3,080 4.03 3,066 4,407 5.52 111,956 288,236 440
Verifying 3,701 5,878 7.87 7,321 11,964 14.08 1,087 2,392 4.20
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5. ECC Implementation and Deployment

Timings (in ms)

K-283 B-283
RIM Pilot Pent II RIM Pilot Pent II

Key gen 2,369 4,062 4.50 3,857 6,245 6.88
Encrypt 5,227 8,579 11.02 11,264 18,273 20.86
Decrypt 2,932 4,495 6.78 7,498 12,046 13.88
Signing 2,760 4,716 5.64 4,264 6,816 8.08
Verifying 5,485 9,059 11.46 11,587 18,753 21.15
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5. ECC Implementation and Deployment

VPN Handheld Client (Certicom)

Secure Wireless and Mobile Access to Corporate Intranets

� First IPSec handheld VPN client to secure wireless and
mobile device access to corporate intranets.

� Interoperable with VPN gateways from Alcatel, Check Point,
Cisco, Intel, Nortel.

� Client runs on Palm, WinCE 3.0, EPOC, and other
platforms.

� ECDH and ECDSA; also DH and DSA.

� Small memory footprint:

{ 60-120K for IPSec/IKE protocol.

{ 60K for crypto engines.
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6. Conclusions

Conclusions

� Elliptic curves appear to be the best choice of group for use
in discrete logarithm cryptography.

� ECC is now well-accepted and widely standardized.

� ECC is being o�ered in commercial products by numerous
companies, especially for use in constrained environments.
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1. Discrete Logarithm Systems

Discrete Logarithm Systems

Public-Key Cryptography began in 1976 with the discovery by
DiÆe and Hellman of their Key Agreement Protocol:

� Public parameters: A cyclic group of order n generated by g.

� A selects random a 2 [0; n� 1] and sends ga to B over a
public but authentic channel.

� A selects random b 2 [0; n� 1] and sends gb to A over a
public but authentic channel.

� A and B can both compute K = gab.
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1. Discrete Logarithm Systems

Security Requirements

Basic requirement: K should be A's and B's shared secret.

� It should be computationally intractable for an adversary to
compute gab from g, ga and gb. This is known as the
DiÆe-Hellman Problem (DHP).

� A necessary (but not known to be suÆcient) condition for
the DHP to be intractable is that the Discete Logarithm

Problem (DLP) be intractable: given g and ga, �nd a.
Best generic algorithm is Pollard's rho algorithm: expected
running time is

s
�n=2 steps, where n = ord(g).
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1. Discrete Logarithm Systems

EÆciency Requirements

Basic requirement: Computing ga from g and a should be
relatively easy.

� Group elements should have a compact representation.
Ideally, each group element should be represented using
� log2 n bits.

� Note: Representation of the group element can have
important security implications. After all, every cyclic group
of order n is isomorphic to (Zn;+) where the DLP is:
given 1 and a, �nd a.

� The group operation with respect to this representation
should be fast. (Then exponentiation can be eÆciently
performed using repeated square-and-multiply.)
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1. Discrete Logarithm Systems

Cryptographically Suitable Groups

� DiÆe and Hellman �rst proposed using the multiplicative
group Z�p, where p is a prime.

� The existence of subexponential-time index-calculus methods
for solving the ECDLP in Z�p means that larger parameters
have to be used to avoid the best attacks known (e.g., a
1024-bit prime p).

� Fundamental question: Are there �nite groups for which:

(i) the group elements can be compactly represented;

(ii) the group operation can be eÆciently computed; and

(iii) the discrete logarithm problem cannot be solved in
subexponential time?
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2. Why Elliptic Curves?

Why Elliptic Curves?

[The following approach is due to Gerhard Frey]
Abelian Varieties

� Abelian varieties A (over �nite �elds Fq) provide a rich
source of �nite groups.

{ Set of solutions to a set of equations, together with a group law given
by rational functions.

{ Example (multiplicative group of Fq):
Equation: xy = 1
Group law: (x1; y1) + (x2; y2) = (x1y1; x2y2).

{ Example (elliptic curve group over Fp):
Equation: y2 = x3 + ax + b
Group law: usual tangent-and-chord formulas.

{ Problem: The number of variables and the degrees of the addition
formulas grow exponentially with the dimension of A.
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2. Why Elliptic Curves?

Jacobian Varieties

� Solution: Take special abelian varieties{ Jacobian variety JC
of an algebraic curve C over a �nite �eld Fq.

� JC can be viewed as the quotient group of zero divisors
modulo the principal divisors.

� By Riemann-Roch, each divisor class has a reduced divisor:
P1 + P2 + � � � + Pt � tP1, where t � g.

� Problem: The points in the support of D 2 JC(Fq) are not
necessarily de�ned over Fq . Also need an eÆcient method to
add 2 reduced divisors and convert the result to reduced
form.
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2. Why Elliptic Curves?

Hyperelliptic Curves

� Solution: Consider the jacobian JC(Fq) of a hyperelliptic
curve C of genus g over Fq . (JC is a g-dimensional abelian
variety.) Note that #JC(Fq) � qg.

� C : v2 + h(u)v = f(u), h; f 2 Fq [u], deg h � g,
deg f = 2g + 1.

� Elements of JC(Fq) can be uniquely represented by a pair of
polynomials a; b 2 Fq [u], where deg b < deg a � g, a is

monic, and aj(b2 + bh� f).

� Cantor's algorithm eÆciently adds two elements in this form,
and provides the result in this same form.
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2. Why Elliptic Curves?

Hyperelliptic Curves (2)

� Problem: For \large" genus hyperelliptic curves, there are
subexponential-time algorithms for the DLP in JC(Fq).
(Adleman-DeMarrais-Huang, M�uller-Stein-Thiel,
Enge-Gaudry.)

� Problem: For small genus g = 5; 6; 7; 8; : : : , Gaudry's
algorithm (2000) has a running time that is faster than
Pollard's rho algorithm.

� Problem: g = 4 is too close for comfort.

� Solution: Use g = 1; 2; 3 hyperelliptic curves.
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2. Why Elliptic Curves?

Genus 1, 2 and 3

� Problem: The group law for g = 3 is signi�cantly more
complicated than the group law for g = 2.

� Solution: Use g = 2.

{ Group law can be described by explicit & simple formulas.

{ However the group law for g = 2 is still more complicated
that the elliptic curve (g = 1) group law.

{ g = 2 has a potential advantage over g = 1 in that one
can use a smaller �nite �eld for the same level of
security{this may be advantageous for hardware.

{ However, in general g = 2 will be slower than g = 1.
There is no compelling reason (as yet) to use g = 2.

{ So, we are stuck with elliptic curves!
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3. The ECDLP

The Elliptic Curve Discrete Logarithm Problem

� Let E be an elliptic curve over Fq with #E(Fq) = nh,
where n is prime and h is small. Let P 2 E(Fq),
ord(P ) = n. ECDLP: Given E, P , Q 2 hP i, �nd
l 2 [0; n� 1] such that Q = lP .

� In general, there is no subexponential-time algorithm known
for the DLP in E(Fq). The best algorithm known is
Pollard's rho which takes (

p
�n)=2 steps.

11

3. The ECDLP

Special Cases

� (Weil & Tate pairing): EÆciently embed hP i in F�
qk

for

small k.

� (Prime �eld anomalous curves): If #E(Fp) = p, then
ECDLP in E(Fp) can be eÆciently calculated.

� (Frobenius endomorphism): Use equivalence classes of
points under Frobenius map to speed up Pollard's rho
algorithm for Koblitz curves over F2m by a factor of

p
m.
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3. The ECDLPWeil Descent Attack

� q = 2l, E=Fqn : y2 + xy = x3 + ax2 + b.

� Frey (1998); Galbraith & Smart (1999)

� Gaudry, Hess & Smart (2000)

E(Fqn)

C=Fq -A(Fq)
?

JC(Fq)

-

-

� A: n-dimensional abelian variety over Fq .
C: genus-g hyperelliptic curve which lies on A.
JC(Fq)

�= subgroup of E(Fqn).
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3. The ECDLP

Analysis

� Theorem (Gaudry, Hess & Smart, 2000) g = 2m�1 or
2m�1 � 1, where

m = m(b) = dimF2
(SpanF2f(1; b

1=2
0 ); : : : ; (1; b

1=2
n�1)g);

where bi = bq
i

, 0 � i � n� 1.

� Notes:
(a) 1 � m � n, so 1 � g � 2n�1.

(b) If m = 1, so g = 1, the reduction is useless.

(c) If m = n, so g = 2n�1, the reduction takes fully

exponential time (#JC(Fq) � q2
n�1

).
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3. The ECDLP

Analysis (2)

Theorem (Menezes & Qu, 2000) Let n be an odd prime,
t = ordn(2), s = (n� 1)=t, b 2 Fqn. Then

m(b) 2 f1; t + 1; 2t + 1; : : : ; st+ 1g:
Moreover, the number of b 2 Fqn with m(b) = it + 1 is

q
 s
i

!
(qt � 1)i.
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3. The ECDLP

Consequences

1. Koblitz curves (b 2 F2).

�m = 1, so g = 1.

� So, GHS attack is useless for Koblitz curves.

2. Non-Koblitz curves over F2n, n prime.

� If n 2 [160; 600], then m � 18, so g � 217 � 128; 000.

� So GHS attack fails for all elliptic curves over F2n,
where n is prime.
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3. The ECDLP

3. Elliptic curves over F2155.

(a) q = 231, n = 5.

{ g = 1; 15 or 16.

{HCDLP in a genus 15 curve over F231 appears
infeasible (Smart, Eurocrypt 2001).

(b) q = 25, n = 31.

{m = 6, so g = 31 for a small fraction of elliptic curves
over F25.

{HCDLP in a genus 31 curve over F25 is feasible
(Jacobson, Menezes & Stein, 2001).
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3. The ECDLP

Certicom's ECC Challenge

� Launched on November 6, 1997.

� See http://www.certicom.com/
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3. The ECDLP

The Challenges

� The challenge curves are divided into three categories:

{ Randomly generated curves over F2m (m prime)

{ Koblitz curves over F2m (m prime)

{ Randomly generated curves over Fp (p prime)

�Within each category, there are 3 subcategories:

{ Exercises

{ Level I challenges

{ Level II challenges
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3. The ECDLP

Challenges { Random Curves Over F2m

Field size (bits) Prize (US$)

Exercises
ECC2-79 79 Book/Maple
ECC2-89 89 Book/Maple
ECC2-97 97 $ 5,000

Level I Challenges
ECC2-109 109 $10,000
ECC2-131 131 $20,000

Level II Challenges
ECC2-163 163 $30,000
ECC2-191 191 $40,000
ECC2-238 239 $50,000
ECC2-353 359 $100,000
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3. The ECDLP

Challenges { Koblitz Curves

Field size (bits) Prize (US$)

Exercises
ECC2K-95 97 $ 5,000

Level I Challenges
ECC2K-108 109 $10,000
ECC2K-130 131 $20,000

Level II Challenges
ECC2K-163 163 $30,000
ECC2K-238 239 $50,000
ECC2K-358 359 $100,000
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3. The ECDLP

Challenges { Random Curves Over Fp

Field size (bits) Prize (US$)

Exercises
ECCp-79 79 Book/Maple
ECCp-89 89 Book/Maple
ECCp-97 97 $ 5,000

Level I Challenges
ECCp-109 109 $10,000
ECCp-131 131 $20,000

Level II Challenges
ECCp-163 163 $30,000
ECCp-191 191 $40,000
ECCp-239 239 $50,000
ECCp-359 359 $100,000
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3. The ECDLP

Results To Date

(Robert Harley, INRIA; Adrian Escott, BT Labs)
Using parallelized Pollard-rho in software:

Challenge Date Time
solved (group ops)

ECCp-79 Dec 6 97 1:4 � 1012

ECC2-79 Dec 16 97 1:7 � 1012

ECCp-89 Jan 12 98 3:0 � 1013

ECC2-89 Feb 9 98 1:8 � 1013

ECCp-97 Mar 18 98 2:0 � 1014

ECC2K-95 May 21 98 2:2 � 1013

ECC2-97 Sep 22 99 1:2 � 1014

ECC2K-108 Apr 4 00 1:1 � 1014
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3. The ECDLP

Computational E�ort for ECC2-97

� 740 machines (mostly Pentiums and Alphas).

� 20 countries.

� 40 days.

� 1:2 � 1014 elliptic curve points computed.

� 127; 497 distinguished points collected.

� Computing power utilized: About 16,000 MIPS years.

�More than twice as much computing power as used for the
recent factorization of RSA-155.
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3. The ECDLP

Future Results?

Estimated time to compute logarithms using Pollard-rho.

Challenge Time
(expected)

ECC2-109 2:2 � 1016

ECCp-109 2:2 � 1016

ECC2K-130 2:9 � 1018

ECC2-131 4:6 � 1019

ECCp-131 4:6 � 1019
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4. ECC Protocols

ECC Protocols

� Elliptic curves can be used to design procotols for the basic
public-key functions of key agreement, key transport
(encryption), and digital signatures.

� Ideally, a protocol should have the following attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).
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4. ECC Protocols

Elliptic Curve Digital Signature Algorithm
(ECDSA)

EC Key Pair Generation:

� Domain parameters: E, Fq , G 2 E(Fq), n = ord(G),
h = #E(Fq)=n.

� Each entity A does the following:

1. Select a random integer d in the interval [1; n� 1].

2. Compute Q = dG.

3. A's public key is Q; A's private key is d.
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4. ECC Protocols

ECDSA Signature Generation

To sign a message m, A does the following:

1. Select a random integer k, 1 � k � n � 1.

2. Compute kG = (x1; y1) and r = x1 mod n.
If r = 0 then go to step 1.

3. Compute k�1 mod n.

4. Compute e = SHA-1(m).

5. Compute s = k�1fe + drg mod n.
If s = 0 then go to step 1.

6. A's signature for the message m is (r; s).
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4. ECC Protocols

ECDSA Signature Veri�cation

To verify A's signature (r; s) on m, B should do the following:

1. Verify that r and s are integers in the interval [1; n� 1].

2. Compute e = SHA-1(m).

3. Compute w = s�1 mod n.

4. Compute u1 = ew mod n and u2 = rw mod n.

5. Compute u1G + u2Q = (x1; y1) and v = x1 mod n.

6. Accept the signature if and only if v = r.
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4. ECC Protocols

Security De�nition

�De�nition: A signature scheme is said to be secure if it is
existentially unforgeable against chosen-message attack by a
computationally bounded adversary.

� NOTE: The adversary has access to a signing oracle. Its
goal is to compute a single valid message/signature pair for
any message that was not previously given to the signing
oracle.
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4. ECC Protocols

Security Proof for ECDSA

Theorem (Brown, 2000) ECDSA is existentially unforgeable
by chosen-message adversaries assuming that H is a
collision-resistant hash function, and that the underlying group
is a generic group.
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4. ECC Protocols

ECDSA Standardization

ISO 14888-3

IEEE 1363-2000

ANSI X9.62

SECG

FIPS 186-2
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4. ECC Protocols

ECDSA Summary

� ECDSA has the desired design attributes:

(i) It should be conceptually simple.

(ii) It should be completely speci�ed. (Details are important!)

(iii) Is should be well-scrutinized.

(iv) It should have a security de�nition. (What does it mean
for the protocol to be secure?)

(v) It should have a proof of security (under reasonable
assumptions).

(vi) It should be standardized (by accredited organizations).
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5. ECC Implementation and Deployment

ECC Implementation and Deployment

� The absence of a subexponential-time algorithm for the
ECDLP means that signi�cantly smaller parameters can be
used in ECC than with competing technologies such as DSA
and RSA, but with equivalent levels of security.

� Advantages to be gained from smaller parameters include:
speed, and smaller keys and certi�cates.

� These advantages are especially important in environments
where at least one of the following resources are limited:
processing power, storage space, bandwidth, power.

� Thus, ECC is especially well-suited for constrained
environments smart cards, cellular phones, pagers, PDAs,
digital postal marks.
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5. ECC Implementation and Deployment

NIST Recommended Elliptic Curves

� Collection of elliptic curves recommended in FIPS 186-2 for
use with ECDSA by the US Federal Government.

� Recommended �elds:

Block cipher Block cipher Fp F2m RSA modulus
key length kpk m length

80 SKIPJACK 192 163 1,024
112 Triple-DES 224 233 2,048
128 AES Small 256 283 3,072
192 AES Medium 384 409 7,680
256 AES Large 521 571 15,360
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5. ECC Implementation and Deployment

Reduction Polynomials for F2m

� f(x) = x163 + x7 + x6 + x3 + 1

� f(x) = x233 + x74 + 1

� f(x) = x283 + x12 + x7 + x5 + 1

� f(x) = x409 + x87 + 1

� f(x) = x571 + x10 + x5 + x2 + 1
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5. ECC Implementation and Deployment

Recommended Curves Over F2m

� K-163: y2 + xy = x3 + x2 + 1 over F2163, cofactor=2.

� K-233: y2 + xy = x3 + 1 over F2233, cofactor=4.

� K-283: y2 + xy = x3 + 1 over F2283, cofactor=4.

� K-409: y2 + xy = x3 + 1 over F2409, cofactor=4.

� K-571: y2 + xy = x3 + 1 over F2571, cofactor=4.

� Also, 1 randomly generated curve over each of these �elds,
each having cofactor 2: y2 + xy = x3 + x2 + b.
B-163, B-233, B-283, B-409, B-571.
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5. ECC Implementation and Deployment

Recommended Curves Over Fp

� Field sizes:

{ p = 2192 � 264 � 1.

{ p = 2224 � 296 + 1.

{ p = 2256 � 2224 + 2192 + 296 � 1.

{ p = 2384 � 2128 � 296 + 232 � 1.

{ p = 2521 � 1.

� All curves were randomly generated and have prime order.

� y2 = x3 � 3x + b.

� P-192, P-224, P-256, P-384, P-521.
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5. ECC Implementation and Deployment

RIM Pager

� Custom-built Intel 386 processor, 10 MHz.

� 2 Mbytes of 
ash memory, 304 Kbytes of SRAM.

� Single AA battery which lasts roughly three weeks.

� Runs on the Mobitex network.

�Multitasking is cooperative { failure to yield control within
10 seconds can trigger a pager reset.
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5. ECC Implementation and Deployment

Palm Pilot

� Palm VII is wireless.

� 16 MHz Motorola 68000-type Dragonball processor.

� 2-8 MB of memory.

� Code segment and stack restrictions.
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5. ECC Implementation and Deployment

Timings (in ms)

K-163 B-163 RSA-1024
RIM Pilot PII RIM Pilot PII RIM Pilot PII

Key gen 751 1,334 1.47 1,085 1,891 2.12 580,405 1,705,442 2,740
Encrypt 1,759 2,928 4.37 3,132 5,458 6.67 533 1,023 2.70
Decrypt 1,065 1,610 2.85 2,114 3,564 4.69 15,901 36,284 67
Signing 1,011 1,793 2.11 1,335 2,230 2.64 15,889 36,130 67
Verifying 1,826 3,263 4.09 3,243 5,370 6.46 301 729 1.23

� ECC and RSA code optimized for a Pentium II.

� Ported without further optimizations to the Palm Pilot and
the RIM pager.

� ECC: Fixed curve (no point counting).

� RSA code from OpenSSL (Eric Young); e = 3.
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5. ECC Implementation and Deployment

Timings (in ms)

K-233 B-233 RSA-2048
RIM Pilot PII RIM Pilot PII RIM Pilot PII

Key gen 1,552 2,573 3.11 2,478 3,948 4.58 | | 26,442
Encrypt 3,475 5,563 7.83 6,914 11,373 13.99 1,586 3,431 7.26
Decrypt 2,000 2,969 4.85 4,593 7,551 9.55 112,091 292,041 440
Signing 1,910 3,080 4.03 3,066 4,407 5.52 111,956 288,236 440
Verifying 3,701 5,878 7.87 7,321 11,964 14.08 1,087 2,392 4.20
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5. ECC Implementation and Deployment

Timings (in ms)

K-283 B-283
RIM Pilot Pent II RIM Pilot Pent II

Key gen 2,369 4,062 4.50 3,857 6,245 6.88
Encrypt 5,227 8,579 11.02 11,264 18,273 20.86
Decrypt 2,932 4,495 6.78 7,498 12,046 13.88
Signing 2,760 4,716 5.64 4,264 6,816 8.08
Verifying 5,485 9,059 11.46 11,587 18,753 21.15
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5. ECC Implementation and Deployment

VPN Handheld Client (Certicom)

Secure Wireless and Mobile Access to Corporate Intranets

� First IPSec handheld VPN client to secure wireless and
mobile device access to corporate intranets.

� Interoperable with VPN gateways from Alcatel, Check Point,
Cisco, Intel, Nortel.

� Client runs on Palm, WinCE 3.0, EPOC, and other
platforms.

� ECDH and ECDSA; also DH and DSA.

� Small memory footprint:

{ 60-120K for IPSec/IKE protocol.

{ 60K for crypto engines.

44

6. Conclusions

Conclusions

� Elliptic curves appear to be the best choice of group for use
in discrete logarithm cryptography.

� ECC is now well-accepted and widely standardized.

� ECC is being o�ered in commercial products by numerous
companies, especially for use in constrained environments.
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Federal Information

Processing Standards Publication 197

November 26, 2001

Announcing the

ADVANCED ENCRYPTION STANDARD (AES)

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National
Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce
pursuant to Section 5131 of the Information Technology Management Reform Act of 1996
(Public Law 104-106) and the Computer Security Act of 1987 (Public Law 100-235).

1. Name of Standard.  Advanced Encryption Standard (AES) (FIPS PUB 197).

2. Category of Standard.  Computer Security Standard, Cryptography.

3. Explanation.  The Advanced Encryption Standard (AES) specifies a FIPS-approved
cryptographic algorithm that can be used to protect electronic data.  The AES algorithm is a
symmetric block cipher that can encrypt (encipher) and decrypt (decipher) information.
Encryption converts data to an unintelligible form called ciphertext;  decrypting the ciphertext
converts the data back into its original form, called plaintext.

The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits to encrypt
and decrypt data in blocks of 128 bits.

4. Approving Authority.  Secretary of Commerce.

5. Maintenance Agency.  Department of Commerce, National Institute of Standards and
Technology, Information Technology Laboratory (ITL).

6. Applicability.  This standard may be used by Federal departments and agencies when an
agency determines that sensitive (unclassified) information (as defined in P. L. 100-235) requires
cryptographic protection.

Other FIPS-approved cryptographic algorithms may be used in addition to, or in lieu of, this
standard. Federal agencies or departments that use cryptographic devices for protecting classified
information can use those devices for protecting sensitive (unclassified) information in lieu of
this standard.

In addition, this standard may be adopted and used by non-Federal Government organizations.
Such use is encouraged when it provides the desired security for commercial and private
organizations.
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7. Specifications. Federal Information Processing Standard (FIPS) 197, Advanced
Encryption Standard (AES) (affixed).

8. Implementations. The algorithm specified in this standard may be implemented in
software, firmware, hardware, or any combination thereof. The specific implementation may
depend on several factors such as the application, the environment, the technology used, etc. The
algorithm shall be used in conjunction with a FIPS approved or NIST recommended mode of
operation. Object Identifiers (OIDs) and any associated parameters for AES used in these modes
are available at the Computer Security Objects Register (CSOR), located at
http://csrc.nist.gov/csor/ [2].

Implementations of the algorithm that are tested by an accredited laboratory and validated will be
considered as complying with this standard. Since cryptographic security depends on many
factors besides the correct implementation of an encryption algorithm, Federal Government
employees, and others, should also refer to NIST Special Publication 800-21, Guideline for
Implementing Cryptography in the Federal Government, for additional information and guidance
(NIST SP 800-21 is available at http://csrc.nist.gov/publications/).

9. Implementation Schedule. This standard becomes effective on May 26, 2002.

10. Patents.  Implementations of the algorithm specified in this standard may be covered by
U.S. and foreign patents.

11. Export Control. Certain cryptographic devices and technical data regarding them are
subject to Federal export controls.  Exports of cryptographic modules implementing this standard
and technical data regarding them must comply with these Federal regulations and be licensed by
the Bureau of Export Administration of the U.S. Department of Commerce.  Applicable Federal
government export controls are specified in Title 15, Code of Federal Regulations (CFR) Part
740.17; Title 15, CFR Part 742; and Title 15, CFR Part 774, Category 5, Part 2.

12. Qualifications.   NIST will continue to follow developments in the analysis of the AES
algorithm.  As with its other cryptographic algorithm standards, NIST will formally reevaluate
this standard every five years.

Both this standard and possible threats reducing the security provided through the use of this
standard will undergo review by NIST as appropriate, taking into account newly available
analysis and technology.  In addition, the awareness of any breakthrough in technology or any
mathematical weakness of the algorithm will cause NIST to reevaluate this standard and provide
necessary revisions.

13. Waiver Procedure. Under certain exceptional circumstances, the heads of Federal
agencies, or their delegates, may approve waivers to Federal Information Processing Standards
(FIPS).  The heads of such agencies may redelegate such authority only to a senior official
designated pursuant to Section 3506(b) of Title 44, U.S. Code.  Waivers shall be granted only
when compliance with this standard would

a.  adversely affect the accomplishment of the mission of an operator of Federal computer
system or

b.  cause a major adverse financial impact on the operator that is not offset by government-
wide savings.
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Agency heads may act upon a written waiver request containing the information detailed above.
Agency heads may also act without a written waiver request when they determine that conditions
for meeting the standard cannot be met.  Agency heads may approve waivers only by a written
decision that explains the basis on which the agency head made the required finding(s).  A copy
of each such decision, with procurement sensitive or classified portions clearly identified, shall
be sent to: National Institute of Standards and Technology; ATTN: FIPS Waiver Decision,
Information Technology Laboratory, 100 Bureau Drive, Stop 8900, Gaithersburg, MD 20899-
8900.

In addition, notice of each waiver granted and each delegation of authority to approve waivers
shall be sent promptly to the Committee on Government Operations of the House of
Representatives and the Committee on Government Affairs of the Senate and shall be published
promptly in the Federal Register.

When the determination on a waiver applies to the procurement of equipment and/or services, a
notice of the waiver determination must be published in the Commerce Business Daily as a part
of the notice of solicitation for offers of an acquisition or, if the waiver determination is made
after that notice is published, by amendment to such notice.

A copy of the waiver, any supporting documents, the document approving the waiver and any
supporting and accompanying documents, with such deletions as the agency is authorized and
decides to make under Section 552(b) of Title 5, U.S. Code, shall be part of the procurement
documentation and retained by the agency.

14. Where to obtain copies. This publication is available electronically by accessing
http://csrc.nist.gov/publications/. A list of other available computer security publications,
including ordering information, can be obtained from NIST Publications List 91, which is
available at the same web site. Alternatively, copies of NIST computer security publications are
available from: National Technical Information Service (NTIS), 5285 Port Royal Road,
Springfield, VA 22161.
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1. Introduction
This standard specifies the Rijndael algorithm ([3] and [4]), a symmetric block cipher that can
process data blocks of 128 bits, using cipher keys with lengths of 128, 192, and 256 bits.
Rijndael was designed to handle additional block sizes and key lengths, however they are not
adopted in this standard.

Throughout the remainder of this standard, the algorithm specified herein will be referred to as
“the AES algorithm.”  The algorithm may be used with the three different key lengths indicated
above, and therefore these different “flavors” may be referred to as “AES-128”, “AES-192”, and
“AES-256”.

This specification includes the following sections:

2. Definitions of terms, acronyms, and algorithm parameters, symbols, and functions;

3. Notation and conventions used in the algorithm specification, including the ordering and
numbering of bits, bytes, and words;

4. Mathematical properties that are useful in understanding the algorithm;

5. Algorithm specification, covering the key expansion, encryption, and decryption routines;

6. Implementation issues, such as key length support, keying restrictions, and additional
block/key/round sizes.

The standard concludes with several appendices that include step-by-step examples for Key
Expansion and the Cipher, example vectors for the Cipher and Inverse Cipher, and a list of
references.

2. Definitions

2.1 Glossary of Terms and Acronyms
The following definitions are used throughout this standard:

AES Advanced Encryption Standard

Affine A transformation consisting of multiplication by a matrix followed by
Transformation the addition of a vector.

Array An enumerated collection of identical entities (e.g., an array of bytes).

Bit A binary digit having a value of 0 or 1.

Block Sequence of binary bits that comprise the input, output, State, and
Round Key. The length of a sequence is the number of bits it contains.
Blocks are also interpreted as arrays of bytes.

Byte A group of eight bits that is treated either as a single entity or as an
array of 8 individual bits.
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Cipher Series of transformations that converts plaintext to ciphertext using the
Cipher Key.

Cipher Key Secret, cryptographic key that is used by the Key Expansion routine to
generate a set of Round Keys; can be pictured as a rectangular array of
bytes, having four rows and Nk columns.

Ciphertext Data output from the Cipher or input to the Inverse Cipher.

Inverse Cipher Series of transformations that converts ciphertext to plaintext using the
Cipher Key.

Key Expansion Routine used to generate a series of Round Keys from the Cipher Key.

Plaintext Data input to the Cipher or output from the Inverse Cipher.

Rijndael Cryptographic algorithm specified in this Advanced Encryption
Standard (AES).

Round Key Round keys are values derived from the Cipher Key using the Key
Expansion routine; they are applied to the State in the Cipher and
Inverse Cipher.

State Intermediate Cipher result that can be pictured as a rectangular array
of bytes, having four rows and Nb columns.

S-box Non-linear substitution table used in several byte substitution
transformations and in the Key Expansion routine to perform a one-
for-one substitution of a byte value.

Word A group of 32 bits that is treated either as a single entity or as an array
of 4 bytes.

2.2 Algorithm Parameters, Symbols, and Functions
The following algorithm parameters, symbols, and functions are used throughout this standard:

AddRoundKey() Transformation in the Cipher and Inverse Cipher in which a Round
Key is added to the State using an XOR operation.  The length of a
Round Key equals the size of the State (i.e., for Nb = 4, the Round
Key length equals 128 bits/16 bytes).

InvMixColumns()Transformation in the Inverse Cipher that is the inverse of
MixColumns().

InvShiftRows() Transformation in the Inverse Cipher that is the inverse of
ShiftRows().

InvSubBytes() Transformation in the Inverse Cipher that is the inverse of
SubBytes().

K Cipher Key.
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MixColumns() Transformation in the Cipher that takes all of the columns of the
State and mixes their data (independently of one another) to
produce new columns.

Nb Number of columns (32-bit words) comprising the State. For this
standard, Nb = 4. (Also see Sec. 6.3.)

Nk Number of 32-bit words comprising the Cipher Key. For this
standard, Nk = 4, 6, or 8. (Also see Sec. 6.3.)

Nr Number of rounds, which is a function of Nk and Nb (which is
fixed). For this standard, Nr = 10, 12, or 14. (Also see Sec. 6.3.)

Rcon[] The round constant word array.

RotWord() Function used in the Key Expansion routine that takes a four-byte
word and performs a cyclic permutation.

ShiftRows() Transformation in the Cipher that processes the State by cyclically
shifting the last three rows of the State by different offsets.

SubBytes() Transformation in the Cipher that processes the State using a non-
linear byte substitution table (S-box) that operates on each of the
State bytes independently.

SubWord() Function used in the Key Expansion routine that takes a four-byte
input word and applies an S-box to each of the four bytes to
produce an output word.

XOR Exclusive-OR operation.

⊕ Exclusive-OR operation.

⊗ Multiplication of two polynomials (each with degree < 4) modulo
x4 + 1.

 • Finite field multiplication.

3. Notation and Conventions

3.1 Inputs and Outputs
The input and output for the AES algorithm each consist of sequences of 128 bits (digits with
values of 0 or 1).  These sequences will sometimes be referred to as blocks and the number of
bits they contain will be referred to as their length. The Cipher Key for the AES algorithm is a
sequence of 128, 192 or 256 bits.  Other input, output and Cipher Key lengths are not permitted
by this standard.

The bits within such sequences will be numbered starting at zero and ending at one less than the
sequence length (block length or key length). The number i attached to a bit is known as its index
and will be in one of the ranges 0 ≤ i < 128, 0 ≤ i < 192 or 0 ≤ i < 256 depending on the block
length and key length (specified above).
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3.2 Bytes
The basic unit for processing in the AES algorithm is a byte, a sequence of eight bits treated as a
single entity.  The input, output and Cipher Key bit sequences described in Sec. 3.1 are processed
as arrays of bytes that are formed by dividing these sequences into groups of eight contiguous
bits to form arrays of bytes (see Sec. 3.3).  For an input, output or Cipher Key denoted by a, the
bytes in the resulting array will be referenced using one of the two forms, an or a[n], where n will
be in one of the following ranges:

Key length = 128 bits, 0 ≤ n < 16; Block length = 128 bits, 0 ≤ n < 16;

Key length = 192 bits, 0 ≤ n < 24;

Key length = 256 bits, 0 ≤ n < 32.

All byte values in the AES algorithm will be presented as the concatenation of its individual bit
values (0 or 1) between braces in the order {b7, b6, b5, b4, b3, b2, b1, b0}.  These bytes are
interpreted as finite field elements using a polynomial representation:

∑
=

=+++++++
7

0
01

2
2

3
3

4
4

5
5

6
6

7
7

i

i
i xbbxbxbxbxbxbxbxb . (3.1)

For example, {01100011} identifies the specific finite field element 156 +++ xxx .

It is also convenient to denote byte values using hexadecimal notation with each of two groups of
four bits being denoted by a single character as in Fig. 1.

Bit Pattern Character Bit Pattern Character Bit Pattern Character Bit Pattern Character

0000 0 0100 4 1000 8 1100 c
0001 1 0101 5 1001 9 1101 d
0010 2 0110 6 1010 a 1110 e
0011 3 0111 7 1011 b 1111 f

Figure 1.  Hexadecimal representation of bit patterns.

Hence the element {01100011} can be represented as {63}, where the character denoting the
four-bit group containing the higher numbered bits is again to the left.

Some finite field operations involve one additional bit (b8) to the left of an 8-bit byte. Where this
extra bit is present, it will appear as ‘{01}’ immediately preceding the 8-bit byte; for example, a
9-bit sequence will be presented as {01}{1b}.

3.3 Arrays of Bytes
Arrays of bytes will be represented in the following form:

15210 ...aaaa

The bytes and the bit ordering within bytes are derived from the 128-bit input sequence

 input0 input1 input2 … input126 input127

as follows:
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a0 = {input0, input1, …, input7};

a1 = {input8, input9, …, input15};

M

a15 = {input120, input121, …, input127}.

The pattern can be extended to longer sequences (i.e., for 192- and 256-bit keys), so that, in
general,

an = {input8n, input8n+1, …, input8n+7}. (3.2)

Taking Sections 3.2 and 3.3 together, Fig. 2 shows how bits within each byte are numbered.
Input bit sequence 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 …

Byte number 0 1 2 …

Bit numbers in byte 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 …

Figure 2.  Indices for Bytes and Bits.

3.4 The State
Internally, the AES algorithm’s operations are performed on a two-dimensional array of bytes
called the State.  The State consists of four rows of bytes, each containing Nb bytes, where Nb is
the block length divided by 32.  In the State array denoted by the symbol s, each individual byte
has two indices, with its row number r in the range 0 ≤ r < 4 and its column number c in the
range 0 ≤ c < Nb.  This allows an individual byte of the State to be referred to as either sr,c or
s[r,c].  For this standard, Nb=4, i.e., 0 ≤ c < 4 (also see Sec. 6.3).

At the start of the Cipher and Inverse Cipher described in Sec. 5, the input – the array of bytes
in0, in1, … in15 – is copied into the State array as illustrated in Fig. 3.  The Cipher or Inverse
Cipher operations are then conducted on this State array, after which its final value is copied to
the output – the array of bytes out0, out1, … out15.

input bytes State array output bytes

in0 in4 in8 in12 s0,0 s0,1 s0,2 s0,3 out0 out4 out8 out12

in1 in5 in9 in13 s1,0 s1,1 s1,2 s1,3 out1 out5 out9 out13

in2 in6 in10 in14 s2,0 s2,1 s2,2 s2,3 out2 out6 out10 out14

in3 in7 in11 in15

à

s3,0 s3,1 s3,2 s3,3

à

out3 out7 out11 out15

Figure 3.  State array input and output.

Hence, at the beginning of the Cipher or Inverse Cipher, the input array, in, is copied to the State
array according to the scheme:

s[r, c] = in[r + 4c] for 0 ≤ r < 4  and  0 ≤ c < Nb, (3.3)
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and at the end of the Cipher and Inverse Cipher, the State is copied to the output array out as
follows:

out[r + 4c] = s[r, c] for 0 ≤ r < 4  and  0 ≤ c < Nb. (3.4)

3.5 The State as an Array of Columns
The four bytes in each column of the State array form 32-bit words, where the row number r
provides an index for the four bytes within each word. The state can hence be interpreted as a
one-dimensional array of 32 bit words (columns), w0...w3, where the column number c provides
an index into this array.  Hence, for the example in Fig. 3, the State can be considered as an array
of four words, as follows:

w0 = s0,0 s1,0 s2,0 s3,0 w2 = s0,2 s1,2 s2,2 s3,2

w1 = s0,1 s1,1 s2,1 s3,1 w3 = s0,3 s1,3 s2,3 s3,3 . (3.5)

4. Mathematical Preliminaries
All bytes in the AES algorithm are interpreted as finite field elements using the notation
introduced in Sec. 3.2.  Finite field elements can be added and multiplied, but these operations
are different from those used for numbers. The following subsections introduce the basic
mathematical concepts needed for Sec. 5.

4.1 Addition
The addition of two elements in a finite field is achieved by “adding” the coefficients for the
corresponding powers in the polynomials for the two elements.  The addition is performed with
the XOR operation (denoted by ⊕ ) - i.e., modulo 2 - so that 011 =⊕ , 101 =⊕ , and 000 =⊕ .
Consequently, subtraction of polynomials is identical to addition of polynomials.

Alternatively, addition of finite field elements can be described as the modulo 2 addition of
corresponding bits in the byte. For two bytes {a7a6a5a4a3a2a1a0} and {b7b6b5b4b3b2b1b0}, the sum is
{c7c6c5c4c3c2c1c0}, where each ci = ai ⊕ bi  (i.e., c7 = a7 ⊕ b7, c6 = a6 ⊕ b6, ...c0 = a0 ⊕ b0).

For example, the following expressions are equivalent to one another:

)1( 246 ++++ xxxx  + )1( 7 ++ xx  = 2467 xxxx +++ (polynomial notation);

{01010111} ⊕  {10000011} = {11010100} (binary notation);

{57} ⊕  {83} = {d4} (hexadecimal notation).

4.2 Multiplication
In the polynomial representation, multiplication in GF(28) (denoted by •) corresponds with the
multiplication of polynomials modulo an irreducible polynomial of degree 8.  A polynomial is
irreducible if its only divisors are one and itself. For the AES algorithm, this irreducible
polynomial is

1)( 348 ++++= xxxxxm ,   (4.1)
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or {01}{1b} in hexadecimal notation.

For example, {57} • {83} = {c1}, because

)1( 246 ++++ xxxx )1( 7 ++ xx  = +++++ 7891113 xxxxx

+++++ xxxxx 2357

1246 ++++ xxxx

= 13456891113 ++++++++ xxxxxxxx

and

13456891113 ++++++++ xxxxxxxx   modulo  ( 1348 ++++ xxxx )

= 167 ++ xx .

The modular reduction by m(x) ensures that the result will be a binary polynomial of degree less
than 8, and thus can be represented by a byte.  Unlike addition, there is no simple operation at the
byte level that corresponds to this multiplication.

The multiplication defined above is associative, and the element {01} is the multiplicative
identity. For any non-zero binary polynomial b(x) of degree less than 8, the multiplicative
inverse of b(x), denoted b-1(x), can be found as follows: the extended Euclidean algorithm [7] is
used to compute polynomials a(x) and c(x) such that

1)()()()( =+ xcxmxaxb . (4.2)

Hence, 1)(mod)()( =• xmxbxa , which means

)(mod)()(1 xmxaxb =− . (4.3)

Moreover, for any a(x), b(x) and c(x) in the field, it holds that

)()()()())()(()( xcxaxbxaxcxbxa •+•=+• .

It follows that the set of 256 possible byte values, with XOR used as addition and the
multiplication defined as above, has the structure of the finite field GF(28).

4.2.1 Multiplication by x
Multiplying the binary polynomial defined in equation (3.1) with the polynomial x results in

xbxbxbxbxbxbxbxb 0
2

1
3

2
4

3
5

4
6

5
7

6
8

7 +++++++ . (4.4)

The result )(xbx • is obtained by reducing the above result modulo m(x), as defined in equation
(4.1).  If b7 = 0, the result is already in reduced form. If b7 = 1, the reduction is accomplished by
subtracting (i.e., XORing) the polynomial m(x).  It follows that multiplication by x (i.e.,
{00000010} or {02}) can be implemented at the byte level as a left shift and a subsequent
conditional bitwise XOR with {1b}.  This operation on bytes is denoted by xtime().
Multiplication by higher powers of x can be implemented by repeated application of xtime().
By adding intermediate results, multiplication by any constant can be implemented.

For example, {57} • {13} = {fe} because
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{57} • {02} = xtime({57}) = {ae}

{57} • {04} = xtime({ae}) = {47}

{57} • {08} = xtime({47}) = {8e}

{57} • {10} = xtime({8e}) = {07},

thus,

{57} • {13} =  {57} • ({01} ⊕ {02} ⊕ {10})

=  {57} ⊕ {ae} ⊕ {07}

=  {fe}.

4.3 Polynomials with Coefficients in GF(28)
Four-term polynomials can be defined - with coefficients that are finite field elements - as:

01
2

2
3

3)( axaxaxaxa +++= (4.5)

which will be denoted as a word in the form [a0 , a1 , a2 , a3 ]. Note that the polynomials in this
section behave somewhat differently than the polynomials used in the definition of finite field
elements, even though both types of polynomials use the same indeterminate, x.  The coefficients
in this section are themselves finite field elements, i.e., bytes, instead of bits; also, the
multiplication of four-term polynomials uses a different reduction polynomial, defined below.
The distinction should always be clear from the context.

To illustrate the addition and multiplication operations, let

01
2

2
3

3)( bxbxbxbxb +++= (4.6)

define a second four-term polynomial.  Addition is performed by adding the finite field
coefficients of like powers of x.  This addition corresponds to an XOR operation between the
corresponding bytes in each of the words – in other words, the XOR of the complete word
values.

Thus, using the equations of (4.5) and (4.6),

)()()()()()( 0011
2

22
3

33 baxbaxbaxbaxbxa ⊕+⊕+⊕+⊕=+ (4.7)

Multiplication is achieved in two steps.  In the first step, the polynomial product c(x) = a(x) •
b(x) is algebraically expanded, and like powers are collected to give

01
2

2
3

3
4

4
5

5
6

6)( cxcxcxcxcxcxcxc ++++++=  (4.8)

where

000 bac •= 3122134 bababac •⊕•⊕•=

10011 babac •⊕•= 32235 babac •⊕•=

2011022 bababac •⊕•⊕•= 336 bac •= (4.9)
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302112033 babababac •⊕•⊕•⊕•= .

The result, c(x), does not represent a four-byte word. Therefore, the second step of the
multiplication is to reduce c(x) modulo a polynomial of degree 4; the result can be reduced to a
polynomial of degree less than 4. For the AES algorithm, this is accomplished with the
polynomial x4 + 1, so that

4mod4 )1mod( ii xxx =+ . (4.10)

The modular product of a(x) and b(x), denoted by a(x) ⊗ b(x), is given by the four-term
polynomial d(x), defined as follows:

01
2

2
3

3)( dxdxdxdxd +++= (4.11)

with

)()()()( 312213000 babababad •⊕•⊕•⊕•=

)()()()( 322310011 babababad •⊕•⊕•⊕•= (4.12)

)()()()( 332011022 babababad •⊕•⊕•⊕•=

)()()()( 302112033 babababad •⊕•⊕•⊕•=

When a(x) is a fixed polynomial, the operation defined in equation (4.11) can be written in
matrix form as:





































=



















3

2

1

0

0123

3012

2301

1230

3

2

1

0

b

b

b

b

aaaa

aaaa

aaaa

aaaa

d

d

d

d

(4.13)

Because 14 +x  is not an irreducible polynomial over GF(28), multiplication by a fixed four-term
polynomial is not necessarily invertible. However, the AES algorithm specifies a fixed four-term
polynomial that does have an inverse (see Sec. 5.1.3 and Sec. 5.3.3):

a(x) = {03}x3 + {01}x2 + {01}x + {02} (4.14)

a-1(x) = {0b}x3 + {0d}x2 + {09}x + {0e}. (4.15)

Another polynomial used in the AES algorithm (see the RotWord() function in Sec. 5.2) has a0

= a1 = a2 = {00} and a3 = {01}, which is the polynomial x3.  Inspection of equation (4.13) above
will show that its effect is to form the output word by rotating bytes in the input word.  This
means that [b0, b1, b2, b3] is transformed into [b1, b2, b3, b0].

5. Algorithm Specification
For the AES algorithm, the length of the input block, the output block and the State is 128
bits.  This is represented by Nb = 4, which reflects the number of 32-bit words (number of
columns) in the State.
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For the AES algorithm, the length of the Cipher Key, K, is 128, 192, or 256 bits.  The key
length is represented by Nk = 4, 6, or 8, which reflects the number of 32-bit words (number of
columns) in the Cipher Key.

For the AES algorithm, the number of rounds to be performed during the execution of the
algorithm is dependent on the key size. The number of rounds is represented by Nr, where Nr =
10 when Nk = 4, Nr = 12 when Nk = 6, and Nr = 14 when Nk = 8.

The only Key-Block-Round combinations that conform to this standard are given in Fig. 4.
For implementation issues relating to the key length, block size and number of rounds, see Sec.
6.3.

Key Length

(Nk words)

Block Size

(Nb words)

Number of
Rounds

(Nr)

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

Figure 4.  Key-Block-Round Combinations.

For both its Cipher and Inverse Cipher, the AES algorithm uses a round function that is
composed of four different byte-oriented transformations: 1) byte substitution using a
substitution table (S-box), 2) shifting rows of the State array by different offsets, 3) mixing the
data within each column of the State array, and 4) adding a Round Key to the State.  These
transformations (and their inverses) are described in Sec. 5.1.1-5.1.4 and 5.3.1-5.3.4.

The Cipher and Inverse Cipher are described in Sec. 5.1 and Sec. 5.3, respectively, while the Key
Schedule is described in Sec. 5.2.

5.1 Cipher
At the start of the Cipher, the input is copied to the State array using the conventions described in
Sec. 3.4.  After an initial Round Key addition, the State array is transformed by implementing a
round function 10, 12, or 14 times (depending on the key length), with the final round differing
slightly from the first Nr 1−  rounds.  The final State is then copied to the output as described in
Sec. 3.4.

The round function is parameterized using a key schedule that consists of a one-dimensional
array of four-byte words derived using the Key Expansion routine described in Sec. 5.2.

The Cipher is described in the pseudo code in Fig. 5. The individual transformations -
SubBytes(), ShiftRows(), MixColumns(), and AddRoundKey() – process the State
and are described in the following subsections. In Fig. 5, the array w[] contains the key
schedule, which is described in Sec. 5.2.

As shown in Fig. 5, all Nr rounds are identical with the exception of the final round, which does
not include the MixColumns() transformation.
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Appendix B presents an example of the Cipher, showing values for the State array  at the
beginning of each round and after the application of each of the four transformations described in
the following sections.

Figure 5.  Pseudo Code for the Cipher.1

5.1.1 SubBytes()Transformation

The SubBytes() transformation is a non-linear byte substitution that operates independently
on each byte of the State using a substitution table (S-box). This S-box (Fig. 7), which is
invertible, is constructed by composing two transformations:

1. Take the multiplicative inverse in the finite field GF(28), described in Sec. 4.2; the
element {00} is mapped to itself.

2. Apply the following affine transformation (over GF(2) ):

iiiiiii cbbbbbb ⊕⊕⊕⊕⊕= ++++ 8mod)7(8mod)6(8mod)5(8mod)4(
' (5.1)

for 80 <≤ i , where bi is the ith bit of the byte, and ci is the ith bit of a byte c with the
value {63} or {01100011}.  Here and elsewhere, a prime on a variable (e.g., b′ )
indicates that the variable is to be updated with the value on the right.

In matrix form, the affine transformation element of the S-box can be expressed as:

                                                
1 The various transformations (e.g., SubBytes(), ShiftRows(), etc.) act upon the State array that is addressed
by the ‘state’ pointer.  AddRoundKey() uses an additional pointer to address the Round Key.

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin

byte state[4,Nb]

state = in

AddRoundKey(state, w[0, Nb-1]) // See Sec. 5.1.4

for round = 1 step 1 to Nr–1
SubBytes(state) // See Sec. 5.1.1
ShiftRows(state) // See Sec. 5.1.2
MixColumns(state) // See Sec. 5.1.3
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])

end for

SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])

out = state
end
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11111000
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1

0
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4
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b
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b

b

b

. (5.2)

Figure 6 illustrates the effect of the SubBytes() transformation on the State.

0,0s 1,0s 2,0s 3,0s '
0,0s '

1,0s '
2,0s '

3,0s

0,1s 1,1s 2,1s 3,1s
'

0,1s
'
1,1s

'
2,1s

'
3,1s

0,2s 1,2s 2,2s 3,2s '
0,2s '

1,2s '
2,2s '

3,2s

0,3s 1,3s 2,3s 3,3s '
0,3s '

1,3s '
2,3s '

3,3s

Figure 6.  SubBytes() applies the S-box to each byte of the State.

The S-box used in the SubBytes() transformation is presented in hexadecimal form in Fig. 7.

For example, if =1,1s {53}, then the substitution value would be determined by the intersection

of the row with index ‘5’ and the column with index ‘3’ in Fig. 7. This would result in 1,1s′ having

a value of {ed}.

y
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

x

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Figure 7. S-box:  substitution values for the byte xy (in hexadecimal format).

crs ,
'
,crs

S-Box
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5.1.2 ShiftRows() Transformation

In the ShiftRows() transformation, the bytes in the last three rows of the State are cyclically
shifted over different numbers of bytes (offsets). The first row, r = 0, is not shifted.

Specifically, the ShiftRows() transformation proceeds as follows:

NbNbrshiftcrcr ss mod)),((,
'
, +=   for 0 < r < 4   and   0 ≤ c < Nb, (5.3)

where the shift value shift(r,Nb) depends on the row number, r, as follows (recall that Nb = 4):

1)4,1( =shift ; 2)4,2( =shift ; 3)4,3( =shift . (5.4)

This has the effect of moving bytes to “lower” positions in the row (i.e., lower values of c in a
given row), while the “lowest” bytes wrap around into the “top” of the row (i.e., higher values of
c in a given row).

Figure 8 illustrates the ShiftRows() transformation.

S S ’

0,0s 1,0s 2,0s 3,0s 0,0s 1,0s 2,0s 3,0s

0,1s 1,1s 2,1s 3,1s 1,1s 2,1s 3,1s 0,1s

0,2s 1,2s 2,2s 3,2s 2,2s 3,2s 0,2s 1,2s

0,3s 1,3s 2,3s 3,3s 3,3s 0,3s 1,3s 2,3s

Figure 8.  ShiftRows() cyclically shifts the last three rows in the State.

5.1.3 MixColumns() Transformation

The MixColumns() transformation operates on the State column-by-column, treating each
column as a four-term polynomial  as described in Sec. 4.3.  The columns are considered as
polynomials over GF(28) and multiplied modulo x4 + 1 with a fixed polynomial a(x), given by

a(x) = {03}x3 + {01}x2 + {01}x + {02} . (5.5)

As described in Sec. 4.3, this can be written as a matrix multiplication. Let

)()()( xsxaxs ⊗=′ :

ShiftRows()

0,rs 1,rs 2,rs 3,rs '
0,rs '

2,rs '
3,rs'

1,rs
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02010103
03020101
01030201
01010302

      for 0 ≤ c < Nb. (5.6)

As a result of this multiplication, the four bytes in a column are replaced by the following:

=′ cs ,0  ({02} • cs ,0 ) ⊕ ({03} • cs ,1 ) ⊕ cs ,2 ⊕ cs ,3

=′ cs ,1  cs ,0 ⊕ ({02} • cs ,1 ) ⊕ ({03} • cs ,2 ) ⊕ cs ,3

=′ cs ,2  cs ,0 ⊕ cs ,1 ⊕ ({02} • cs ,2 ) ⊕ ({03} • cs ,3 )

=′ cs ,3  ({03} • cs ,0 ) ⊕ cs ,1 ⊕ cs ,2 ⊕ ({02} • cs ,3 ).

Figure 9 illustrates the MixColumns() transformation.

0,0s 1,0s 2,0s 3,0s '
0,0s '

1,0s '
2,0s '

3,0s

0,1s 1,1s 2,1s 3,1s
'

0,1s
'
1,1s

'
2,1s

'
3,1s

0,2s 1,2s 2,2s 3,2s '
0,2s '

1,2s '
2,2s '

3,2s

0,3s 1,3s 2,3s 3,3s '
0,3s '

1,3s '
2,3s '

3,3s

Figure 9.  MixColumns() operates on the State column-by-column.

5.1.4 AddRoundKey() Transformation

In the AddRoundKey() transformation, a Round Key is added to the State by a simple bitwise
XOR operation.  Each Round Key consists of Nb words from the key schedule (described in Sec.
5.2).  Those Nb words are each added into the columns of the State, such that

][],,,[]',',','[ ,3,2,1,0,3,2,1,0 cNbroundcccccccc wssssssss +∗⊕=      for 0 ≤ c < Nb, (5.7)

where [wi] are the key schedule words described in Sec. 5.2, and round is a value in the range
0 ≤  round ≤ Nr.  In the Cipher, the initial Round Key addition occurs when round = 0, prior to
the first application of the round function (see Fig. 5).  The application of the AddRoundKey()
transformation to the Nr rounds of the Cipher occurs when 1 ≤  round ≤ Nr.

The action of this transformation is illustrated in Fig. 10, where l = round * Nb.  The byte
address within words of the key schedule was described in Sec. 3.1.

MixColumns()

cs ,0

cs ,1

cs ,2

cs ,3

'
,0 cs

'
,1 cs

'
,2 cs

'
,3 cs
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0,0s 1,0s 2,0s 3,0s '
0,0s '

1,0s '
2,0s '

3,0s

0,1s 1,1s 2,1s 3,1s
'

0,1s
'
1,1s

'
2,1s

'
3,1s

0,2s 1,2s 2,2s 3,2s '
0,2s '

1,2s '
2,2s '

3,2s

0,3s 1,3s 2,3s 3,3s

lw 1+lw 2+lw 3+lw

'
0,3s '

1,3s '
2,3s '

3,3s

Figure 10.  AddRoundKey() XORs each column of the State with a word
from the key schedule.

5.2 Key Expansion
The AES algorithm takes the Cipher Key, K, and performs a Key Expansion routine to generate a
key schedule. The Key Expansion generates a total of Nb (Nr + 1) words: the algorithm requires
an initial set of Nb words, and each of the Nr rounds requires Nb words of key data.  The
resulting key schedule consists of a linear array of 4-byte words, denoted [wi ], with i in the range
0 ≤ i < Nb(Nr + 1).

The expansion of the input key into the key schedule proceeds according to the pseudo code in
Fig. 11.

SubWord() is a function that takes a four-byte input word and applies the S-box (Sec. 5.1.1,
Fig. 7) to each of the four bytes to produce an output word. The function RotWord() takes a
word [a0,a1,a2,a3] as input, performs a cyclic permutation, and returns the word [a1,a2,a3,a0]. The
round constant word array, Rcon[i], contains the values given by [xi-1,{00},{00},{00}], with
x i-1 being powers of x (x is denoted as {02}) in the field GF(28), as discussed in Sec. 4.2 (note
that i starts at 1, not 0).

From Fig. 11, it can be seen that the first Nk words of the expanded key are filled with the
Cipher Key. Every following word, w[[i]], is equal to the XOR of the previous word, w[[i-1]], and
the word Nk positions earlier, w[[i-Nk]]. For words in positions that are a multiple of Nk, a
transformation is applied to w[[i-1]] prior to the XOR, followed by an XOR with a round
constant, Rcon[i]. This transformation consists of a cyclic shift of the bytes in a word
(RotWord()), followed by the application of a table lookup to all four bytes of the word
(SubWord()).

It is important to note that the Key Expansion routine for 256-bit Cipher Keys (Nk = 8) is
slightly different than for 128- and 192-bit Cipher Keys.   If Nk = 8 and i-4 is a multiple of Nk,
then SubWord() is applied to w[[i-1]] prior to the XOR.

⊕

cs ,0

cs ,1

cs ,2

cs ,3

'
,0 cs

'
,1 cs

'
,2 cs

'
,3 cs

wl+c

Nbroundl *=
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Figure 11.  Pseudo Code for Key Expansion.2

Appendix A presents examples of the Key Expansion.

5.3 Inverse Cipher
The Cipher transformations in Sec. 5.1 can be inverted and then implemented in reverse order to
produce a straightforward Inverse Cipher for the AES algorithm. The individual transformations
used in the Inverse Cipher - InvShiftRows(), InvSubBytes(),InvMixColumns(),
and AddRoundKey() – process the State and are described in the following subsections.

The Inverse Cipher is described in the pseudo code in Fig. 12. In Fig. 12, the array w[] contains
the key schedule, which was described previously in Sec. 5.2.

                                                
2 The functions SubWord() and RotWord() return a result that is a transformation of the function input, whereas
the transformations in the Cipher and Inverse Cipher (e.g., ShiftRows(), SubBytes(), etc.) transform the
State array that is addressed by the ‘state’ pointer.

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
begin

word temp

i = 0

while (i < Nk)
w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
i = i+1

end while

i = Nk

while (i < Nb * (Nr+1)]
temp = w[i-1]
if (i mod Nk = 0)

temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]
else if (Nk > 6 and i mod Nk = 4)

temp = SubWord(temp)
end if
w[i] = w[i-Nk] xor temp
i = i + 1

end while
end

Note that Nk=4, 6, and 8 do not all have to be implemented;
they are all included in the conditional statement above for
conciseness.  Specific implementation requirements for the
Cipher Key are presented in Sec. 6.1.



21

Figure 12.  Pseudo Code for the Inverse Cipher.3

5.3.1 InvShiftRows() Transformation

InvShiftRows() is the inverse of the ShiftRows() transformation.  The bytes in the last
three rows of the State are cyclically shifted over different numbers of bytes (offsets). The first
row, r = 0, is not shifted.  The bottom three rows are cyclically shifted by Nb ),( Nbrshift−
bytes, where the shift value shift(r,Nb) depends on the row number, and is given in equation (5.4)
(see Sec. 5.1.2).

Specifically, the InvShiftRows() transformation proceeds as follows:

crNbNbrshiftcr ss ,
'

mod)),((, =+   for 0 < r < 4   and   0 ≤ c < Nb (5.8)

Figure 13 illustrates the InvShiftRows() transformation.

                                                
3 The various transformations (e.g., InvSubBytes(), InvShiftRows(), etc.) act upon the State array that is
addressed by the ‘state’ pointer. AddRoundKey() uses an additional pointer to address the Round Key.

InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin

byte state[4,Nb]

state = in

AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1]) // See Sec. 5.1.4

for round = Nr-1 step -1 downto 1
InvShiftRows(state) // See Sec. 5.3.1
InvSubBytes(state) // See Sec. 5.3.2
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
InvMixColumns(state) // See Sec. 5.3.3

end for

InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, w[0, Nb-1])

out = state
end
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S S ’

0,0s 1,0s 2,0s 3,0s 0,0s 1,0s 2,0s 3,0s

0,1s 1,1s 2,1s 3,1s 3,1s 0,1s 1,1s 2,1s

0,2s 1,2s 2,2s 3,2s 2,2s 3,2s 0,2s 1,2s

0,3s 1,3s 2,3s 3,3s 1,3s 2,3s 3,3s 0,3s

Figure 13.  InvShiftRows()cyclically shifts the last three rows in the State.

5.3.2 InvSubBytes() Transformation

InvSubBytes() is the inverse of the byte substitution transformation, in which the inverse S-
box is applied to each byte of the State. This is obtained by applying the inverse of the affine
transformation (5.1) followed by taking the multiplicative inverse in GF(28).

The inverse S-box used in the InvSubBytes() transformation is presented in Fig. 14:

y
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

x

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

 Figure 14. Inverse S-box: substitution values for the byte xy (in
hexadecimal format).

InvShiftRows()

0,rs 1,rs 2,rs 3,rs '
0,rs '

2,rs '
3,rs'

1,rs
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5.3.3 InvMixColumns() Transformation

InvMixColumns() is the inverse of the MixColumns() transformation.
InvMixColumns() operates on the State column-by-column, treating each column as a four-
term polynomial  as described in Sec. 4.3.  The columns are considered as polynomials over
GF(28) and multiplied modulo x4 + 1 with a fixed polynomial a-1(x), given by

a-1(x) = {0b}x3 + {0d}x2 + {09}x + {0e}. (5.9)

As described in Sec. 4.3, this can be written as a matrix multiplication. Let
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      for 0 ≤ c < Nb. (5.10)

As a result of this multiplication, the four bytes in a column are replaced by the following:

=′ cs ,0  ({0e} • cs ,0 ) ⊕ ({0b} • cs ,1 ) ⊕ ({0d} • cs ,2 ) ⊕ ({09} • cs ,3 )

=′ cs ,1  ({09} • cs ,0 ) ⊕ ({0e} • cs ,1 ) ⊕ ({0b} • cs ,2 ) ⊕ ({0d} • cs ,3 )

=′ cs ,2  ({0d} • cs ,0 ) ⊕ ({09} • cs ,1 ) ⊕ ({0e} • cs ,2 ) ⊕ ({0b} • cs ,3 )

=′ cs ,3  ({0b} • cs ,0 ) ⊕ ({0d} • cs ,1 ) ⊕ ({09} • cs ,2 ) ⊕ ({0e} • cs ,3 )

5.3.4 Inverse of the AddRoundKey() Transformation

AddRoundKey(), which was described in Sec. 5.1.4, is its own inverse, since it only involves
an application of the XOR operation.

5.3.5 Equivalent Inverse Cipher
In the straightforward Inverse Cipher presented in Sec. 5.3 and Fig. 12, the sequence of the
transformations differs from that of the Cipher, while the form of the key schedules for
encryption and decryption remains the same.  However, several properties of the AES algorithm
allow for an Equivalent Inverse Cipher that has the same sequence of transformations as the
Cipher (with the transformations replaced by their inverses).  This is accomplished with a change
in the key schedule.

The two properties that allow for this Equivalent Inverse Cipher are as follows:

1. The SubBytes() and ShiftRows() transformations commute; that is, a
SubBytes() transformation immediately followed by a ShiftRows()
transformation is equivalent to a ShiftRows() transformation immediately
followed buy a SubBytes() transformation.  The same is true for their inverses,
InvSubBytes() and InvShiftRows.
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2. The column mixing operations - MixColumns() and InvMixColumns() - are
linear with respect to the column input, which means
InvMixColumns(state XOR Round Key) =

InvMixColumns(state) XOR InvMixColumns(Round Key).

These properties allow the order of InvSubBytes() and InvShiftRows()
transformations to be reversed. The order of the AddRoundKey() and InvMixColumns()
transformations can also be reversed, provided that the columns (words) of the decryption key
schedule are modified using the InvMixColumns() transformation.

The equivalent inverse cipher is defined by reversing the order of the InvSubBytes() and
InvShiftRows() transformations shown in Fig. 12, and by reversing the order of the
AddRoundKey() and InvMixColumns() transformations used in the “round loop” after
first modifying the decryption key schedule for round = 1 to Nr-1 using the
InvMixColumns() transformation. The first and last Nb words of the decryption key
schedule shall not be modified in this manner.

Given these changes, the resulting Equivalent Inverse Cipher offers a more efficient structure
than the Inverse Cipher described in Sec. 5.3 and Fig. 12.  Pseudo code for the Equivalent
Inverse Cipher appears in Fig. 15. (The word array dw[] contains the modified decryption key
schedule. The modification to the Key Expansion routine is also provided in Fig. 15.)
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Figure 15.  Pseudo Code for the Equivalent Inverse Cipher.

6. Implementation Issues

6.1 Key Length Requirements
An implementation of the AES algorithm shall support at least one of the three key lengths
specified in Sec. 5: 128, 192, or 256 bits (i.e., Nk = 4, 6, or 8, respectively).  Implementations

EqInvCipher(byte in[4*Nb], byte out[4*Nb], word dw[Nb*(Nr+1)])
begin

byte state[4,Nb]

state = in

AddRoundKey(state, dw[Nr*Nb, (Nr+1)*Nb-1])

for round = Nr-1 step -1 downto 1
InvSubBytes(state)
InvShiftRows(state)
InvMixColumns(state)
AddRoundKey(state, dw[round*Nb, (round+1)*Nb-1])

end for

InvSubBytes(state)
InvShiftRows(state)
AddRoundKey(state, dw[0, Nb-1])

out = state
end

For the Equivalent Inverse Cipher, the following pseudo code is added at
the end of the Key Expansion routine (Sec. 5.2):

for i = 0 step 1 to (Nr+1)*Nb-1
dw[i] = w[i]

end for

for round = 1 step 1 to Nr-1
InvMixColumns(dw[round*Nb, (round+1)*Nb-1]) // note change of

type
end for

Note that, since InvMixColumns operates on a two-dimensional array of bytes
while the Round Keys are held in an array of words, the call to
InvMixColumns in this code sequence involves a change of type (i.e. the
input to InvMixColumns() is normally the State array, which is considered
to be a two-dimensional array of bytes, whereas the input here is a Round
Key computed as a one-dimensional array of words).
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may optionally support two or three key lengths, which may promote the interoperability of
algorithm implementations.

6.2 Keying Restrictions
No weak or semi-weak keys have been identified for the AES algorithm, and there is no
restriction on key selection.

6.3 Parameterization of Key Length, Block Size, and Round Number
This standard explicitly defines the allowed values for the key length (Nk), block size (Nb), and
number of rounds (Nr) – see Fig. 4.  However, future reaffirmations of this standard could
include changes or additions to the allowed values for those parameters.  Therefore,
implementers may choose to design their AES implementations with future flexibility in mind.

6.4 Implementation Suggestions Regarding Various Platforms
Implementation variations are possible that may, in many cases, offer performance or other
advantages. Given the same input key and data (plaintext or ciphertext), any implementation that
produces the same output (ciphertext or plaintext) as the algorithm specified in this standard is an
acceptable implementation of the AES.

Reference [3] and other papers located at Ref. [1] include suggestions on how to efficiently
implement the AES algorithm on a variety of platforms.
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Appendix A - Key Expansion Examples
This appendix shows the development of the key schedule for various key sizes.  Note that multi-
byte values are presented using the notation described in Sec. 3. The intermediate values
produced during the development of the key schedule (see Sec. 5.2) are given in the following
table (all values are in hexadecimal format, with the exception of the index column (i)).

A.1 Expansion of a 128-bit Cipher Key
This section contains the key expansion of the following cipher key:

Cipher Key = 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

for Nk = 4, which results in

w0 = 2b7e1516 w1 = 28aed2a6 w2 = abf71588 w3 = 09cf4f3c

i
(dec)

temp After
RotWord()

After
SubWord()

Rcon[i/Nk]
After XOR
with Rcon

w[i–Nk]
w[i]=

temp XOR
w[i-Nk]

4 09cf4f3c cf4f3c09 8a84eb01 01000000 8b84eb01 2b7e1516 a0fafe17

5 a0fafe17 28aed2a6 88542cb1

6 88542cb1 abf71588 23a33939

7 23a33939 09cf4f3c 2a6c7605

8 2a6c7605 6c76052a 50386be5 02000000 52386be5 a0fafe17 f2c295f2

9 f2c295f2 88542cb1 7a96b943

10 7a96b943 23a33939 5935807a

11 5935807a 2a6c7605 7359f67f

12 7359f67f 59f67f73 cb42d28f 04000000 cf42d28f f2c295f2 3d80477d

13 3d80477d 7a96b943 4716fe3e

14 4716fe3e 5935807a 1e237e44

15 1e237e44 7359f67f 6d7a883b

16 6d7a883b 7a883b6d dac4e23c 08000000 d2c4e23c 3d80477d ef44a541

17 ef44a541 4716fe3e a8525b7f

18 a8525b7f 1e237e44 b671253b

19 b671253b 6d7a883b db0bad00

20 db0bad00 0bad00db 2b9563b9 10000000 3b9563b9 ef44a541 d4d1c6f8

21 d4d1c6f8 a8525b7f 7c839d87

22 7c839d87 b671253b caf2b8bc

23 caf2b8bc db0bad00 11f915bc
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24 11f915bc f915bc11 99596582 20000000 b9596582 d4d1c6f8 6d88a37a

25 6d88a37a 7c839d87 110b3efd

26 110b3efd caf2b8bc dbf98641

27 dbf98641 11f915bc ca0093fd

28 ca0093fd 0093fdca 63dc5474 40000000 23dc5474 6d88a37a 4e54f70e

29 4e54f70e 110b3efd 5f5fc9f3

30 5f5fc9f3 dbf98641 84a64fb2

31 84a64fb2 ca0093fd 4ea6dc4f

32 4ea6dc4f a6dc4f4e 2486842f 80000000 a486842f 4e54f70e ead27321

33 ead27321 5f5fc9f3 b58dbad2

34 b58dbad2 84a64fb2 312bf560

35 312bf560 4ea6dc4f 7f8d292f

36 7f8d292f 8d292f7f 5da515d2 1b000000 46a515d2 ead27321 ac7766f3

37 ac7766f3 b58dbad2 19fadc21

38 19fadc21 312bf560 28d12941

39 28d12941 7f8d292f 575c006e

40 575c006e 5c006e57 4a639f5b 36000000 7c639f5b ac7766f3 d014f9a8

41 d014f9a8 19fadc21 c9ee2589

42 c9ee2589 28d12941 e13f0cc8

43 e13f0cc8 575c006e b6630ca6

A.2 Expansion of a 192-bit Cipher Key
This section contains the key expansion of the following cipher key:

Cipher Key = 8e 73 b0 f7 da 0e 64 52 c8 10 f3 2b

80 90 79 e5 62 f8 ea d2 52 2c 6b 7b

for Nk = 6, which results in

w0 = 8e73b0f7 w1 = da0e6452 w2 = c810f32b w3 = 809079e5

w4 = 62f8ead2 w5 = 522c6b7b

i
(dec)

temp After
RotWord()

After
SubWord()

Rcon[i/Nk]
After XOR
with Rcon

w[i–Nk]
w[i]=

temp XOR
w[i-Nk]

6 522c6b7b 2c6b7b52 717f2100 01000000 707f2100 8e73b0f7 fe0c91f7

7 fe0c91f7 da0e6452 2402f5a5

8 2402f5a5 c810f32b ec12068e
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9 ec12068e 809079e5 6c827f6b

10 6c827f6b 62f8ead2 0e7a95b9

11 0e7a95b9 522c6b7b 5c56fec2

12 5c56fec2 56fec25c b1bb254a 02000000 b3bb254a fe0c91f7 4db7b4bd

13 4db7b4bd 2402f5a5 69b54118

14 69b54118 ec12068e 85a74796

15 85a74796 6c827f6b e92538fd

16 e92538fd 0e7a95b9 e75fad44

17 e75fad44 5c56fec2 bb095386

18 bb095386 095386bb 01ed44ea 04000000 05ed44ea 4db7b4bd 485af057

19 485af057 69b54118 21efb14f

20 21efb14f 85a74796 a448f6d9

21 a448f6d9 e92538fd 4d6dce24

22 4d6dce24 e75fad44 aa326360

23 aa326360 bb095386 113b30e6

24 113b30e6 3b30e611 e2048e82 08000000 ea048e82 485af057 a25e7ed5

25 a25e7ed5 21efb14f 83b1cf9a

26 83b1cf9a a448f6d9 27f93943

27 27f93943 4d6dce24 6a94f767

28 6a94f767 aa326360 c0a69407

29 c0a69407 113b30e6 d19da4e1

30 d19da4e1 9da4e1d1 5e49f83e 10000000 4e49f83e a25e7ed5 ec1786eb

31 ec1786eb 83b1cf9a 6fa64971

32 6fa64971 27f93943 485f7032

33 485f7032 6a94f767 22cb8755

34 22cb8755 c0a69407 e26d1352

35 e26d1352 d19da4e1 33f0b7b3

36 33f0b7b3 f0b7b333 8ca96dc3 20000000 aca96dc3 ec1786eb 40beeb28

37 40beeb28 6fa64971 2f18a259

38 2f18a259 485f7032 6747d26b

39 6747d26b 22cb8755 458c553e

40 458c553e e26d1352 a7e1466c

41 a7e1466c 33f0b7b3 9411f1df

42 9411f1df 11f1df94 82a19e22 40000000 c2a19e22 40beeb28 821f750a

43 821f750a 2f18a259 ad07d753
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44 ad07d753 6747d26b ca400538

45 ca400538 458c553e 8fcc5006

46 8fcc5006 a7e1466c 282d166a

47 282d166a 9411f1df bc3ce7b5

48 bc3ce7b5 3ce7b5bc eb94d565 80000000 6b94d565 821f750a e98ba06f

49 e98ba06f ad07d753 448c773c

50 448c773c ca400538 8ecc7204

51 8ecc7204 8fcc5006 01002202

A.3 Expansion of a 256-bit Cipher Key
This section contains the key expansion of the following cipher key:

Cipher Key = 60 3d eb 10 15 ca 71 be 2b 73 ae f0 85 7d 77 81

1f 35 2c 07 3b 61 08 d7 2d 98 10 a3 09 14 df f4

for Nk = 8, which results in

w0 = 603deb10 w1 = 15ca71be w2 = 2b73aef0 w3 = 857d7781

w4 = 1f352c07 w5 = 3b6108d7 w6 = 2d9810a3 w7 = 0914dff4

i
(dec)

temp After
RotWord()

After
SubWord()

Rcon[i/Nk]
After XOR
with Rcon

w[i–Nk]
w[i]=

temp XOR
w[i-Nk]

8 0914dff4 14dff409 fa9ebf01 01000000 fb9ebf01 603deb10 9ba35411

9 9ba35411 15ca71be 8e6925af

10 8e6925af 2b73aef0 a51a8b5f

11 a51a8b5f 857d7781 2067fcde

12 2067fcde b785b01d 1f352c07 a8b09c1a

13 a8b09c1a 3b6108d7 93d194cd

14 93d194cd 2d9810a3 be49846e

15 be49846e 0914dff4 b75d5b9a

16 b75d5b9a 5d5b9ab7 4c39b8a9 02000000 4e39b8a9 9ba35411 d59aecb8

17 d59aecb8 8e6925af 5bf3c917

18 5bf3c917 a51a8b5f fee94248

19 fee94248 2067fcde de8ebe96

20 de8ebe96 1d19ae90 a8b09c1a b5a9328a

21 b5a9328a 93d194cd 2678a647

22 2678a647 be49846e 98312229
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23 98312229 b75d5b9a 2f6c79b3

24 2f6c79b3 6c79b32f 50b66d15 04000000 54b66d15 d59aecb8 812c81ad

25 812c81ad 5bf3c917 dadf48ba

26 dadf48ba fee94248 24360af2

27 24360af2 de8ebe96 fab8b464

28 fab8b464 2d6c8d43 b5a9328a 98c5bfc9

29 98c5bfc9 2678a647 bebd198e

30 bebd198e 98312229 268c3ba7

31 268c3ba7 2f6c79b3 09e04214

32 09e04214 e0421409 e12cfa01 08000000 e92cfa01 812c81ad 68007bac

33 68007bac dadf48ba b2df3316

34 b2df3316 24360af2 96e939e4

35 96e939e4 fab8b464 6c518d80

36 6c518d80 50d15dcd 98c5bfc9 c814e204

37 c814e204 bebd198e 76a9fb8a

38 76a9fb8a 268c3ba7 5025c02d

39 5025c02d 09e04214 59c58239

40 59c58239 c5823959 a61312cb 10000000 b61312cb 68007bac de136967

41 de136967 b2df3316 6ccc5a71

42 6ccc5a71 96e939e4 fa256395

43 fa256395 6c518d80 9674ee15

44 9674ee15 90922859 c814e204 5886ca5d

45 5886ca5d 76a9fb8a 2e2f31d7

46 2e2f31d7 5025c02d 7e0af1fa

47 7e0af1fa 59c58239 27cf73c3

48 27cf73c3 cf73c327 8a8f2ecc 20000000 aa8f2ecc de136967 749c47ab

49 749c47ab 6ccc5a71 18501dda

50 18501dda fa256395 e2757e4f

51 e2757e4f 9674ee15 7401905a

52 7401905a 927c60be 5886ca5d cafaaae3

53 cafaaae3 2e2f31d7 e4d59b34

54 e4d59b34 7e0af1fa 9adf6ace

55 9adf6ace 27cf73c3 bd10190d

56 bd10190d 10190dbd cad4d77a 40000000 8ad4d77a 749c47ab fe4890d1

57 fe4890d1 18501dda e6188d0b
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58 e6188d0b e2757e4f 046df344

59 046df344 7401905a 706c631e
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Appendix B – Cipher Example
The following diagram shows the values in the State array as the Cipher progresses for a block
length and a Cipher Key length of 16 bytes each (i.e., Nb = 4 and Nk = 4).

Input =  32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34

Cipher Key = 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

The Round Key values are taken from the Key Expansion example in Appendix A.
Round
Number

Start of
Round

After
SubBytes

After
ShiftRows

After
MixColumns

Round Key
Value

32 88 31 e0 2b 28 ab 09

43 5a 31 37 7e ae f7 cf

f6 30 98 07 15 d2 15 4f
input

a8 8d a2 34

⊕⊕

16 a6 88 3c

=

19 a0 9a e9 d4 e0 b8 1e d4 e0 b8 1e 04 e0 48 28 a0 88 23 2a

3d f4 c6 f8 27 bf b4 41 bf b4 41 27 66 cb f8 06 fa 54 a3 6c

e3 e2 8d 48 11 98 5d 52 5d 52 11 98 81 19 d3 26 fe 2c 39 76
1

be 2b 2a 08 ae f1 e5 30 30 ae f1 e5 e5 9a 7a 4c

⊕⊕

17 b1 39 05

=

a4 68 6b 02 49 45 7f 77 49 45 7f 77 58 1b db 1b f2 7a 59 73

9c 9f 5b 6a de db 39 02 db 39 02 de 4d 4b e7 6b c2 96 35 59

7f 35 ea 50 d2 96 87 53 87 53 d2 96 ca 5a ca b0 95 b9 80 f6
2

f2 2b 43 49 89 f1 1a 3b 3b 89 f1 1a f1 ac a8 e5

⊕⊕

f2 43 7a 7f

=

aa 61 82 68 ac ef 13 45 ac ef 13 45 75 20 53 bb 3d 47 1e 6d

8f dd d2 32 73 c1 b5 23 c1 b5 23 73 ec 0b c0 25 80 16 23 7a

5f e3 4a 46 cf 11 d6 5a d6 5a cf 11 09 63 cf d0 47 fe 7e 88
3

03 ef d2 9a 7b df b5 b8 b8 7b df b5 93 33 7c dc

⊕⊕

7d 3e 44 3b

=

48 67 4d d6 52 85 e3 f6 52 85 e3 f6 0f 60 6f 5e ef a8 b6 db

6c 1d e3 5f 50 a4 11 cf a4 11 cf 50 d6 31 c0 b3 44 52 71 0b

4e 9d b1 58 2f 5e c8 6a c8 6a 2f 5e da 38 10 13 a5 5b 25 ad
4

ee 0d 38 e7 28 d7 07 94 94 28 d7 07 a9 bf 6b 01

⊕⊕

41 7f 3b 00

=

e0 c8 d9 85 e1 e8 35 97 e1 e8 35 97 25 bd b6 4c d4 7c ca 11

92 63 b1 b8 4f fb c8 6c fb c8 6c 4f d1 11 3a 4c d1 83 f2 f9

7f 63 35 be d2 fb 96 ae 96 ae d2 fb a9 d1 33 c0 c6 9d b8 15
5

e8 c0 50 01 9b ba 53 7c 7c 9b ba 53 ad 68 8e b0

⊕⊕

f8 87 bc bc

=
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f1 c1 7c 5d a1 78 10 4c a1 78 10 4c 4b 2c 33 37 6d 11 db ca

00 92 c8 b5 63 4f e8 d5 4f e8 d5 63 86 4a 9d d2 88 0b f9 00

6f 4c 8b d5 a8 29 3d 03 3d 03 a8 29 8d 89 f4 18 a3 3e 86 93
6

55 ef 32 0c fc df 23 fe fe fc df 23 6d 80 e8 d8

⊕⊕

7a fd 41 fd

=

26 3d e8 fd f7 27 9b 54 f7 27 9b 54 14 46 27 34 4e 5f 84 4e

0e 41 64 d2 ab 83 43 b5 83 43 b5 ab 15 16 46 2a 54 5f a6 a6

2e b7 72 8b 31 a9 40 3d 40 3d 31 a9 b5 15 56 d8 f7 c9 4f dc
7

17 7d a9 25 f0 ff d3 3f 3f f0 ff d3 bf ec d7 43

⊕⊕

0e f3 b2 4f

=

5a 19 a3 7a be d4 0a da be d4 0a da 00 b1 54 fa ea b5 31 7f

41 49 e0 8c 83 3b e1 64 3b e1 64 83 51 c8 76 1b d2 8d 2b 8d

42 dc 19 04 2c 86 d4 f2 d4 f2 2c 86 2f 89 6d 99 73 ba f5 29
8

b1 1f 65 0c c8 c0 4d fe fe c8 c0 4d d1 ff cd ea

⊕⊕

21 d2 60 2f

=

ea 04 65 85 87 f2 4d 97 87 f2 4d 97 47 40 a3 4c ac 19 28 57

83 45 5d 96 ec 6e 4c 90 6e 4c 90 ec 37 d4 70 9f 77 fa d1 5c

5c 33 98 b0 4a c3 46 e7 46 e7 4a c3 94 e4 3a 42 66 dc 29 00
9

f0 2d ad c5 8c d8 95 a6 a6 8c d8 95 ed a5 a6 bc

⊕⊕

f3 21 41 6e

=

eb 59 8b 1b e9 cb 3d af e9 cb 3d af d0 c9 e1 b6

40 2e a1 c3 09 31 32 2e 31 32 2e 09 14 ee 3f 63

f2 38 13 42 89 07 7d 2c 7d 2c 89 07 f9 25 0c 0c
10

1e 84 e7 d2 72 5f 94 b5 b5 72 5f 94

⊕⊕

a8 89 c8 a6

=

39 02 dc 19

25 dc 11 6a

84 09 85 0b
output

1d fb 97 32
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Appendix C – Example Vectors
This appendix contains example vectors, including intermediate values – for all three AES key
lengths (Nk = 4, 6, and 8), for the Cipher, Inverse Cipher, and Equivalent Inverse Cipher that are
described in Sec. 5.1, 5.3, and 5.3.5, respectively. Additional examples may be found at [1] and
[5].

All vectors are in hexadecimal notation, with each pair of characters giving a byte value in which
the left character of each pair provides the bit pattern for the 4 bit group containing the higher
numbered bits using the notation explained in Sec. 3.2, while the right character provides the bit
pattern for the lower-numbered bits.  The array index for all bytes (groups of two hexadecimal
digits) within these test vectors starts at zero and increases from left to right.

Legend for CIPHER (ENCRYPT) (round number r = 0 to 10, 12 or 14):

input: cipher input
start: state at start of round[r]
s_box: state after SubBytes()
s_row: state after ShiftRows()
m_col: state after MixColumns()
k_sch: key schedule value for round[r]
output: cipher output

Legend for INVERSE CIPHER (DECRYPT) (round number r = 0 to 10, 12 or 14):
iinput: inverse cipher input
istart: state at start of round[r]
is_box: state after InvSubBytes()
is_row: state after InvShiftRows()
ik_sch: key schedule value for round[r]
ik_add: state after AddRoundKey()
ioutput: inverse cipher output

Legend for EQUIVALENT INVERSE CIPHER (DECRYPT) (round number r = 0 to 10, 12
or 14):

iinput: inverse cipher input
istart: state at start of round[r]
is_box: state after InvSubBytes()
is_row: state after InvShiftRows()
im_col: state after InvMixColumns()
ik_sch: key schedule value for round[r]
ioutput: inverse cipher output

C.1 AES-128 (Nk=4, Nr=10)
PLAINTEXT:         00112233445566778899aabbccddeeff
KEY:               000102030405060708090a0b0c0d0e0f

CIPHER (ENCRYPT):
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round[ 0].input    00112233445566778899aabbccddeeff
round[ 0].k_sch    000102030405060708090a0b0c0d0e0f
round[ 1].start    00102030405060708090a0b0c0d0e0f0
round[ 1].s_box    63cab7040953d051cd60e0e7ba70e18c
round[ 1].s_row    6353e08c0960e104cd70b751bacad0e7
round[ 1].m_col    5f72641557f5bc92f7be3b291db9f91a
round[ 1].k_sch    d6aa74fdd2af72fadaa678f1d6ab76fe
round[ 2].start    89d810e8855ace682d1843d8cb128fe4
round[ 2].s_box    a761ca9b97be8b45d8ad1a611fc97369
round[ 2].s_row    a7be1a6997ad739bd8c9ca451f618b61
round[ 2].m_col    ff87968431d86a51645151fa773ad009
round[ 2].k_sch    b692cf0b643dbdf1be9bc5006830b3fe
round[ 3].start    4915598f55e5d7a0daca94fa1f0a63f7
round[ 3].s_box    3b59cb73fcd90ee05774222dc067fb68
round[ 3].s_row    3bd92268fc74fb735767cbe0c0590e2d
round[ 3].m_col    4c9c1e66f771f0762c3f868e534df256
round[ 3].k_sch    b6ff744ed2c2c9bf6c590cbf0469bf41
round[ 4].start    fa636a2825b339c940668a3157244d17
round[ 4].s_box    2dfb02343f6d12dd09337ec75b36e3f0
round[ 4].s_row    2d6d7ef03f33e334093602dd5bfb12c7
round[ 4].m_col    6385b79ffc538df997be478e7547d691
round[ 4].k_sch    47f7f7bc95353e03f96c32bcfd058dfd
round[ 5].start    247240236966b3fa6ed2753288425b6c
round[ 5].s_box    36400926f9336d2d9fb59d23c42c3950
round[ 5].s_row    36339d50f9b539269f2c092dc4406d23
round[ 5].m_col    f4bcd45432e554d075f1d6c51dd03b3c
round[ 5].k_sch    3caaa3e8a99f9deb50f3af57adf622aa
round[ 6].start    c81677bc9b7ac93b25027992b0261996
round[ 6].s_box    e847f56514dadde23f77b64fe7f7d490
round[ 6].s_row    e8dab6901477d4653ff7f5e2e747dd4f
round[ 6].m_col    9816ee7400f87f556b2c049c8e5ad036
round[ 6].k_sch    5e390f7df7a69296a7553dc10aa31f6b
round[ 7].start    c62fe109f75eedc3cc79395d84f9cf5d
round[ 7].s_box    b415f8016858552e4bb6124c5f998a4c
round[ 7].s_row    b458124c68b68a014b99f82e5f15554c
round[ 7].m_col    c57e1c159a9bd286f05f4be098c63439
round[ 7].k_sch    14f9701ae35fe28c440adf4d4ea9c026
round[ 8].start    d1876c0f79c4300ab45594add66ff41f
round[ 8].s_box    3e175076b61c04678dfc2295f6a8bfc0
round[ 8].s_row    3e1c22c0b6fcbf768da85067f6170495
round[ 8].m_col    baa03de7a1f9b56ed5512cba5f414d23
round[ 8].k_sch    47438735a41c65b9e016baf4aebf7ad2
round[ 9].start    fde3bad205e5d0d73547964ef1fe37f1
round[ 9].s_box    5411f4b56bd9700e96a0902fa1bb9aa1
round[ 9].s_row    54d990a16ba09ab596bbf40ea111702f
round[ 9].m_col    e9f74eec023020f61bf2ccf2353c21c7
round[ 9].k_sch    549932d1f08557681093ed9cbe2c974e
round[10].start    bd6e7c3df2b5779e0b61216e8b10b689
round[10].s_box    7a9f102789d5f50b2beffd9f3dca4ea7
round[10].s_row    7ad5fda789ef4e272bca100b3d9ff59f
round[10].k_sch    13111d7fe3944a17f307a78b4d2b30c5
round[10].output   69c4e0d86a7b0430d8cdb78070b4c55a

INVERSE CIPHER (DECRYPT):
round[ 0].iinput   69c4e0d86a7b0430d8cdb78070b4c55a
round[ 0].ik_sch   13111d7fe3944a17f307a78b4d2b30c5
round[ 1].istart   7ad5fda789ef4e272bca100b3d9ff59f
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round[ 1].is_row   7a9f102789d5f50b2beffd9f3dca4ea7
round[ 1].is_box   bd6e7c3df2b5779e0b61216e8b10b689
round[ 1].ik_sch   549932d1f08557681093ed9cbe2c974e
round[ 1].ik_add   e9f74eec023020f61bf2ccf2353c21c7
round[ 2].istart   54d990a16ba09ab596bbf40ea111702f
round[ 2].is_row   5411f4b56bd9700e96a0902fa1bb9aa1
round[ 2].is_box   fde3bad205e5d0d73547964ef1fe37f1
round[ 2].ik_sch   47438735a41c65b9e016baf4aebf7ad2
round[ 2].ik_add   baa03de7a1f9b56ed5512cba5f414d23
round[ 3].istart   3e1c22c0b6fcbf768da85067f6170495
round[ 3].is_row   3e175076b61c04678dfc2295f6a8bfc0
round[ 3].is_box   d1876c0f79c4300ab45594add66ff41f
round[ 3].ik_sch   14f9701ae35fe28c440adf4d4ea9c026
round[ 3].ik_add   c57e1c159a9bd286f05f4be098c63439
round[ 4].istart   b458124c68b68a014b99f82e5f15554c
round[ 4].is_row   b415f8016858552e4bb6124c5f998a4c
round[ 4].is_box   c62fe109f75eedc3cc79395d84f9cf5d
round[ 4].ik_sch   5e390f7df7a69296a7553dc10aa31f6b
round[ 4].ik_add   9816ee7400f87f556b2c049c8e5ad036
round[ 5].istart   e8dab6901477d4653ff7f5e2e747dd4f
round[ 5].is_row   e847f56514dadde23f77b64fe7f7d490
round[ 5].is_box   c81677bc9b7ac93b25027992b0261996
round[ 5].ik_sch   3caaa3e8a99f9deb50f3af57adf622aa
round[ 5].ik_add   f4bcd45432e554d075f1d6c51dd03b3c
round[ 6].istart   36339d50f9b539269f2c092dc4406d23
round[ 6].is_row   36400926f9336d2d9fb59d23c42c3950
round[ 6].is_box   247240236966b3fa6ed2753288425b6c
round[ 6].ik_sch   47f7f7bc95353e03f96c32bcfd058dfd
round[ 6].ik_add   6385b79ffc538df997be478e7547d691
round[ 7].istart   2d6d7ef03f33e334093602dd5bfb12c7
round[ 7].is_row   2dfb02343f6d12dd09337ec75b36e3f0
round[ 7].is_box   fa636a2825b339c940668a3157244d17
round[ 7].ik_sch   b6ff744ed2c2c9bf6c590cbf0469bf41
round[ 7].ik_add   4c9c1e66f771f0762c3f868e534df256
round[ 8].istart   3bd92268fc74fb735767cbe0c0590e2d
round[ 8].is_row   3b59cb73fcd90ee05774222dc067fb68
round[ 8].is_box   4915598f55e5d7a0daca94fa1f0a63f7
round[ 8].ik_sch   b692cf0b643dbdf1be9bc5006830b3fe
round[ 8].ik_add   ff87968431d86a51645151fa773ad009
round[ 9].istart   a7be1a6997ad739bd8c9ca451f618b61
round[ 9].is_row   a761ca9b97be8b45d8ad1a611fc97369
round[ 9].is_box   89d810e8855ace682d1843d8cb128fe4
round[ 9].ik_sch   d6aa74fdd2af72fadaa678f1d6ab76fe
round[ 9].ik_add   5f72641557f5bc92f7be3b291db9f91a
round[10].istart   6353e08c0960e104cd70b751bacad0e7
round[10].is_row   63cab7040953d051cd60e0e7ba70e18c
round[10].is_box   00102030405060708090a0b0c0d0e0f0
round[10].ik_sch   000102030405060708090a0b0c0d0e0f
round[10].ioutput  00112233445566778899aabbccddeeff

EQUIVALENT INVERSE CIPHER (DECRYPT):
round[ 0].iinput   69c4e0d86a7b0430d8cdb78070b4c55a
round[ 0].ik_sch   13111d7fe3944a17f307a78b4d2b30c5
round[ 1].istart   7ad5fda789ef4e272bca100b3d9ff59f
round[ 1].is_box   bdb52189f261b63d0b107c9e8b6e776e
round[ 1].is_row   bd6e7c3df2b5779e0b61216e8b10b689
round[ 1].im_col   4773b91ff72f354361cb018ea1e6cf2c
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round[ 1].ik_sch   13aa29be9c8faff6f770f58000f7bf03
round[ 2].istart   54d990a16ba09ab596bbf40ea111702f
round[ 2].is_box   fde596f1054737d235febad7f1e3d04e
round[ 2].is_row   fde3bad205e5d0d73547964ef1fe37f1
round[ 2].im_col   2d7e86a339d9393ee6570a1101904e16
round[ 2].ik_sch   1362a4638f2586486bff5a76f7874a83
round[ 3].istart   3e1c22c0b6fcbf768da85067f6170495
round[ 3].is_box   d1c4941f7955f40fb46f6c0ad68730ad
round[ 3].is_row   d1876c0f79c4300ab45594add66ff41f
round[ 3].im_col   39daee38f4f1a82aaf432410c36d45b9
round[ 3].ik_sch   8d82fc749c47222be4dadc3e9c7810f5
round[ 4].istart   b458124c68b68a014b99f82e5f15554c
round[ 4].is_box   c65e395df779cf09ccf9e1c3842fed5d
round[ 4].is_row   c62fe109f75eedc3cc79395d84f9cf5d
round[ 4].im_col   9a39bf1d05b20a3a476a0bf79fe51184
round[ 4].ik_sch   72e3098d11c5de5f789dfe1578a2cccb
round[ 5].istart   e8dab6901477d4653ff7f5e2e747dd4f
round[ 5].is_box   c87a79969b0219bc2526773bb016c992
round[ 5].is_row   c81677bc9b7ac93b25027992b0261996
round[ 5].im_col   18f78d779a93eef4f6742967c47f5ffd
round[ 5].ik_sch   2ec410276326d7d26958204a003f32de
round[ 6].istart   36339d50f9b539269f2c092dc4406d23
round[ 6].is_box   2466756c69d25b236e4240fa8872b332
round[ 6].is_row   247240236966b3fa6ed2753288425b6c
round[ 6].im_col   85cf8bf472d124c10348f545329c0053
round[ 6].ik_sch   a8a2f5044de2c7f50a7ef79869671294
round[ 7].istart   2d6d7ef03f33e334093602dd5bfb12c7
round[ 7].is_box   fab38a1725664d2840246ac957633931
round[ 7].is_row   fa636a2825b339c940668a3157244d17
round[ 7].im_col   fc1fc1f91934c98210fbfb8da340eb21
round[ 7].ik_sch   c7c6e391e54032f1479c306d6319e50c
round[ 8].istart   3bd92268fc74fb735767cbe0c0590e2d
round[ 8].is_box   49e594f755ca638fda0a59a01f15d7fa
round[ 8].is_row   4915598f55e5d7a0daca94fa1f0a63f7
round[ 8].im_col   076518f0b52ba2fb7a15c8d93be45e00
round[ 8].ik_sch   a0db02992286d160a2dc029c2485d561
round[ 9].istart   a7be1a6997ad739bd8c9ca451f618b61
round[ 9].is_box   895a43e485188fe82d121068cbd8ced8
round[ 9].is_row   89d810e8855ace682d1843d8cb128fe4
round[ 9].im_col   ef053f7c8b3d32fd4d2a64ad3c93071a
round[ 9].ik_sch   8c56dff0825dd3f9805ad3fc8659d7fd
round[10].istart   6353e08c0960e104cd70b751bacad0e7
round[10].is_box   0050a0f04090e03080d02070c01060b0
round[10].is_row   00102030405060708090a0b0c0d0e0f0
round[10].ik_sch   000102030405060708090a0b0c0d0e0f
round[10].ioutput  00112233445566778899aabbccddeeff

C.2 AES-192 (Nk=6, Nr=12)
PLAINTEXT: 00112233445566778899aabbccddeeff
KEY: 000102030405060708090a0b0c0d0e0f1011121314151617

CIPHER (ENCRYPT):
round[ 0].input    00112233445566778899aabbccddeeff
round[ 0].k_sch    000102030405060708090a0b0c0d0e0f
round[ 1].start    00102030405060708090a0b0c0d0e0f0
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round[ 1].s_box    63cab7040953d051cd60e0e7ba70e18c
round[ 1].s_row    6353e08c0960e104cd70b751bacad0e7
round[ 1].m_col    5f72641557f5bc92f7be3b291db9f91a
round[ 1].k_sch    10111213141516175846f2f95c43f4fe
round[ 2].start    4f63760643e0aa85aff8c9d041fa0de4
round[ 2].s_box    84fb386f1ae1ac977941dd70832dd769
round[ 2].s_row    84e1dd691a41d76f792d389783fbac70
round[ 2].m_col    9f487f794f955f662afc86abd7f1ab29
round[ 2].k_sch    544afef55847f0fa4856e2e95c43f4fe
round[ 3].start    cb02818c17d2af9c62aa64428bb25fd7
round[ 3].s_box    1f770c64f0b579deaaac432c3d37cf0e
round[ 3].s_row    1fb5430ef0accf64aa370cde3d77792c
round[ 3].m_col    b7a53ecbbf9d75a0c40efc79b674cc11
round[ 3].k_sch    40f949b31cbabd4d48f043b810b7b342
round[ 4].start    f75c7778a327c8ed8cfebfc1a6c37f53
round[ 4].s_box    684af5bc0acce85564bb0878242ed2ed
round[ 4].s_row    68cc08ed0abbd2bc642ef555244ae878
round[ 4].m_col    7a1e98bdacb6d1141a6944dd06eb2d3e
round[ 4].k_sch    58e151ab04a2a5557effb5416245080c
round[ 5].start    22ffc916a81474416496f19c64ae2532
round[ 5].s_box    9316dd47c2fa92834390a1de43e43f23
round[ 5].s_row    93faa123c2903f4743e4dd83431692de
round[ 5].m_col    aaa755b34cffe57cef6f98e1f01c13e6
round[ 5].k_sch    2ab54bb43a02f8f662e3a95d66410c08
round[ 6].start    80121e0776fd1d8a8d8c31bc965d1fee
round[ 6].s_box    cdc972c53854a47e5d64c765904cc028
round[ 6].s_row    cd54c7283864c0c55d4c727e90c9a465
round[ 6].m_col    921f748fd96e937d622d7725ba8ba50c
round[ 6].k_sch    f501857297448d7ebdf1c6ca87f33e3c
round[ 7].start    671ef1fd4e2a1e03dfdcb1ef3d789b30
round[ 7].s_box    8572a1542fe5727b9e86c8df27bc1404
round[ 7].s_row    85e5c8042f8614549ebca17b277272df
round[ 7].m_col    e913e7b18f507d4b227ef652758acbcc
round[ 7].k_sch    e510976183519b6934157c9ea351f1e0
round[ 8].start    0c0370d00c01e622166b8accd6db3a2c
round[ 8].s_box    fe7b5170fe7c8e93477f7e4bf6b98071
round[ 8].s_row    fe7c7e71fe7f807047b95193f67b8e4b
round[ 8].m_col    6cf5edf996eb0a069c4ef21cbfc25762
round[ 8].k_sch    1ea0372a995309167c439e77ff12051e
round[ 9].start    7255dad30fb80310e00d6c6b40d0527c
round[ 9].s_box    40fc5766766c7bcae1d7507f09700010
round[ 9].s_row    406c501076d70066e17057ca09fc7b7f
round[ 9].m_col    7478bcdce8a50b81d4327a9009188262
round[ 9].k_sch    dd7e0e887e2fff68608fc842f9dcc154
round[10].start    a906b254968af4e9b4bdb2d2f0c44336
round[10].s_box    d36f3720907ebf1e8d7a37b58c1c1a05
round[10].s_row    d37e3705907a1a208d1c371e8c6fbfb5
round[10].m_col    0d73cc2d8f6abe8b0cf2dd9bb83d422e
round[10].k_sch    859f5f237a8d5a3dc0c02952beefd63a
round[11].start    88ec930ef5e7e4b6cc32f4c906d29414
round[11].s_box    c4cedcabe694694e4b23bfdd6fb522fa
round[11].s_row    c494bffae62322ab4bb5dc4e6fce69dd
round[11].m_col    71d720933b6d677dc00b8f28238e0fb7
round[11].k_sch    de601e7827bcdf2ca223800fd8aeda32
round[12].start    afb73eeb1cd1b85162280f27fb20d585
round[12].s_box    79a9b2e99c3e6cd1aa3476cc0fb70397
round[12].s_row    793e76979c3403e9aab7b2d10fa96ccc
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round[12].k_sch    a4970a331a78dc09c418c271e3a41d5d
round[12].output   dda97ca4864cdfe06eaf70a0ec0d7191

INVERSE CIPHER (DECRYPT):
round[ 0].iinput   dda97ca4864cdfe06eaf70a0ec0d7191
round[ 0].ik_sch   a4970a331a78dc09c418c271e3a41d5d
round[ 1].istart   793e76979c3403e9aab7b2d10fa96ccc
round[ 1].is_row   79a9b2e99c3e6cd1aa3476cc0fb70397
round[ 1].is_box   afb73eeb1cd1b85162280f27fb20d585
round[ 1].ik_sch   de601e7827bcdf2ca223800fd8aeda32
round[ 1].ik_add   71d720933b6d677dc00b8f28238e0fb7
round[ 2].istart   c494bffae62322ab4bb5dc4e6fce69dd
round[ 2].is_row   c4cedcabe694694e4b23bfdd6fb522fa
round[ 2].is_box   88ec930ef5e7e4b6cc32f4c906d29414
round[ 2].ik_sch   859f5f237a8d5a3dc0c02952beefd63a
round[ 2].ik_add   0d73cc2d8f6abe8b0cf2dd9bb83d422e
round[ 3].istart   d37e3705907a1a208d1c371e8c6fbfb5
round[ 3].is_row   d36f3720907ebf1e8d7a37b58c1c1a05
round[ 3].is_box   a906b254968af4e9b4bdb2d2f0c44336
round[ 3].ik_sch   dd7e0e887e2fff68608fc842f9dcc154
round[ 3].ik_add   7478bcdce8a50b81d4327a9009188262
round[ 4].istart   406c501076d70066e17057ca09fc7b7f
round[ 4].is_row   40fc5766766c7bcae1d7507f09700010
round[ 4].is_box   7255dad30fb80310e00d6c6b40d0527c
round[ 4].ik_sch   1ea0372a995309167c439e77ff12051e
round[ 4].ik_add   6cf5edf996eb0a069c4ef21cbfc25762
round[ 5].istart   fe7c7e71fe7f807047b95193f67b8e4b
round[ 5].is_row   fe7b5170fe7c8e93477f7e4bf6b98071
round[ 5].is_box   0c0370d00c01e622166b8accd6db3a2c
round[ 5].ik_sch   e510976183519b6934157c9ea351f1e0
round[ 5].ik_add   e913e7b18f507d4b227ef652758acbcc
round[ 6].istart   85e5c8042f8614549ebca17b277272df
round[ 6].is_row   8572a1542fe5727b9e86c8df27bc1404
round[ 6].is_box   671ef1fd4e2a1e03dfdcb1ef3d789b30
round[ 6].ik_sch   f501857297448d7ebdf1c6ca87f33e3c
round[ 6].ik_add   921f748fd96e937d622d7725ba8ba50c
round[ 7].istart   cd54c7283864c0c55d4c727e90c9a465
round[ 7].is_row   cdc972c53854a47e5d64c765904cc028
round[ 7].is_box   80121e0776fd1d8a8d8c31bc965d1fee
round[ 7].ik_sch   2ab54bb43a02f8f662e3a95d66410c08
round[ 7].ik_add   aaa755b34cffe57cef6f98e1f01c13e6
round[ 8].istart   93faa123c2903f4743e4dd83431692de
round[ 8].is_row   9316dd47c2fa92834390a1de43e43f23
round[ 8].is_box   22ffc916a81474416496f19c64ae2532
round[ 8].ik_sch   58e151ab04a2a5557effb5416245080c
round[ 8].ik_add   7a1e98bdacb6d1141a6944dd06eb2d3e
round[ 9].istart   68cc08ed0abbd2bc642ef555244ae878
round[ 9].is_row   684af5bc0acce85564bb0878242ed2ed
round[ 9].is_box   f75c7778a327c8ed8cfebfc1a6c37f53
round[ 9].ik_sch   40f949b31cbabd4d48f043b810b7b342
round[ 9].ik_add   b7a53ecbbf9d75a0c40efc79b674cc11
round[10].istart   1fb5430ef0accf64aa370cde3d77792c
round[10].is_row   1f770c64f0b579deaaac432c3d37cf0e
round[10].is_box   cb02818c17d2af9c62aa64428bb25fd7
round[10].ik_sch   544afef55847f0fa4856e2e95c43f4fe
round[10].ik_add   9f487f794f955f662afc86abd7f1ab29
round[11].istart   84e1dd691a41d76f792d389783fbac70
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round[11].is_row   84fb386f1ae1ac977941dd70832dd769
round[11].is_box   4f63760643e0aa85aff8c9d041fa0de4
round[11].ik_sch   10111213141516175846f2f95c43f4fe
round[11].ik_add   5f72641557f5bc92f7be3b291db9f91a
round[12].istart   6353e08c0960e104cd70b751bacad0e7
round[12].is_row   63cab7040953d051cd60e0e7ba70e18c
round[12].is_box   00102030405060708090a0b0c0d0e0f0
round[12].ik_sch   000102030405060708090a0b0c0d0e0f
round[12].ioutput  00112233445566778899aabbccddeeff

EQUIVALENT INVERSE CIPHER (DECRYPT):
round[ 0].iinput   dda97ca4864cdfe06eaf70a0ec0d7191
round[ 0].ik_sch   a4970a331a78dc09c418c271e3a41d5d
round[ 1].istart   793e76979c3403e9aab7b2d10fa96ccc
round[ 1].is_box   afd10f851c28d5eb62203e51fbb7b827
round[ 1].is_row   afb73eeb1cd1b85162280f27fb20d585
round[ 1].im_col   122a02f7242ac8e20605afce51cc7264
round[ 1].ik_sch   d6bebd0dc209ea494db073803e021bb9
round[ 2].istart   c494bffae62322ab4bb5dc4e6fce69dd
round[ 2].is_box   88e7f414f532940eccd293b606ece4c9
round[ 2].is_row   88ec930ef5e7e4b6cc32f4c906d29414
round[ 2].im_col   5cc7aecce3c872194ae5ef8309a933c7
round[ 2].ik_sch   8fb999c973b26839c7f9d89d85c68c72
round[ 3].istart   d37e3705907a1a208d1c371e8c6fbfb5
round[ 3].is_box   a98ab23696bd4354b4c4b2e9f006f4d2
round[ 3].is_row   a906b254968af4e9b4bdb2d2f0c44336
round[ 3].im_col   b7113ed134e85489b20866b51d4b2c3b
round[ 3].ik_sch   f77d6ec1423f54ef5378317f14b75744
round[ 4].istart   406c501076d70066e17057ca09fc7b7f
round[ 4].is_box   72b86c7c0f0d52d3e0d0da104055036b
round[ 4].is_row   7255dad30fb80310e00d6c6b40d0527c
round[ 4].im_col   ef3b1be1b9b0e64bdcb79f1e0a707fbb
round[ 4].ik_sch   1147659047cf663b9b0ece8dfc0bf1f0
round[ 5].istart   fe7c7e71fe7f807047b95193f67b8e4b
round[ 5].is_box   0c018a2c0c6b3ad016db7022d603e6cc
round[ 5].is_row   0c0370d00c01e622166b8accd6db3a2c
round[ 5].im_col   592460b248832b2952e0b831923048f1
round[ 5].ik_sch   dcc1a8b667053f7dcc5c194ab5423a2e
round[ 6].istart   85e5c8042f8614549ebca17b277272df
round[ 6].is_box   672ab1304edc9bfddf78f1033d1e1eef
round[ 6].is_row   671ef1fd4e2a1e03dfdcb1ef3d789b30
round[ 6].im_col   0b8a7783417ae3a1f9492dc0c641a7ce
round[ 6].ik_sch   c6deb0ab791e2364a4055fbe568803ab
round[ 7].istart   cd54c7283864c0c55d4c727e90c9a465
round[ 7].is_box   80fd31ee768c1f078d5d1e8a96121dbc
round[ 7].is_row   80121e0776fd1d8a8d8c31bc965d1fee
round[ 7].im_col   4ee1ddf9301d6352c9ad769ef8d20515
round[ 7].ik_sch   dd1b7cdaf28d5c158a49ab1dbbc497cb
round[ 8].istart   93faa123c2903f4743e4dd83431692de
round[ 8].is_box   2214f132a896251664aec94164ff749c
round[ 8].is_row   22ffc916a81474416496f19c64ae2532
round[ 8].im_col   1008ffe53b36ee6af27b42549b8a7bb7
round[ 8].ik_sch   78c4f708318d3cd69655b701bfc093cf
round[ 9].istart   68cc08ed0abbd2bc642ef555244ae878
round[ 9].is_box   f727bf53a3fe7f788cc377eda65cc8c1
round[ 9].is_row   f75c7778a327c8ed8cfebfc1a6c37f53
round[ 9].im_col   7f69ac1ed939ebaac8ece3cb12e159e3
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round[ 9].ik_sch   60dcef10299524ce62dbef152f9620cf
round[10].istart   1fb5430ef0accf64aa370cde3d77792c
round[10].is_box   cbd264d717aa5f8c62b2819c8b02af42
round[10].is_row   cb02818c17d2af9c62aa64428bb25fd7
round[10].im_col   cfaf16b2570c18b52e7fef50cab267ae
round[10].ik_sch   4b4ecbdb4d4dcfda5752d7c74949cbde
round[11].istart   84e1dd691a41d76f792d389783fbac70
round[11].is_box   4fe0c9e443f80d06affa76854163aad0
round[11].is_row   4f63760643e0aa85aff8c9d041fa0de4
round[11].im_col   794cf891177bfd1d8a327086f3831b39
round[11].ik_sch   1a1f181d1e1b1c194742c7d74949cbde
round[12].istart   6353e08c0960e104cd70b751bacad0e7
round[12].is_box   0050a0f04090e03080d02070c01060b0
round[12].is_row   00102030405060708090a0b0c0d0e0f0
round[12].ik_sch   000102030405060708090a0b0c0d0e0f
round[12].ioutput  00112233445566778899aabbccddeeff

C.3 AES-256 (Nk=8, Nr=14)
PLAINTEXT: 00112233445566778899aabbccddeeff
KEY: 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f

CIPHER (ENCRYPT):
round[ 0].input    00112233445566778899aabbccddeeff
round[ 0].k_sch    000102030405060708090a0b0c0d0e0f
round[ 1].start    00102030405060708090a0b0c0d0e0f0
round[ 1].s_box    63cab7040953d051cd60e0e7ba70e18c
round[ 1].s_row    6353e08c0960e104cd70b751bacad0e7
round[ 1].m_col    5f72641557f5bc92f7be3b291db9f91a
round[ 1].k_sch    101112131415161718191a1b1c1d1e1f
round[ 2].start    4f63760643e0aa85efa7213201a4e705
round[ 2].s_box    84fb386f1ae1ac97df5cfd237c49946b
round[ 2].s_row    84e1fd6b1a5c946fdf4938977cfbac23
round[ 2].m_col    bd2a395d2b6ac438d192443e615da195
round[ 2].k_sch    a573c29fa176c498a97fce93a572c09c
round[ 3].start    1859fbc28a1c00a078ed8aadc42f6109
round[ 3].s_box    adcb0f257e9c63e0bc557e951c15ef01
round[ 3].s_row    ad9c7e017e55ef25bc150fe01ccb6395
round[ 3].m_col    810dce0cc9db8172b3678c1e88a1b5bd
round[ 3].k_sch    1651a8cd0244beda1a5da4c10640bade
round[ 4].start    975c66c1cb9f3fa8a93a28df8ee10f63
round[ 4].s_box    884a33781fdb75c2d380349e19f876fb
round[ 4].s_row    88db34fb1f807678d3f833c2194a759e
round[ 4].m_col    b2822d81abe6fb275faf103a078c0033
round[ 4].k_sch    ae87dff00ff11b68a68ed5fb03fc1567
round[ 5].start    1c05f271a417e04ff921c5c104701554
round[ 5].s_box    9c6b89a349f0e18499fda678f2515920
round[ 5].s_row    9cf0a62049fd59a399518984f26be178
round[ 5].m_col    aeb65ba974e0f822d73f567bdb64c877
round[ 5].k_sch    6de1f1486fa54f9275f8eb5373b8518d
round[ 6].start    c357aae11b45b7b0a2c7bd28a8dc99fa
round[ 6].s_box    2e5bacf8af6ea9e73ac67a34c286ee2d
round[ 6].s_row    2e6e7a2dafc6eef83a86ace7c25ba934
round[ 6].m_col    b951c33c02e9bd29ae25cdb1efa08cc7
round[ 6].k_sch    c656827fc9a799176f294cec6cd5598b
round[ 7].start    7f074143cb4e243ec10c815d8375d54c
round[ 7].s_box    d2c5831a1f2f36b278fe0c4cec9d0329
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round[ 7].s_row    d22f0c291ffe031a789d83b2ecc5364c
round[ 7].m_col    ebb19e1c3ee7c9e87d7535e9ed6b9144
round[ 7].k_sch    3de23a75524775e727bf9eb45407cf39
round[ 8].start    d653a4696ca0bc0f5acaab5db96c5e7d
round[ 8].s_box    f6ed49f950e06576be74624c565058ff
round[ 8].s_row    f6e062ff507458f9be50497656ed654c
round[ 8].m_col    5174c8669da98435a8b3e62ca974a5ea
round[ 8].k_sch    0bdc905fc27b0948ad5245a4c1871c2f
round[ 9].start    5aa858395fd28d7d05e1a38868f3b9c5
round[ 9].s_box    bec26a12cfb55dff6bf80ac4450d56a6
round[ 9].s_row    beb50aa6cff856126b0d6aff45c25dc4
round[ 9].m_col    0f77ee31d2ccadc05430a83f4ef96ac3
round[ 9].k_sch    45f5a66017b2d387300d4d33640a820a
round[10].start    4a824851c57e7e47643de50c2af3e8c9
round[10].s_box    d61352d1a6f3f3a04327d9fee50d9bdd
round[10].s_row    d6f3d9dda6279bd1430d52a0e513f3fe
round[10].m_col    bd86f0ea748fc4f4630f11c1e9331233
round[10].k_sch    7ccff71cbeb4fe5413e6bbf0d261a7df
round[11].start    c14907f6ca3b3aa070e9aa313b52b5ec
round[11].s_box    783bc54274e280e0511eacc7e200d5ce
round[11].s_row    78e2acce741ed5425100c5e0e23b80c7
round[11].m_col    af8690415d6e1dd387e5fbedd5c89013
round[11].k_sch    f01afafee7a82979d7a5644ab3afe640
round[12].start    5f9c6abfbac634aa50409fa766677653
round[12].s_box    cfde0208f4b418ac5309db5c338538ed
round[12].s_row    cfb4dbedf4093808538502ac33de185c
round[12].m_col    7427fae4d8a695269ce83d315be0392b
round[12].k_sch    2541fe719bf500258813bbd55a721c0a
round[13].start    516604954353950314fb86e401922521
round[13].s_box    d133f22a1aed2a7bfa0f44697c4f3ffd
round[13].s_row    d1ed44fd1a0f3f2afa4ff27b7c332a69
round[13].m_col    2c21a820306f154ab712c75eee0da04f
round[13].k_sch    4e5a6699a9f24fe07e572baacdf8cdea
round[14].start    627bceb9999d5aaac945ecf423f56da5
round[14].s_box    aa218b56ee5ebeacdd6ecebf26e63c06
round[14].s_row    aa5ece06ee6e3c56dde68bac2621bebf
round[14].k_sch    24fc79ccbf0979e9371ac23c6d68de36
round[14].output   8ea2b7ca516745bfeafc49904b496089

INVERSE CIPHER (DECRYPT):
round[ 0].iinput   8ea2b7ca516745bfeafc49904b496089
round[ 0].ik_sch   24fc79ccbf0979e9371ac23c6d68de36
round[ 1].istart   aa5ece06ee6e3c56dde68bac2621bebf
round[ 1].is_row   aa218b56ee5ebeacdd6ecebf26e63c06
round[ 1].is_box   627bceb9999d5aaac945ecf423f56da5
round[ 1].ik_sch   4e5a6699a9f24fe07e572baacdf8cdea
round[ 1].ik_add   2c21a820306f154ab712c75eee0da04f
round[ 2].istart   d1ed44fd1a0f3f2afa4ff27b7c332a69
round[ 2].is_row   d133f22a1aed2a7bfa0f44697c4f3ffd
round[ 2].is_box   516604954353950314fb86e401922521
round[ 2].ik_sch   2541fe719bf500258813bbd55a721c0a
round[ 2].ik_add   7427fae4d8a695269ce83d315be0392b
round[ 3].istart   cfb4dbedf4093808538502ac33de185c
round[ 3].is_row   cfde0208f4b418ac5309db5c338538ed
round[ 3].is_box   5f9c6abfbac634aa50409fa766677653
round[ 3].ik_sch   f01afafee7a82979d7a5644ab3afe640
round[ 3].ik_add   af8690415d6e1dd387e5fbedd5c89013
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round[ 4].istart   78e2acce741ed5425100c5e0e23b80c7
round[ 4].is_row   783bc54274e280e0511eacc7e200d5ce
round[ 4].is_box   c14907f6ca3b3aa070e9aa313b52b5ec
round[ 4].ik_sch   7ccff71cbeb4fe5413e6bbf0d261a7df
round[ 4].ik_add   bd86f0ea748fc4f4630f11c1e9331233
round[ 5].istart   d6f3d9dda6279bd1430d52a0e513f3fe
round[ 5].is_row   d61352d1a6f3f3a04327d9fee50d9bdd
round[ 5].is_box   4a824851c57e7e47643de50c2af3e8c9
round[ 5].ik_sch   45f5a66017b2d387300d4d33640a820a
round[ 5].ik_add   0f77ee31d2ccadc05430a83f4ef96ac3
round[ 6].istart   beb50aa6cff856126b0d6aff45c25dc4
round[ 6].is_row   bec26a12cfb55dff6bf80ac4450d56a6
round[ 6].is_box   5aa858395fd28d7d05e1a38868f3b9c5
round[ 6].ik_sch   0bdc905fc27b0948ad5245a4c1871c2f
round[ 6].ik_add   5174c8669da98435a8b3e62ca974a5ea
round[ 7].istart   f6e062ff507458f9be50497656ed654c
round[ 7].is_row   f6ed49f950e06576be74624c565058ff
round[ 7].is_box   d653a4696ca0bc0f5acaab5db96c5e7d
round[ 7].ik_sch   3de23a75524775e727bf9eb45407cf39
round[ 7].ik_add   ebb19e1c3ee7c9e87d7535e9ed6b9144
round[ 8].istart   d22f0c291ffe031a789d83b2ecc5364c
round[ 8].is_row   d2c5831a1f2f36b278fe0c4cec9d0329
round[ 8].is_box   7f074143cb4e243ec10c815d8375d54c
round[ 8].ik_sch   c656827fc9a799176f294cec6cd5598b
round[ 8].ik_add   b951c33c02e9bd29ae25cdb1efa08cc7
round[ 9].istart   2e6e7a2dafc6eef83a86ace7c25ba934
round[ 9].is_row   2e5bacf8af6ea9e73ac67a34c286ee2d
round[ 9].is_box   c357aae11b45b7b0a2c7bd28a8dc99fa
round[ 9].ik_sch   6de1f1486fa54f9275f8eb5373b8518d
round[ 9].ik_add   aeb65ba974e0f822d73f567bdb64c877
round[10].istart   9cf0a62049fd59a399518984f26be178
round[10].is_row   9c6b89a349f0e18499fda678f2515920
round[10].is_box   1c05f271a417e04ff921c5c104701554
round[10].ik_sch   ae87dff00ff11b68a68ed5fb03fc1567
round[10].ik_add   b2822d81abe6fb275faf103a078c0033
round[11].istart   88db34fb1f807678d3f833c2194a759e
round[11].is_row   884a33781fdb75c2d380349e19f876fb
round[11].is_box   975c66c1cb9f3fa8a93a28df8ee10f63
round[11].ik_sch   1651a8cd0244beda1a5da4c10640bade
round[11].ik_add   810dce0cc9db8172b3678c1e88a1b5bd
round[12].istart   ad9c7e017e55ef25bc150fe01ccb6395
round[12].is_row   adcb0f257e9c63e0bc557e951c15ef01
round[12].is_box   1859fbc28a1c00a078ed8aadc42f6109
round[12].ik_sch   a573c29fa176c498a97fce93a572c09c
round[12].ik_add   bd2a395d2b6ac438d192443e615da195
round[13].istart   84e1fd6b1a5c946fdf4938977cfbac23
round[13].is_row   84fb386f1ae1ac97df5cfd237c49946b
round[13].is_box   4f63760643e0aa85efa7213201a4e705
round[13].ik_sch   101112131415161718191a1b1c1d1e1f
round[13].ik_add   5f72641557f5bc92f7be3b291db9f91a
round[14].istart   6353e08c0960e104cd70b751bacad0e7
round[14].is_row   63cab7040953d051cd60e0e7ba70e18c
round[14].is_box   00102030405060708090a0b0c0d0e0f0
round[14].ik_sch   000102030405060708090a0b0c0d0e0f
round[14].ioutput  00112233445566778899aabbccddeeff

EQUIVALENT INVERSE CIPHER (DECRYPT):
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round[ 0].iinput   8ea2b7ca516745bfeafc49904b496089
round[ 0].ik_sch   24fc79ccbf0979e9371ac23c6d68de36
round[ 1].istart   aa5ece06ee6e3c56dde68bac2621bebf
round[ 1].is_box   629deca599456db9c9f5ceaa237b5af4
round[ 1].is_row   627bceb9999d5aaac945ecf423f56da5
round[ 1].im_col   e51c9502a5c1950506a61024596b2b07
round[ 1].ik_sch   34f1d1ffbfceaa2ffce9e25f2558016e
round[ 2].istart   d1ed44fd1a0f3f2afa4ff27b7c332a69
round[ 2].is_box   5153862143fb259514920403016695e4
round[ 2].is_row   516604954353950314fb86e401922521
round[ 2].im_col   91a29306cc450d0226f4b5eaef5efed8
round[ 2].ik_sch   5e1648eb384c350a7571b746dc80e684
round[ 3].istart   cfb4dbedf4093808538502ac33de185c
round[ 3].is_box   5fc69f53ba4076bf50676aaa669c34a7
round[ 3].is_row   5f9c6abfbac634aa50409fa766677653
round[ 3].im_col   b041a94eff21ae9212278d903b8a63f6
round[ 3].ik_sch   c8a305808b3f7bd043274870d9b1e331
round[ 4].istart   78e2acce741ed5425100c5e0e23b80c7
round[ 4].is_box   c13baaeccae9b5f6705207a03b493a31
round[ 4].is_row   c14907f6ca3b3aa070e9aa313b52b5ec
round[ 4].im_col   638357cec07de6300e30d0ec4ce2a23c
round[ 4].ik_sch   b5708e13665a7de14d3d824ca9f151c2
round[ 5].istart   d6f3d9dda6279bd1430d52a0e513f3fe
round[ 5].is_box   4a7ee5c9c53de85164f348472a827e0c
round[ 5].is_row   4a824851c57e7e47643de50c2af3e8c9
round[ 5].im_col   ca6f71058c642842a315595fdf54f685
round[ 5].ik_sch   74da7ba3439c7e50c81833a09a96ab41
round[ 6].istart   beb50aa6cff856126b0d6aff45c25dc4
round[ 6].is_box   5ad2a3c55fe1b93905f3587d68a88d88
round[ 6].is_row   5aa858395fd28d7d05e1a38868f3b9c5
round[ 6].im_col   ca46f5ea835eab0b9537b6dbb221b6c2
round[ 6].ik_sch   3ca69715d32af3f22b67ffade4ccd38e
round[ 7].istart   f6e062ff507458f9be50497656ed654c
round[ 7].is_box   d6a0ab7d6cca5e695a6ca40fb953bc5d
round[ 7].is_row   d653a4696ca0bc0f5acaab5db96c5e7d
round[ 7].im_col   2a70c8da28b806e9f319ce42be4baead
round[ 7].ik_sch   f85fc4f3374605f38b844df0528e98e1
round[ 8].istart   d22f0c291ffe031a789d83b2ecc5364c
round[ 8].is_box   7f4e814ccb0cd543c175413e8307245d
round[ 8].is_row   7f074143cb4e243ec10c815d8375d54c
round[ 8].im_col   f0073ab7404a8a1fc2cba0b80df08517
round[ 8].ik_sch   de69409aef8c64e7f84d0c5fcfab2c23
round[ 9].istart   2e6e7a2dafc6eef83a86ace7c25ba934
round[ 9].is_box   c345bdfa1bc799e1a2dcaab0a857b728
round[ 9].is_row   c357aae11b45b7b0a2c7bd28a8dc99fa
round[ 9].im_col   3225fe3686e498a32593c1872b613469
round[ 9].ik_sch   aed55816cf19c100bcc24803d90ad511
round[10].istart   9cf0a62049fd59a399518984f26be178
round[10].is_box   1c17c554a4211571f970f24f0405e0c1
round[10].is_row   1c05f271a417e04ff921c5c104701554
round[10].im_col   9d1d5c462e655205c4395b7a2eac55e2
round[10].ik_sch   15c668bd31e5247d17c168b837e6207c
round[11].istart   88db34fb1f807678d3f833c2194a759e
round[11].is_box   979f2863cb3a0fc1a9e166a88e5c3fdf
round[11].is_row   975c66c1cb9f3fa8a93a28df8ee10f63
round[11].im_col   d24bfb0e1f997633cfce86e37903fe87
round[11].ik_sch   7fd7850f61cc991673db890365c89d12
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round[12].istart   ad9c7e017e55ef25bc150fe01ccb6395
round[12].is_box   181c8a098aed61c2782ffba0c45900ad
round[12].is_row   1859fbc28a1c00a078ed8aadc42f6109
round[12].im_col   aec9bda23e7fd8aff96d74525cdce4e7
round[12].ik_sch   2a2840c924234cc026244cc5202748c4
round[13].istart   84e1fd6b1a5c946fdf4938977cfbac23
round[13].is_box   4fe0210543a7e706efa476850163aa32
round[13].is_row   4f63760643e0aa85efa7213201a4e705
round[13].im_col   794cf891177bfd1ddf67a744acd9c4f6
round[13].ik_sch   1a1f181d1e1b1c191217101516131411
round[14].istart   6353e08c0960e104cd70b751bacad0e7
round[14].is_box   0050a0f04090e03080d02070c01060b0
round[14].is_row   00102030405060708090a0b0c0d0e0f0
round[14].ik_sch   000102030405060708090a0b0c0d0e0f
round[14].ioutput  00112233445566778899aabbccddeeff
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Foreword

The Federal Information Processing Standards Publication Series of the National Institute of
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of government efforts in the development of standards and guidelines in these areas.

Comments concerning Federal Information Processing Standards Publications are welcomed and
should be addressed to the Director, Information Technology Laboratory, National Institute of
Standards and Technology, 100 Bureau Drive, Stop 8900, Gaithersburg, MD 20899-8900.

William Mehuron, Director
Information Technology Laboratory

Abstract

This standard describes a keyed-hash message authentication code (HMAC), a mechanism for
message authentication using cryptographic hash functions. HMAC can be used with any
iterative FIPS-approved cryptographic hash function, in combination with a shared secret key.
The cryptographic strength of HMAC depends on the properties of the underlying hash function.
The HMAC specification in this standard is a generalization of Internet RFC 2104, HMAC,
Keyed-Hashing for Message Authentication, and ANSI X9.71, Keyed Hash Message
Authentication Code.
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Information Processing Standard (FIPS).
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Federal Information Processing Standards Publication #HMAC

2001 MONTH DAY

Announcing the Standard for

The Keyed-Hash Message Authentication Code (HMAC)

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the
National Institute of Standards and Technology (NIST) after approval by the Secretary of
Commerce pursuant to Section 5131 of the Information Technology Management Reform
Act of 1996 (Public Law 104-106) and the Computer Security Act of 1987 (Public Law
100-235).

1. Name of Standard.  Keyed-Hash Message Authentication Code (HMAC) (FIPS
PUB #HMAC).

2. Category of Standard.  Computer Security Standard.  Subcategory.  Cryptography.

3.  Explanation. This standard specifies an algorithm for applications requiring message
authentication. Message authentication is achieved via the construction of a message
authentication code (MAC). MACs based on cryptographic hash functions are known as
HMACs.

The purpose of a MAC is to authenticate both the source of a message and its integrity
without the use of any additional mechanisms. HMACs have two functionally distinct
parameters, a message input and a secret key known only to the message originator and
intended receiver(s). Additional applications of keyed hash functions include their use in
challenge-response identification protocols for computing responses, which are a function
of both a secret key and a challenge message.

An HMAC function is used by the message sender to produce a value (the MAC) that is
formed by condensing the secret key and the message input. The MAC is typically sent to
the message receiver along with the message. The receiver computes the MAC on the
received message using the same key and HMAC function as was used by the sender, and
compares the result computed with the received MAC. If the two values match, the
message has been correctly received, and the receiver is assured that the sender is a
member of the community of users that share the key.

The HMAC specification in this standard is a generalization of HMAC as specified in
Internet RFC 2104, HMAC, Keyed-Hashing for Message Authentication, and ANSI
X9.71, Keyed Hash Message Authentication Code.

4. Approving Authority.  Secretary of Commerce.
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5.   Maintenance Agency.  Department of Commerce, National Institute of Standards
and Technology, Information Technology Laboratory (ITL).

6.  Applicability.  This standard is applicable to all Federal departments and agencies for
the protection of sensitive unclassified information that is not subject to section 2315 of
Title 10, United States Code, or section 3502(2) of Title 44, United States Code. This
standard shall be used in designing, acquiring and implementing message authentication
in systems that Federal departments and agencies operate or which are operated for them
under contract. The adoption and use of this standard is available to private and
commercial organizations.

7.  Specifications. Federal Information Processing Standard (FIPS) #HMAC, Keyed-
Hash Message Authentication Code (HMAC) (affixed).

8. Implementations. Cryptographic modules that implement this standard shall
conform to FIPS 140-1. The authentication mechanism described in this standard may be
implemented in software, firmware, hardware, or any combination thereof. NIST has
developed a Cryptographic Module Validation Program that will test implementations for
conformance with this HMAC standard. Information on this program is available at
http://csrc.nist.gov/cryptval/.

Agencies are advised that keys used for HMAC applications should not be used for other
purposes.

9.  Other Approved Security Functions.  HMAC implementations that comply with this
standard shall employ cryptographic algorithms, cryptographic key generation algorithms
and key management techniques that have been approved for protecting Federal
government sensitive information.  Approved cryptographic algorithms and techniques
include those that are either:

a. specified in a Federal Information Processing Standard (FIPS), or
b. adopted in a FIPS and specified either in an appendix to the FIPS or in a document

referenced by the FIPS.

10. Export Control. Certain cryptographic devices and technical data regarding them
are subject to Federal export controls and exports of cryptographic modules
implementing this standard and technical data regarding them must comply with these
Federal regulations and be licensed by the Bureau of Export Administration of the U.S.
Department of Commerce.  Applicable Federal government export controls are specified
in Title 15, Code of Federal Regulations (CFR) Part 740.17; Title 15, CFR Part 742; and
Title 15, CFR Part 774, Category 5, Part 2.

11.  Implementation Schedule.  This standard becomes effective on [insert date: six
months after approval by the Secretary of Commerce].

12. Qualifications. The security afforded by the HMAC function is dependent on
maintaining the secrecy of the key. Users must therefore guard against disclosure of these
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keys. While it is the intent of this standard to specify a mechanism to provide message
authentication, conformance to this standard does not assure that a particular
implementation is secure. It is the responsibility of the implementer to ensure that any
module containing an HMAC implementation is designed and built in a secure manner.

Similarly, the use of a product containing an implementation that conforms to this
standard does not guarantee the security of the overall system in which the product is
used.  The responsible authority in each agency shall assure that an overall system
provides an acceptable level of security.

Since a standard of this nature must be flexible enough to adapt to advancements and
innovations in science and technology, this standard will be reviewed every five years in
order to assess its adequacy.

13.  Waiver Procedure.  Under certain exceptional circumstances, the heads of Federal
agencies, or their delegates, may approve waivers to Federal Information Processing
Standards (FIPS).  The heads of such agencies may redelegate such authority only to a
senior official designated pursuant to Section 3506(b) of Title 44, U.S. Code.  Waivers
shall be granted only when compliance with this standard would

a.  adversely affect the accomplishment of the mission of an operator of Federal
computer system or

b.  cause a major adverse financial impact on the operator that is not offset by
government-wide savings.

Agency heads may act upon a written waiver request containing the information detailed
above.  Agency heads may also act without a written waiver request when they determine
that conditions for meeting the standard cannot be met.  Agency heads may approve
waivers only by a written decision that explains the basis on which the agency head made
the required finding(s).  A copy of each such decision, with procurement sensitive or
classified portions clearly identified, shall be sent to: National Institute of Standards and
Technology; ATTN: FIPS Waiver Decision, Information Technology Laboratory, 100
Bureau Drive, Stop 8900, Gaithersburg, MD 20899-8900.

In addition, notice of each waiver granted and each delegation of authority to approve
waivers shall be sent promptly to the Committee on Government Operations of the House
of Representatives and the Committee on Government Affairs of the Senate and shall be
published promptly in the Federal Register.

When the determination on a waiver applies to the procurement of equipment and/or
services, a notice of the waiver determination must be published in the Commerce
Business Daily as a part of the notice of solicitation for offers of an acquisition or, if the
waiver determination is made after that notice is published, by amendment to such notice.

A copy of the waiver, any supporting documents, the document approving the waiver and
any supporting and accompanying documents, with such deletions as the agency is
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authorized and decides to make under Section 552(b) of Title 5, U.S. Code, shall be part
of the procurement documentation and retained by the agency.

14. Where to obtain copies.  This publication is available by accessing
http://csrc.nist.gov/publications/. A list of other available computer security publications,
including ordering information, can be obtained from NIST Publications List 91, which is
available at the same web site. Alternatively, copies of NIST computer security
publications are available from: National Technical Information Service (NTIS), 5285
Port Royal Road, Springfield, VA 22161.
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1. INTRODUCTION

Providing a way to check the integrity of information transmitted over or stored in an
unreliable medium is a prime necessity in the world of open computing and
communications. Mechanisms that provide such integrity checks based on a secret key
are usually called message authentication codes (MACs). Typically, message
authentication codes are used between two parties that share a secret key in order to
authenticate information transmitted between these parties. This standard defines a MAC
that uses a cryptographic hash function in conjunction with a secret key. This mechanism
is called HMAC and is a generalization of HMAC as specificatied in [RFC2104] and
[ANSIX9.17].

HMAC shall be used in combination with a cryptographic hash function specified in a
Federal Information Processing Standard (FIPS). HMAC uses a secret key for the
calculation and verification of the MACs. The main goals behind the HMAC construction
[RFC2104] are:

• To use available hash functions without modifications; in particular, hash
functions that perform well in software, and for which code is freely and widely
available,

• To preserve the original performance of the hash function without incurring a
significant degradation,

• To use and handle keys in a simple way,

• To have a well-understood cryptographic analysis of the strength of the
authentication mechanism based on reasonable assumptions on the underlying
hash function, and

• To allow for easy replaceability of the underlying hash function in the event that
faster or more secure hash functions are later available.

2. GLOSSARY OF TERMS AND ACRONYMS

2.1 Glossary of Terms

The following definitions are used throughout this standard:

FIPS-Approved:  An algorithm or technique that is either 1) specified in a FIPS, or 2)
adopted in a FIPS and specified either in an appendix to the FIPS or in a document
referenced by the FIPS..
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Message Authentication Code (MAC): a cryptographic checksum that results from
passing data through a message authentication algorithm. In this standard, the message
authentication algorithm is called HMAC.

Cryptographic key (key): a parameter used in conjunction with a cryptographic algorithm
that determines the specific operation of that algorithm. In this standard, the
cryptographic key is used by the HMAC algorithm to produce a MAC on the data.

Keyed hash-based message authentication code (HMAC): a message authentication code
that uses a cryptographic key in conjunction with a hash function.

Secret key: a cryptographic key that is uniquely associated with one or more entities.  The
use of the term "secret" in this context does not imply a classification level; rather the
term implies the need to protect the key from disclosure or substitution.

2.2 Acronyms

The following acronyms and abbreviations are used throughout this standard:

FIPS Federal Information Processing Standard

FIPS PUB FIPS Publication

HMAC Keyed-Hash Message Authentication Code

MAC Message Authentication Code

NIST National Institute of Standards and Technology

SHA-1 The Secure Hash Algorithm specified in FIPS 180-1.

2.3 HMAC Parameters and Symbols

HMAC uses the following parameters:

B Block size (in bytes) of the input to the FIPS-approved hash function; e.g., for
SHA-1, B = 64.

H FIPS-approved hash function, e.g., FIPS 180-1, Secure Hash Algorithm-1 (SHA-
1).

ipad Inner pad; the byte x’36’ repeated B times.

K Secret key shared between the originator and the intended receiver(s).

K0 The key K with zeros appended to form a B byte key.
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L Block size (in bytes) of the output of the FIPS-approved hash function; for SHA-
1, L = 20.

opad Outer pad; the byte x’5c’ repeated B times.

t The number of bytes of MAC.

text The data on which the HMAC is calculated; the length of the data is n bits, where
the maximum value for n depends on the hash algorithm used.

x’N’ Hexadecimal notation, where each ‘N’ represents 4 binary bits.

|| Concatenation

⊕ Exclusive-Or operation.

3. CRYPTOGRAPHIC KEYS

The size of the key, K, shall be equal to or greater than L/2, where L is the size of the
hash function output. Note that keys greater than L bytes do not significantly increase the
function strength. Applications that use keys longer than B-bytes shall first hash the key
using H and then use the resultant L-byte string as the HMAC key, K. Keys shall be
chosen at random using a FIPS-approved key generation method and shall be changed
periodically. The keys shall be protected in a manner that is consistent with the value of
the data that is to be protected (i.e., the data that is authenticated using the HMAC
function).

4. TRUNCATED OUTPUT
A well-known practice with MACs is to truncate their output (i.e., the length of the MAC
used is less than the length of the output of the MAC function L). Applications of this
standard may truncate the output of HMAC. When a truncated HMAC is used, the t
leftmost bytes of the HMAC computation shall be used as the MAC. The output length, t,

shall be no less than four bytes (i.e., 4 ≤ t ≤ L). However, t shall be at least 
2
L bytes (i.e.,

2
L ≤ t ≤ L) unless an application or protocol makes numerous trials impractical. For

example, a low bandwidth channel might prevent numerous trials on a 4 byte MAC, or a
protocol might allow only a small number of invalid MAC attempts.
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5. HMAC SPECIFICATION

To compute a MAC over the data ‘text’ using the HMAC function, the following
operation is performed:

MAC(text)t = HMAC(K, text)t = H((K0 ⊕⊕ opad )|| H((K0 ⊕⊕ ipad) || text))t

Table 1 illustrates the step by step process in the HMAC algorithm, which is depicted in
Figure 1.

Table 1: The HMAC Algorithm
STEPS STEP-BY-STEP DESCRIPTION
Step 1 If the length of K = B, set K0 = K. Go to step 4.

Step 2 If the length of K > B, hash K to obtain an L byte string: K = H(K).

Step 3 If the length of K < B, append zeros to the end of K to create a B-byte string K0

(e.g., if K is 20 bytes in length and B = 64, then K will be appended with 44
zero bytes 0x00).

Step 4 Exclusive-Or K0 with ipad to produce a B-byte string: K0 ⊕⊕ ipad.

Step 5 Append the stream of data 'text' to the string resulting from step 4:
(K0 ⊕⊕ ipad) || text.

Step 6 Apply H to the stream generated in step 5: H((K0 ⊕⊕ ipad) || text).

Step 7 Exclusive-Or K0 with opad: K0 ⊕⊕ opad.

Step 8 Append the result from step 6 to step 7:
(K0 ⊕⊕ opad) || H((K0 ⊕⊕ ipad) || text).

Step 9 Apply H to the result from step 8:
H((K0 ⊕⊕ opad )|| H((K0 ⊕⊕ ipad) || text)).

Step 10 Select the leftmost t bytes of the result of step 9 as the MAC.
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6. IMPLEMENTATION NOTE

The HMAC algorithm is specified for an arbitrary FIPS-approved cryptographic hash
function, H. With minor modifications, an HMAC implementation can easily replace one
hash function, H, with another hash function, H’.

Conceptually, the intermediate results of the compression function on the B-byte blocks
(K0 ⊕ ipad) and (K0 ⊕ opad) can be precomputed once, at the time of generation of the

Figure 1: Illustration of the HMAC Construction



DRAFT DRAFT

6

key K, or before its first use. These intermediate results can be stored and then used to
initialize H each time that a message needs to be authenticated using the same key. For
each authenticated message using the key K, this method saves the application of the hash
function of H on two B-byte blocks (i.e., on (K ⊕ ipad) and (K ⊕ opad)). This saving
may be significant when authenticating short streams of data.  These stored
intermediate values shall be treated and protected in the same manner as secret
keys.

Choosing to implement HMAC in this manner has no effect on interoperability.
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APPENDIX A: HMAC EXAMPLES

These examples are provided in order to promote correct implementations of HMAC.

A.1 SHA-1 Examples: B = 64 bytes; L = 20 bytes

[NOTE: These examples were taken from ANSI X9.71]

Test case 1 (20 byte key; 20 byte HMAC):

key = x’0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b’

data = "Hi There"

HMAC = x’b617318655057264e28bc0b6fb378c8ef146be00’

Test case 2 (20 byte key; 20 byte HMAC):

key = x’aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’

data = x’dd’ repeated 50 times

HMAC = x’125d7342b9ac11cd91a39af48aa17b4f63f175d3’

Test case 3 (25 byte key; 20 byte HMAC):

key = x’0102030405060708090a0b0c0d0e0f10111213141516171819’

data = x’cd’ repeated 50 times

HMAC = x’4c9007f4026250c6bc8414f9bf50c86c2d7235da’

Test case 4 (20 byte key; 20 byte MAC; 12 byte MAC):

key = x’0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c’

data = "Test With Truncation"

HMAC = x’4c1a03424b55e07fe7f27be1d58bb9324a9a5a04’

96-bit MAC = x’4c1a03424b55e07fe7f27be1’
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Announcing the

SECURE HASH STANDARD

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National
Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce
pursuant to Section 5131 of the Information Technology Management Reform Act of 1996
(Public Law 104-106), and the Computer Security Act of 1987 (Public Law 100-235).

1. Name of Standard: Secure Hash Signature Standard (SHS) (FIPS PUB 180-2).

2. Category of Standard: Computer Security Standard, Cryptography.

3. Explanation: This Standard specifies four secure hash algorithms - SHA-1, SHA-256,
SHA-384, and SHA-512 - for computing a condensed representation of electronic data
(message). When a message of any length < 264 bits (for SHA-1 and SHA-256) or < 2128 bits (for
SHA-384 and SHA-512) is input to an algorithm, the result is an output called a message digest.
The message digests range in length from 160 to 512 bits, depending on the algorithm. Secure
hash algorithms are typically used with other cryptographic algorithms, such as digital signature
algorithms and keyed-hash message authentication codes, or in the generation of random
numbers (bits).

The four hash algorithms specified in this standard are called secure because, for a given
algorithm, it is computationally infeasible 1) to find a message that corresponds to a given
message digest, or 2) to find two different messages that produce the same message digest. Any
change to a message will, with a very high probability, result in a different message digest. This
will result in a verification failure when the secure hash algorithm is used with a digital signature
algorithm or a keyed-hash message authentication algorithm.

This standard supersedes FIPS 180-1, adding three algorithms that are capable of producing
larger message digests.  The SHA-1 algorithm specified herein is the same algorithm that was
specified previously in FIPS 180-1, although some of the notation has been modified to be
consistent with the notation used in the SHA-256, SHA-384, and SHA-512 algorithms.

4. Approving Authority: Secretary of Commerce.

5. Maintenance Agency: U.S. Department of Commerce, National Institute of Standards and
Technology (NIST), Information Technology Laboratory (ITL).
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6. Applicability: This standard is applicable to all Federal departments and agencies for the
protection of sensitive unclassified information that is not subject to section 2315 of Title 10,
United States Code, or section 3502(2) of Title 44, United States Code.  This standard shall be
implemented whenever a secure hash algorithm is required for Federal applications, including
use by other cryptographic algorithms and protocols. The adoption and use of this standard is
available to private and commercial organizations.

7. Specifications: Federal Information Processing Standard (FIPS) 180-2, Secure Hash
Standard (SHS) (affixed).

8. Implementations: The secure hash algorithms specified herein may be implemented in
software, firmware, hardware or any combination thereof. Only algorithm implementations that
are validated by NIST will be considered as complying with this standard. Information about the
planned validation program can be obtained at http://csrc.nist.gov/cryptval/ or from the National
Institute of Standards and Technology, Information Technology Laboratory, Attn: SHS
Validation, 100 Bureau Drive Stop 8930, Gaithersburg, MD 20899-8930.

9. Implementation Schedule: This standard becomes effective on [insert date: six months
after approval by the Secretary of Commerce].

10. Patents: Implementations of the secure hash algorithms in this standard may be covered by
U.S. or foreign patents.

11. Export Control: Certain cryptographic devices and technical data regarding them are
subject to Federal export controls.  Exports of cryptographic modules implementing this standard
and technical data regarding them must comply with these Federal regulations and be licensed by
the Bureau of Export Administration of the U.S. Department of Commerce.  Applicable Federal
government export controls are specified in Title 15, Code of Federal Regulations (CFR) Part
740.17; Title 15, CFR Part 742; and Title 15, CFR Part 774, Category 5, Part 2.

12. Qualifications: While it is the intent of this standard to specify general security
requirements for generating a message digest, conformance to this standard does not assure that a
particular implementation is secure.  The responsible authority in each agency or department
shall assure that an overall implementation provides an acceptable level of security.  This
standard will be reviewed every five years in order to assess its adequacy.

13. Waiver Procedure. Under certain exceptional circumstances, the heads of Federal
agencies, or their delegates, may approve waivers to Federal Information Processing Standards
(FIPS).  The heads of such agencies may redelegate such authority only to a senior official
designated pursuant to Section 3506(b) of Title 44, U.S. Code.  Waivers shall be granted only
when compliance with this standard would

a.  adversely affect the accomplishment of the mission of an operator of a Federal computer
system or

b.  cause a major adverse financial impact on the operator that is not offset by government-
wide savings.
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Agency heads may act upon a written waiver request containing the information detailed above.
Agency heads may also act without a written waiver request when they determine that conditions
for meeting the standard cannot be met.  Agency heads may approve waivers only by a written
decision that explains the basis on which the agency head made the required finding(s).  A copy
of each such decision, with procurement sensitive or classified portions clearly identified, shall
be sent to: National Institute of Standards and Technology; ATTN: FIPS Waiver Decision,
Information Technology Laboratory, 100 Bureau Drive, Stop 8900, Gaithersburg, MD 20899-
8900.

In addition, a notice of each waiver granted and each delegation of authority to approve waivers
shall be sent promptly to the Committee on Government Operations of the House of
Representatives and the Committee on Government Affairs of the Senate and shall be published
promptly in the Federal Register.

When the determination on a waiver applies to the procurement of equipment and/or services, a
notice of the waiver determination must be published in the Commerce Business Daily as a part
of the notice of solicitation for offers of an acquisition or, if the waiver determination is made
after that notice is published, by amendment to such notice.

A copy of the waiver, any supporting documents, the document approving the waiver and any
supporting and accompanying documents, with such deletions as the agency is authorized and
decides to make under Section 552(b) of Title 5, U.S. Code, shall be part of the procurement
documentation and retained by the agency.

14. Where to Obtain Copies of the Standard: This publication is available electronically by
accessing http://csrc.nist.gov/publications/. A list of other available computer security
publications, including ordering information, can be obtained from NIST Publications List 91,
which is available at the same web site. Alternatively, copies of NIST computer security
publications are available from: National Technical Information Service (NTIS), 5285 Port
Royal Road, Springfield, VA 22161.
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1. INTRODUCTION
This standard specifies four secure hash algorithms, SHA-11, SHA-256, SHA-384, and SHA-
512. All four of the algorithms are iterative, one-way hash functions that can process a message
to produce a condensed representation called a message digest. These algorithms enable the
determination of a message’s integrity: any change to the message will, with a very high
probability, result in a different message digest.  This property is useful in the generation and
verification of digital signatures and message authentication codes, and in the generation of
random numbers (bits).

Each algorithm can be described in two stages: preprocessing and hash computation.
Preprocessing involves padding a message, parsing the padded message into m-bit blocks, and
setting initialization values to be used in the hash computation.  The hash computation generates
a message schedule from the padded message and uses that schedule, along with functions,
constants, and word operations to iteratively generate a series of hash values.  The final hash
value generated by the hash computation is used to determine the message digest.

The four algorithms differ most significantly in the number of bits of security that are provided
for the data being hashed – this is directly related to the message digest length. When a secure
hash algorithm is used in conjunction with another algorithm, there may be requirements
specified elsewhere that require the use of a secure hash algorithm with a certain number of bits
of security. For example, if a message is being signed with a digital signature algorithm that
provides 128 bits of security, then that signature algorithm may require the use of a secure hash
algorithm that also provides 128 bits of security (e.g., SHA-256).

Additionally, the four algorithms differ in terms of the size of the blocks and words of data that
are used during hashing.  Figure 1 presents the basic properties of all four secure hash
algorithms.

Algorithm Message Size
(bits)

Block Size
(bits)

Word Size
(bits)

Message Digest Size
(bits)

Security2

(bits)
SHA-1 < 264 512 32 160 80
SHA-256 < 264 512 32 256 128
SHA-384 < 2128 1024 64 384 192
SHA-512 < 2128 1024 64 512 256

Figure 1: Secure Hash Algorithm Properties

                                                
1 The SHA-1 algorithm specified in this document is identical to the SHA-1 algorithm specified in FIPS 180-1 [180-
1].  However, this specification, FIPS 180-2, uses ROTLn(X) instead of Sn (X) [180-1] to denote “circular left shift
by n bits” (i.e., “left rotation by n bits”).  This is described in Sec. 3.2.  Some other notational changes have been
made in order to be consistent with the specifications for SHA-256, SHA-384, and SHA-512.

2 In this context, “security” refers to the fact that a birthday attack [HAC] on a message digest of size n produces a
collision with a workfactor of approximately 2n/2.
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2. DEFINITIONS

2.1 Glossary of Terms and Acronyms

Bit A binary digit having a value of 0 or 1.

Byte A group of eight bits.

FIPS Federal Information Processing Standard.

Word A group of either 32 bits (4 bytes) or 64 bits (8 bytes), depending on the
secure hash algorithm.

2.2 Algorithm Parameters, Symbols, and Terms

2.2.1 Parameters
The following parameters are used in the secure hash algorithm specifications in this standard.

a, b, c, …, h Working variables that are the w-bit words used in the computation of the
hash values, H(i).

)(iH The ith hash value. H(0) is the initial hash value; H(N) is the final hash value
and is used to determine the message digest.

)(i
jH The jth word of the ith hash value, where )(

0
iH  is the left-most word of hash

value i.

Kt Constant value to be used for iteration t of the hash computation.

k Number of zeroes appended to a message during the padding step.

l Length of the message, M, in bits.

m Number of bits in a message block, M(i).

M Message to be hashed.

M(i) Message block i, with a size of m bits.

)(i
jM The jth word of the ith message block, where )(

0
iM  is the left-most word of

message block i.
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n Number of bits to be rotated or shifted when a word is operated upon.

N Number of blocks in the padded message.

T Temporary w-bit word used in the hash computation.

w Number of bits in a word.

Wt The tth w-bit word of the message schedule.

2.2.2 Symbols
The following symbols are used in the secure hash algorithm specifications, and each operates on
w-bit words.

∧ Bitwise AND operation.

∨ Bitwise OR (“inclusive-OR”) operation.

⊕ Bitwise XOR (“exclusive-OR”) operation.

¬ Bitwise complement operation.

+ Addition modulo 2w.

<< Left-shift operation, where x << n is obtained by discarding the left-most n
bits of the word x and then padding the result with n zeroes on the right.

>> Right-shift operation, where x >> n is obtained by discarding the right-
most n bits of the word x and then padding the result with n zeroes on the
left.
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3. NOTATION AND CONVENTIONS

3.1 Bit Strings and Integers
The following terminology related to bit strings and integers will be used.

1. A hex digit is an element of the set {0, 1,…, 9, a,…, f}.  A hex digit is the
representation of a 4-bit string. For example, the hex digit “7” represents the 4-bit
string “0111”, and the hex digit “a” represents the 4-bit string “1010”.

2. A word is a w-bit string that may be represented as a sequence of hex digits. To
convert a word to hex digits, each 4-bit string is converted to its hex digit equivalent,
as described in (1) above.  For example, the 32-bit string

1010 0001 0000 0011 1111 1110 0010 0011

can be expressed as “a103fe23”, and the 64-bit string

1010 0001 0000 0011 1111 1110 0010 0011
0011 0010 1110 1111 0011 0000 0001 1010

can be expressed as “a103fe2332ef301a”.

Throughout this specification, the “big-endian” convention is used when expressing
both 32- and 64-bit words, so that within each word, the most significant bit is stored
in the left-most bit position.

3. An integer may be represented as a word or pair of words. A word representation of
the message length, l , in bits, is required for the padding techniques of Sec. 5.1.

An integer between 0 and 232-1 inclusive may be represented as a 32-bit word.  The
least significant four bits of the integer are represented by the right-most hex digit of
the word representation.  For example, the integer 291 = 28 + 25 + 21 + 20 =
256+32+2+1 is represented by the hex word 00000123.

The same holds true for an integer between 0 and 264-1 inclusive, which may be
represented as a 64-bit word.

If Z is an integer, 0 ≤  Z < 264, then Z = 232X + Y, where 0 ≤  X < 232 and 0 ≤  Y < 232.
Since X and Y can be represented as 32-bit words x and y, respectively, the integer Z
can be represented as the pair of words (x, y).  This property is used for SHA-1 and
SHA-256.



DRAFT DRAFT

7

If Z is an integer, 0 ≤  Z < 2128, then Z = 264X + Y, where 0 ≤  X < 264 and 0 ≤  Y < 264.
Since X and Y can be represented as 64-bit words x and y, respectively, the integer Z
can be represented as the pair of words (x, y). This property is used for SHA-384 and
SHA-512.

4. For the secure hash algorithms, the size of the message block - m bits - depends on the
algorithm.

a) For SHA-1 and SHA-256, each message block has 512 bits, which are
represented as a sequence of sixteen 32-bit words.

b) For SHA-384 and SHA-512, each message block has 1024 bits, which are
represented as a sequence of sixteen 64-bit words.

3.2 Operations on Words
The following operations are applied to w-bit words in all four secure hash algorithms.  SHA-1
and SHA-256 operate on 32-bit words (w = 32), and SHA-384 and SHA-512 operate on 64-bit
words (w = 64).

1. Bitwise logical word operations: ∧ , ∨ , ⊕ , and ¬  (see Sec. 2.2.2).

2. Addition modulo 2w.

The operation x + y is defined as follows.  The words x and y represent integers X and
Y, where 0 ≤  X < 2w and 0 ≤  Y < 2w.  For positive integers U and V, let VU mod be
the remainder upon dividing U by V.  Compute

Z = ( X + Y ) mod 2w.

Then 0 ≤  Z < 2w.  Convert the integer Z to a word, z, and define z = x + y.

3. The right shift operation SHR n(x), where x is a w-bit word and n is an integer with 0
≤  n < w, is defined by

SHR n(x) = x >> n.

This operation is used in the SHA-256, SHA-384, and SHA-512 algorithms.

4. The rotate right (circular right shift) operation ROTR n(x), where x is a w-bit word
and n is an integer with 0 ≤  n < w, is defined by

ROTR n(x) = (x >> n) ∨  (x << w - n).

Thus, ROTR n(x) is equivalent to a circular shift (rotation) of x by n positions to the
right.
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This operation is used by the SHA-256, SHA-384, and SHA-512 algorithms.

5. The rotate left (circular left shift) operation, ROTL n(x), where x is a w-bit word and n
is an integer with 0 ≤  n < w, is defined by

ROTL n(x) = (x << n) ∨  (x >> w - n).

Thus, ROTL n(x) is equivalent to a circular shift (rotation) of x by n positions to the
left.

This operation is used only in the SHA-1 algorithm.  Note that in Ref. [180-1] this
operation was referred to as “Sn(X)”; however, the notation has been modified for
clarity and consistency with the notation used for operations in the other secure hash
algorithms.

6. Note the following equivalence relationships, where w is fixed in each relationship:

ROTL n(x) ≈  ROTR w-n(x)

ROTR n(x) ≈  ROTL w-n(x).
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4. FUNCTIONS AND CONSTANTS

4.1 Functions
This section defines the functions that are used by each of the algorithms.  Although the SHA-
256, SHA-384, and SHA-512 algorithms all use similar functions, their descriptions are
separated into sections for SHA-256 (Sec. 4.1.2) and for SHA-384 and SHA-512 (Sec. 4.1.3),
since the input and output for these functions are words of different sizes.

4.1.1 SHA-1 Functions
SHA-1 uses a sequence of logical functions, f0, f1,…, f79.  Each function ft, where 0 ≤  t < 79,
operates on three 32-bit words, x, y, and z, and produces a 32-bit word as output.  The function ft

(x, y, z) is defined as follows:

(x ∧ y) ∨  ( ¬ x ∧ z) 0 ≤  t ≤  19 

x ⊕  y ⊕  z 20 ≤  t ≤  39
ft (x, y, z) = (4.1)

(x ∧ y) ∨  (x ∧ z) ∨  (y ∧ z) 40 ≤  t ≤  59

x ⊕  y ⊕  z 60 ≤  t ≤  79.

4.1.2 SHA-256 Functions
SHA-256 uses six logical functions, where each function operates on 32-bit words, which are
represented as x, y, and z. The result of each function is a new 32-bit word.

),,( zyxCh = )()( zxyx ∧¬⊕∧ (4.2)
),,( zyxMaj = )()()( zyzxyx ∧⊕∧⊕∧ (4.3)

∑ }256{

0
)(x = ROTR 2(x) ⊕ ROTR 13(x) ⊕ ROTR 22(x) (4.4)

∑ }256{

1
)(x = ROTR 6(x) ⊕ ROTR 11(x) ⊕ ROTR 25(x) (4.5)

)(}256{
0 xσ = ROTR 7(x) ⊕ ROTR 18(x) ⊕ SHR 3(x) (4.6)

)(}256{
1 xσ = ROTR 17(x) ⊕ ROTR 19(x) ⊕ SHR 10(x) (4.7)

4.1.3 SHA-384 and SHA-512 Functions
SHA-384 and SHA-512 each use six logical functions, where each function operates on 64-bit
words, which are represented as x, y, and z. The result of each function is a new 64-bit word.

),,( zyxCh = )()( zxyx ∧¬⊕∧ (4.8)
),,( zyxMaj = )()()( zyzxyx ∧⊕∧⊕∧ (4.9)
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∑ }512{

0
)(x = ROTR 28(x) ⊕ ROTR 34(x) ⊕ ROTR 39(x) (4.10)

∑ }512{

1
)(x = ROTR 14(x) ⊕ ROTR 18(x) ⊕ ROTR 41(x) (4.11)

)(}512{
0 xσ = ROTR 1(x) ⊕ ROTR 8(x) ⊕ SHR 7(x) (4.12)

)(}512{
1 xσ = ROTR 19(x) ⊕ ROTR 61(x) ⊕ SHR 6(x) (4.13)

4.2 Constants

4.2.1 SHA-1 Constants
SHA-1 uses a sequence of eighty constant 32-bit words, K0, K1,…, K79, which are given by

5a827999 0 ≤  t ≤  19 

6ed9eba1 20 ≤  t ≤  39
Kt = (4.14)

8f1bbcdc 40 ≤  t ≤  59

ca62c1d6 60 ≤  t ≤  79.

4.2.2 SHA-256 Constants

SHA-256 uses a sequence of sixty-four constant 32-bit words, }256{
63

}256{
1

}256{
0 ,,, KKK K .  These

words represent the first thirty-two bits of the fractional parts of the cube roots of the first sixty-
four prime numbers.  In hex, these constant words are (from left to right)

428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5
d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174
e49b69c1 efbe4786 0fc19dc6 240ca1cc 2de92c6f 4a7484aa 5cb0a9dc 76f988da
983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967
27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722c85
a2bfe8a1 a81a664b c24b8b70 c76c51a3 d192e819 d6990624 f40e3585 106aa070
19a4c116 1e376c08 2748774c 34b0bcb5 391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3
748f82ee 78a5636f 84c87814 8cc70208 90befffa a4506ceb bef9a3f7 c67178f2.

4.2.3 SHA-384 and SHA-512 Constants
SHA-384 and SHA-512 use the same sequence of eighty constant 64-bit words,

}512{
79

}512{
1

}512{
0 ,,, KKK K .  These words represent the first sixty-four bits of the fractional parts of

the cube roots of the first eighty prime numbers.  In hex, these constant words are (from left to
right)

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc
3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118
d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2
72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694
e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65
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2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5
983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4
c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70
27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df
650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b
a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30
d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8
19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8
391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3
748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec
90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b
ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178
06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b
28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c
4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817.
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5. PREPROCESSING
Preprocessing shall take place before hash computation begins.  This preprocessing consists of
three steps: padding the message, M (Sec. 5.1), parsing the padded message into message blocks
(Sec. 5.2), and setting the initial hash value, H(0) (Sec. 5.3).

5.1 Padding the Message
The message, M, shall be padded before hash computation begins.  The purpose of this padding
is to ensure that the padded message is a multiple of 512 or 1024 bits, depending on the
algorithm.

5.1.1 SHA-1 and SHA-256
Suppose that the length of the message, M, is l  bits.  Append the bit “1” to the end of the
message, followed by k zero bits, where k is the smallest, non-negative solution to the equation

512mod4481 ≡++ kl . Then append the 64-bit block that is equal to the number l  expressed
using a binary representation. For example, the (8-bit ASCII) message “abc” has length

2438 =× , so the message is padded with a one bit, then 423)124(448 =+−  zero bits, and then
the message length, to become the 512-bit padded message

423 64
678 64748

01100001 01100010 01100011 1 00…00 00…011000 .
14243 14243 14243 123

“a” “b” “c” 24=l

The length of the padded message should now be a multiple of 512 bits.

5.1.2 SHA-384 and SHA-512
Suppose the length of the message M, in bits, is l  bits. Append the bit “1” to the end of the
message, followed by k zero bits, where k is the smallest non-negative solution to the equation

1024mod8961 ≡++ kl . Then append the 128-bit block that is equal to the number l  expressed
using a binary representation. For example, the (8-bit ASCII) message “abc” has length

2438 =× , so the message is padded with a one bit, then 871)124(896 =+−  zero bits, and then
the message length, to become the 1024-bit padded message

871 128
678 64748

01100001 01100010 01100011 1 00…00 00…011000 .
14243 14243 14243 123

“a” “b” “c” 24=l

The length of the padded message should now be a multiple of 1024 bits.
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5.2 Parsing the Padded Message
After a message has been padded, it must be parsed into N m-bit blocks before the hash
computation can begin.

5.2.1 SHA-1 and SHA-256
For SHA-1 and SHA-256, the padded message is parsed into N 512-bit blocks, M(1), M(2),…,
M(N).  Since the 512 bits of the input block may be expressed as sixteen 32-bit words, the first 32
bits of message block i are denoted )(

0
iM , the next 32 bits are )(

1
iM , and so on up to )(

15
iM .

5.2.2 SHA-384 and SHA-512
For SHA-384 and SHA-512, the padded message is parsed into N 1024-bit blocks, M(1), M(2),…,
M(N). Since the 1024 bits of the input block may be expressed as sixteen 64-bit words, the first 64
bits of message block i are denoted )(

0
iM , the next 64 bits are )(

1
iM , and so on up to )(

15
iM .

5.3 Setting the Initial Hash Value (H(0))
Before hash computation begins for each of the secure hash algorithms, the initial hash value,
H(0), must be set.  The size and number of words in H(0) depends on the message digest size.

5.3.1 SHA-1
For SHA-1, the initial hash value, H(0), shall consist of the following five 32-bit words, in hex:

)0(
0H  = 67452301

)0(
1H  = efcdab89

)0(
2H  = 98badcfe

)0(
3H  = 10325476

)0(
4H  = c3d2e1f0.

5.3.2 SHA-256
For SHA-256, the initial hash value, H(0), shall consist of the following eight 32-bit words, in
hex:

)0(
0H  = 6a09e667

)0(
1H = bb67ae85

)0(
2H = 3c6ef372

)0(
3H = a54ff53a

)0(
4H = 510e527f

)0(
5H = 9b05688c

)0(
6H = 1f83d9ab

)0(
7H  = 5be0cd19.
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These words were obtained by taking the first thirty-two bits of the fractional parts of the square
roots of the first eight prime numbers.

5.3.3 SHA-384
For SHA-384, the initial hash value, H(0), shall consist of the following eight 64-bit words, in
hex:

)0(
0H = cbbb9d5dc1059ed8

)0(
1H = 629a292a367cd507

)0(
2H = 9159015a3070dd17

)0(
3H = 152fecd8f70e5939

)0(
4H = 67332667ffc00b31

)0(
5H = 8eb44a8768581511

)0(
6H = db0c2e0d64f98fa7

)0(
7H = 47b5481dbefa4fa4.

These words were obtained by taking the first sixty-four bits of the fractional parts of the square
roots of the ninth through sixteenth prime numbers.

5.3.4 SHA-512
For SHA-512, the initial hash value, H(0), shall consist of the following eight 64-bit words, in
hex:

)0(
0H = 6a09e667f3bcc908

)0(
1H = bb67ae8584caa73b

)0(
2H = 3c6ef372fe94f82b

)0(
3H = a54ff53a5f1d36f1

)0(
4H = 510e527fade682d1

)0(
5H = 9b05688c2b3e6c1f

)0(
6H = 1f83d9abfb41bd6b

)0(
7H = 5be0cd19137e2179.

These words were obtained by taking the first sixty-four bits of the fractional parts of the square
roots of the first eight prime numbers.
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6. SECURE HASH ALGORITHMS
In the following sections, SHA-512 is described before SHA-384.  That is because the SHA-384
algorithm is identical to SHA-512, with the exception of using a different initial hash value and
truncating the final hash value to 384 bits.

For each of the secure hash algorithms, there may exist alternate computation methods that yield
identical results; one example is the alternative SHA-1 computation described in Sec. 6.1.3.
Such alternate methods may be implemented in conformance to this standard.

6.1 SHA-1
SHA-1 may be used to hash a message, M, having a length of l  bits, where 6420 <≤ l . The
algorithm uses 1) a message schedule of eighty 32-bit words, 2) five working variables of 32 bits
each, and 3) a hash value of five 32-bit words.  The final result of SHA-1 is a 160-bit message
digest.

The words of the message schedule are labeled W0, W1,…, W79. The five working variables are
labeled a, b, c, d, and e. The words of the hash value are labeled )(

4
)(

1
)(

0 ,,, iii HHH K , which will
hold the initial hash value, H(0), replaced by each successive intermediate hash value (after each
message block is processed), H(i),  and ending with the final hash value, H(N). SHA-1 also uses a
single temporary word, T.

Appendix A gives several detailed examples of SHA-1.

6.1.1 SHA-1 Preprocessing

1. Pad the message, M, according to Sec. 5.1.1;

2. Parse the padded message into N 512-bit message blocks, M(1), M(2), …, M(N),
according to Sec. 5.2.1; and

3. Set the initial hash value, H(0), as specified in Sec. 5.3.1.

6.1.2 SHA-1 Hash Computation
The SHA-1 hash computation uses functions and constants previously defined in Sec. 4.1.1 and
Sec. 4.2.1, respectively. Addition (+) is performed modulo 232.

After preprocessing is completed, each message block, M(1), M(2), …, M(N), is processed in order,
using the following steps:

For i = 1 to N:
{

1. Prepare the message schedule, {Wt}:
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)(i
tM 150 ≤≤ t

tW  =
ROTL1( 161483 −−−− ⊕⊕⊕ tttt WWWW ) 7916 ≤≤ t

2. Initialize the five working variables,  a, b, c, d, and e, with the (i-1)st hash value:

)(
4

)(
3

)(
2

)(
1

)(
0

i

i

i

i

i

He

Hd

Hc

Hb

Ha

=

=

=

=

=

3. For t = 0 to 79:
{

Ta

ab

bROTLc

cd

de

WKedcbfaROTLT ttt

=
=
=

=
=

++++=

)(

),,()(

30

5

}

4. Compute the ith intermediate hash value H(i):

)1(
4

)(
4

)1(
3

)(
3

)1(
2

)(
2

)1(
1

)(
1

)1(
0

)(
0

−

−

−

−

−

+=

+=

+=

+=

+=

ii

ii

ii

ii

ii

HeH

HdH

HcH

HbH

HaH

}

After repeating steps one through four a total of N times (i.e., after processing M(N)), the resulting
160-bit message digest of the message, M, is

)(
4

)(
3

)(
2

)(
1

)(
0

NNNNN HHHHH .
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6.1.3 Alternate Method for Computing a SHA-1 Message Digest
The SHA-1 hash computation method described in Sec. 6.1.2 assumes that the message schedule
W0, W1,…, W79 is implemented as an array of eighty 32-bit words.  This is efficient from the
standpoint of the minimization of execution time, since the addresses of Wt-3,…, Wt-16 in step (2)
of Sec. 6.1.2 are easily computed.

However, if memory is limited, an alternative is to regard {Wt} as a circular queue that may be
implemented using an array of sixteen 32-bit words, W0, W1,…, W15. The alternate method that is
described in this section yields the same message digest as the SHA-1 computation method
described in Sec. 6.1.2.  Although this alternate method saves sixty-four 32-bit words of storage,
it is likely to lengthen the execution time due to the increased complexity of the address
computations for the {Wt} in step (3).

For this alternate SHA-1 method, let MASK = 0000000f (in hex). As in Sec. 6.1.1, addition is
performed modulo 232.  Assuming that the preprocessing as described in Sec. 6.1.1 has been
performed, the processing of M(i) is as follows:

For i = 1 to N:
{

1. For t = 0 to 15:
{

)(i
tt MW =

}

2. Initialize the five working variables, a, b, c, d, and e, with the (i-1)st hash value:

)(
4

)(
3

)(
2

)(
1

)(
0

i

i

i

i

i

He

Hd

Hc

Hb

Ha

=

=

=

=

=

3. For t = 0 to 79:
{

MASKts ∧=

If 16≥t then
{

)( )2()8()13(
1

sMASKsMASKsMASKss WWWWROTLW ⊕⊕⊕= ∧+∧+∧+

}
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Ta

ab

bROTLc

cd

de

WKedcbfaROTLT stt

=
=
=

=
=

++++=

)(

),,()(

30

5

}

4. Compute the ith intermediate hash value H(i):

)1(
4

)(
4

)1(
3

)(
3

)1(
2

)(
2

)1(
1

)(
1

)1(
0

)(
0

−

−

−

−

−

+=

+=

+=

+=

+=

ii

ii

ii

ii

ii

HeH

HdH

HcH

HbH

HaH

}

After repeating steps one through four a total of N times (i.e., after processing M(N)), the resulting
160-bit message digest of the message, M, is

)(
4

)(
3

)(
2

)(
1

)(
0

NNNNN HHHHH .

6.2 SHA-256
SHA-256 may be used to hash a message, M, having a length of l  bits, where 6420 <≤ l . The
algorithm uses 1) a message schedule of sixty-four 32-bit words, 2) eight working variables of 32
bits each, and 3) a hash value of eight 32-bit words. The final result of SHA-256 is a 256-bit
message digest.

The words of the message schedule are labeled W0, W1,…, W63. The eight working variables are
labeled a, b, c, d, e, f, g, and h. The words of the hash value are labeled )(

7
)(

1
)(

0 ,,, iii HHH K ,
which will hold the initial hash value, H(0), replaced by each successive intermediate hash value
(after each message block is processed), H(i),  and ending with the final hash value, H(N). SHA-
256 also uses two temporary words, T1 and T2.

Appendix B gives several detailed examples of SHA-256.
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6.2.1 SHA-256 Preprocessing

1. Pad the message, M, according to Sec. 5.1.1;

2. Parse the padded message into N 512-bit message blocks, M(1), M(2), …, M(N),
according to Sec. 5.2.1; and

3. Set the initial hash value, H(0), as specified in Sec. 5.3.2.

6.2.2 SHA-256 Hash Computation
The SHA-256 hash computation uses functions and constants previously defined in Sec. 4.1.2
and Sec. 4.2.2, respectively.  Addition (+) is performed modulo 232.

After preprocessing is completed, each message block, M(1), M(2), …, M(N), is processed in order,
using the following steps:

For i = 1 to N:
{

1. Prepare the message schedule, {Wt}:

)(i
tM 150 ≤≤ t

tW  =

1615
}256{

072
}256{

1 )()( −−−− +++ tttt WWWW σσ 6316 ≤≤ t

2. Initialize the eight working variables, a, b, c, d, e, f, g, and h, with the (i-1)st hash
value:

)(
7

)(
6

)(
5

)(
4

)(
3

)(
2

)(
1

)(
0

i

i

i

i

i

i

i

i

Hh

Hg

Hf

He

Hd

Hc

Hb

Ha

=

=

=

=

=

=

=

=

3. For t = 0 to 63:
{
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1

}256{

02

}256{}256{

11

),,()(

),,()(

TTa

ab

bc

cd

Tde

ef

fg

gh

cbaMajaT

WKgfeChehT tt

+=
=
=
=

+=
=
=
=

+=

++++=

∑
∑

}

4. Compute the ith intermediate hash value H(i):

)1(
7

)(
7

)1(
6

)(
6

)1(
5

)(
5

)1(
4

)(
4

)1(
3

)(
3

)1(
2

)(
2

)1(
1

)(
1

)1(
0

)(
0

−

−

−

−

−

−

−

−

+=

+=

+=

+=

+=

+=

+=

+=

ii

ii

ii

ii

ii

ii

ii

ii

HhH

HgH

HfH

HeH

HdH

HcH

HbH

HaH

}

After repeating steps one through four a total of N times (i.e., after processing M(N)), the resulting
256-bit message digest of the message, M, is

)(
7

)(
6

)(
5

)(
4

)(
3

)(
2

)(
1

)(
0

NNNNNNNN HHHHHHHH .

6.3 SHA-512
SHA-512 may be used to hash a message, M, having a length of l  bits, where 12820 <≤ l . The
algorithm uses 1) a message schedule of eighty 64-bit words, 2) eight working variables of 64
bits each, and 3) a hash value of eight 64-bit words. The final result of SHA-512 is a 512-bit
message digest.

The words of the message schedule are labeled W0, W1,…, W79. The eight working variables are
labeled a, b, c, d, e, f, g, and h. The words of the hash value are labeled )(

7
)(

1
)(

0 ,,, iii HHH K ,
which will hold the initial hash value, H(0), replaced by each successive intermediate hash value
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(after each message block is processed), H(i),  and ending with the final hash value, H(N). SHA-
512 also uses two temporary words, T1 and T2.

Appendix C gives several detailed examples of SHA-512.

6.3.1 SHA-512 Preprocessing

1. Pad the message, M, according to Sec. 5.1.2;

2. Parse the padded message into N 1024-bit message blocks, M(1), M(2), …, M(N),
according to Sec. 5.2.2; and

3. Set the initial hash value, H(0), as specified in Sec. 5.3.4.

6.3.2 SHA-512 Hash Computation
The SHA-512 hash computation uses functions and constants previously defined in Sec. 4.1.3
and Sec. 4.2.3, respectively.  Addition (+) is performed modulo 264.

After preprocessing is completed, each message block, M(1), M(2), …, M(N), is processed in order,
using the following steps:

For i = 1 to N:
{

1. Prepare the message schedule, {Wt}:

)(i
tM 150 ≤≤ t

tW  =

1615
}512{

072
}512{

1 )()( −−−− +++ tttt WWWW σσ 7916 ≤≤ t

2. Initialize the eight working variables, a, b, c, d, e, f, g, and h, with the (i-1)st hash
value:

)(
7

)(
6

)(
5

)(
4

)(
3

)(
2

)(
1

)(
0

i

i

i

i

i

i

i

i

Hh

Hg

Hf

He

Hd

Hc

Hb

Ha

=

=

=

=

=

=

=

=

3. For t = 0 to 79:
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{

21

1

}512{

02

}512{}512{
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),,()(
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cd

Tde

ef

fg

gh

cbaMajaT

WKgfeChehT tt

+=
=
=
=

+=
=
=
=

+=

++++=

∑
∑

}

4. Compute the ith intermediate hash value H(i):

)1(
7

)(
7

)1(
6

)(
6

)1(
5

)(
5

)1(
4

)(
4

)1(
3

)(
3

)1(
2

)(
2

)1(
1

)(
1

)1(
0
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−

−

−

−

−

−

−

−

+=

+=

+=

+=

+=

+=

+=

+=

ii

ii

ii

ii

ii

ii
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ii

HhH

HgH

HfH

HeH

HdH

HcH

HbH

HaH

}

After repeating steps one through four a total of N times (i.e., after processing M(N)), the resulting
512-bit message digest of the message, M, is

)(
7

)(
6

)(
5

)(
4

)(
3

)(
2

)(
1

)(
0

NNNNNNNN HHHHHHHH .

6.4 SHA-384
SHA-384 may be used to hash a message, M, having a length of l  bits, where 12820 <≤ l . The
algorithm is defined in the exact same manner as SHA-512 (Sec. 6.3), with the following two
exceptions:

1. The initial hash value, H(0), shall be set as specified in Sec. 5.3.3; and
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2. The 384-bit message digest is obtained by truncating the final hash value, H(N), to its
left-most 384 bits:

)(
5

)(
4

)(
3

)(
2

)(
1

)(
0

NNNNNN HHHHHH .

Appendix D gives several detailed examples of SHA-384.
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APPENDIX A: SHA-1 EXAMPLES

This appendix is for informational purposes only and is not required to meet the standard.

A.1 SHA-1 Example (One-Block Message)
Let the message, M, be the 24-bit ( l = 24) ASCII string "abc", which is equivalent to the
following binary string:

01100001 01100010 01100011.

The message is padded by appending a "1" bit, followed by 423 "0" bits, and ending with the
hex value 00000000 00000018 (the two 32-bit word representation of the length, 24).  Thus,
the final padded message consists of one block (N = 1).

For SHA-1, the initial hash value, H(0), is
      

)0(
0H = 67452301

)0(
1H = efcdab89

)0(
2H = 98badcfe

)0(
3H = 10325476

)0(
4H = c3d2e1f0.

The words of the padded message block are then assigned to the words W0,…,W15 of the message
schedule:

W0 = 61626380
W1 = 00000000
W2 = 00000000
W3 = 00000000
W4 = 00000000
W5 = 00000000
W6 = 00000000
W7 = 00000000

W8 = 00000000
W9 = 00000000
W10 = 00000000
W11 = 00000000
W12 = 00000000
W13 = 00000000
W14 = 00000000
W15 = 00000018.

The following schedule shows the hex values for a, b, c, d, and e after pass t of the “for t = 0 to
79” loop described in Sec. 6.1.2, step 4.
      

a b c d e

t = 0 : 0116fc33 67452301 7bf36ae2 98badcfe 10325476
t = 1 : 8990536d 0116fc33 59d148c0 7bf36ae2 98badcfe
t = 2 : a1390f08 8990536d c045bf0c 59d148c0 7bf36ae2
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t = 3 : cdd8e11b a1390f08 626414db c045bf0c 59d148c0
t = 4 : cfd499de cdd8e11b 284e43c2 626414db c045bf0c
t = 5 : 3fc7ca40 cfd499de f3763846 284e43c2 626414db
t = 6 : 993e30c1 3fc7ca40 b3f52677 f3763846 284e43c2
t = 7 : 9e8c07d4 993e30c1 0ff1f290 b3f52677 f3763846
t = 8 : 4b6ae328 9e8c07d4 664f8c30 0ff1f290 b3f52677
t = 9 : 8351f929 4b6ae328 27a301f5 664f8c30 0ff1f290
t = 10 : fbda9e89 8351f929 12dab8ca 27a301f5 664f8c30
t = 11 : 63188fe4 fbda9e89 60d47e4a 12dab8ca 27a301f5
t = 12 : 4607b664 63188fe4 7ef6a7a2 60d47e4a 12dab8ca
t = 13 : 9128f695 4607b664 18c623f9 7ef6a7a2 60d47e4a
t = 14 : 196bee77 9128f695 1181ed99 18c623f9 7ef6a7a2
t = 15 : 20bdd62f 196bee77 644a3da5 1181ed99 18c623f9
t = 16 : 4e925823 20bdd62f c65afb9d 644a3da5 1181ed99
t = 17 : 82aa6728 4e925823 c82f758b c65afb9d 644a3da5
t = 18 : dc64901d 82aa6728 d3a49608 c82f758b c65afb9d
t = 19 : fd9e1d7d dc64901d 20aa99ca d3a49608 c82f758b
t = 20 : 1a37b0ca fd9e1d7d 77192407 20aa99ca d3a49608
t = 21 : 33a23bfc 1a37b0ca 7f67875f 77192407 20aa99ca
t = 22 : 21283486 33a23bfc 868dec32 7f67875f 77192407
t = 23 : d541f12d 21283486 0ce88eff 868dec32 7f67875f
t = 24 : c7567dc6 d541f12d 884a0d21 0ce88eff 868dec32
t = 25 : 48413ba4 c7567dc6 75507c4b 884a0d21 0ce88eff
t = 26 : be35fbd5 48413ba4 b1d59f71 75507c4b 884a0d21
t = 27 : 4aa84d97 be35fbd5 12104ee9 b1d59f71 75507c4b
t = 28 : 8370b52e 4aa84d97 6f8d7ef5 12104ee9 b1d59f71
t = 29 : c5fbaf5d 8370b52e d2aa1365 6f8d7ef5 12104ee9
t = 30 : 1267b407 c5fbaf5d a0dc2d4b d2aa1365 6f8d7ef5
t = 31 : 3b845d33 1267b407 717eebd7 a0dc2d4b d2aa1365
t = 32 : 046faa0a 3b845d33 c499ed01 717eebd7 a0dc2d4b
t = 33 : 2c0ebc11 046faa0a cee1174c c499ed01 717eebd7
t = 34 : 21796ad4 2c0ebc11 811bea82 cee1174c c499ed01
t = 35 : dcbbb0cb 21796ad4 4b03af04 811bea82 cee1174c
t = 36 : 0f511fd8 dcbbb0cb 085e5ab5 4b03af04 811bea82
t = 37 : dc63973f 0f511fd8 f72eec32 085e5ab5 4b03af04
t = 38 : 4c986405 dc63973f 03d447f6 f72eec32 085e5ab5
t = 39 : 32de1cba 4c986405 f718e5cf 03d447f6 f72eec32
t = 40 : fc87dedf 32de1cba 53261901 f718e5cf 03d447f6
t = 41 : 970a0d5c fc87dedf 8cb7872e 53261901 f718e5cf
t = 42 : 7f193dc5 970a0d5c ff21f7b7 8cb7872e 53261901
t = 43 : ee1b1aaf 7f193dc5 25c28357 ff21f7b7 8cb7872e
t = 44 : 40f28e09 ee1b1aaf 5fc64f71 25c28357 ff21f7b7
t = 45 : 1c51e1f2 40f28e09 fb86c6ab 5fc64f71 25c28357
t = 46 : a01b846c 1c51e1f2 503ca382 fb86c6ab 5fc64f71
t = 47 : bead02ca a01b846c 8714787c 503ca382 fb86c6ab
t = 48 : baf39337 bead02ca 2806e11b 8714787c 503ca382
t = 49 : 120731c5 baf39337 afab40b2 2806e11b 8714787c
t = 50 : 641db2ce 120731c5 eebce4cd afab40b2 2806e11b
t = 51 : 3847ad66 641db2ce 4481cc71 eebce4cd afab40b2
t = 52 : e490436d 3847ad66 99076cb3 4481cc71 eebce4cd
t = 53 : 27e9f1d8 e490436d 8e11eb59 99076cb3 4481cc71
t = 54 : 7b71f76d 27e9f1d8 792410db 8e11eb59 99076cb3
t = 55 : 5e6456af 7b71f76d 09fa7c76 792410db 8e11eb59
t = 56 : c846093f 5e6456af 5edc7ddb 09fa7c76 792410db
t = 57 : d262ff50 c846093f d79915ab 5edc7ddb 09fa7c76
t = 58 : 09d785fd d262ff50 f211824f d79915ab 5edc7ddb
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t = 59 : 3f52de5a 09d785fd 3498bfd4 f211824f d79915ab
t = 60 : d756c147 3f52de5a 4275e17f 3498bfd4 f211824f
t = 61 : 548c9cb2 d756c147 8fd4b796 4275e17f 3498bfd4
t = 62 : b66c020b 548c9cb2 f5d5b051 8fd4b796 4275e17f
t = 63 : 6b61c9e1 b66c020b 9523272c f5d5b051 8fd4b796
t = 64 : 19dfa7ac 6b61c9e1 ed9b0082 9523272c f5d5b051
t = 65 : 101655f9 19dfa7ac 5ad87278 ed9b0082 9523272c
t = 66 : 0c3df2b4 101655f9 0677e9eb 5ad87278 ed9b0082
t = 67 : 78dd4d2b 0c3df2b4 4405957e 0677e9eb 5ad87278
t = 68 : 497093c0 78dd4d2b 030f7cad 4405957e 0677e9eb
t = 69 : 3f2588c2 497093c0 de37534a 030f7cad 4405957e
t = 70 : c199f8c7 3f2588c2 125c24f0 de37534a 030f7cad
t = 71 : 39859de7 c199f8c7 8fc96230 125c24f0 de37534a
t = 72 : edb42de4 39859de7 f0667e31 8fc96230 125c24f0
t = 73 : 11793f6f edb42de4 ce616779 f0667e31 8fc96230
t = 74 : 5ee76897 11793f6f 3b6d0b79 ce616779 f0667e31
t = 75 : 63f7dab7 5ee76897 c45e4fdb 3b6d0b79 ce616779
t = 76 : a079b7d9 63f7dab7 d7b9da25 c45e4fdb 3b6d0b79
t = 77 : 860d21cc a079b7d9 d8fdf6ad d7b9da25 c45e4fdb
t = 78 : 5738d5e1 860d21cc 681e6df6 d8fdf6ad d7b9da25
t = 79 : 42541b35 5738d5e1 21834873 681e6df6 d8fdf6ad

That completes the processing of the first and only message block, M(1). The final hash value,
H(1), is calculated to be

)1(
0H = 67452301 + 42541b35 = a9993e36

)1(
1H = efcdab89 + 5738d5e1 = 4706816a

)1(
2H = 98badcfe + 21834873 = ba3e2571

)1(
3H = 10325476 + 681e6df6 = 7850c26c

)1(
4H = c3d2e1f0 + d8fdf6ad = 9cd0d89d.

The resulting 160-bit message digest is

a9993e36 4706816a ba3e2571 7850c26c 9cd0d89d.

A.2 SHA-1 Example (Multi-Block Message)
Let the message, M, be the 448-bit ( l = 448) ASCII string

"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq".

The message is padded by appending a "1" bit, followed by 511 "0" bits, and ending with the
hex value 00000000 000001c0 (the two 32-bit word representation of the length, 448).
Thus, the final padded message consists of two blocks (N = 2).

For SHA-1, the initial hash value, H(0), is
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)0(
0H = 67452301

)0(
1H = efcdab89

)0(
2H = 98badcfe

)0(
3H = 10325476

)0(
4H = c3d2e1f0.

The words of the first padded message block, M(1), are then assigned to the words W0,…,W15 of
the message schedule:
     

W0 = 61626364
W1 = 62636465
W2 = 63646566
W3 = 64656667
W4 = 65666768
W5 = 66676869
W6 = 6768696a
W7 = 68696a6b

W8 = 696a6b6c
W9 = 6a6b6c6d
W10 = 6b6c6d6e
W11 = 6c6d6e6f
W12 = 6d6e6f70
W13 = 6e6f7071
W14 = 80000000
W15 = 00000000.

The following schedule shows the hex values for a, b, c, d, and e after pass t of the “for t = 0 to
79” loop described in Sec. 6.1.2, step 4.

a b c d e

t = 0 : 0116fc17 67452301 7bf36ae2 98badcfe 10325476
t = 1 : ebf3b452 0116fc17 59d148c0 7bf36ae2 98badcfe
t = 2 : 5109913a ebf3b452 c045bf05 59d148c0 7bf36ae2
t = 3 : 2c4f6eac 5109913a bafced14 c045bf05 59d148c0
t = 4 : 33f4ae5b 2c4f6eac 9442644e bafced14 c045bf05
t = 5 : 96b85189 33f4ae5b 0b13dbab 9442644e bafced14
t = 6 : db04cb58 96b85189 ccfd2b96 0b13dbab 9442644e
t = 7 : 45833f0f db04cb58 65ae1462 ccfd2b96 0b13dbab
t = 8 : c565c35e 45833f0f 36c132d6 65ae1462 ccfd2b96
t = 9 : 6350afda c565c35e d160cfc3 36c132d6 65ae1462
t = 10 : 8993ea77 6350afda b15970d7 d160cfc3 36c132d6
t = 11 : e19ecaa2 8993ea77 98d42bf6 b15970d7 d160cfc3
t = 12 : 8603481e e19ecaa2 e264fa9d 98d42bf6 b15970d7
t = 13 : 32f94a85 8603481e b867b2a8 e264fa9d 98d42bf6
t = 14 : b2e7a8be 32f94a85 a180d207 b867b2a8 e264fa9d
t = 15 : 42637e39 b2e7a8be 4cbe52a1 a180d207 b867b2a8
t = 16 : 6b068048 42637e39 acb9ea2f 4cbe52a1 a180d207
t = 17 : 426b9c35 6b068048 5098df8e acb9ea2f 4cbe52a1
t = 18 : 944b1bd1 426b9c35 1ac1a012 5098df8e acb9ea2f
t = 19 : 6c445652 944b1bd1 509ae70d 1ac1a012 5098df8e
t = 20 : 95836da5 6c445652 6512c6f4 509ae70d 1ac1a012
t = 21 : 09511177 95836da5 9b111594 6512c6f4 509ae70d
t = 22 : e2b92dc4 09511177 6560db69 9b111594 6512c6f4
t = 23 : fd224575 e2b92dc4 c254445d 6560db69 9b111594
t = 24 : eeb82d9a fd224575 38ae4b71 c254445d 6560db69
t = 25 : 5a142c1a eeb82d9a 7f48915d 38ae4b71 c254445d
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t = 26 : 2972f7c7 5a142c1a bbae0b66 7f48915d 38ae4b71
t = 27 : d526a644 2972f7c7 96850b06 bbae0b66 7f48915d
t = 28 : e1122421 d526a644 ca5cbdf1 96850b06 bbae0b66
t = 29 : 05b457b2 e1122421 3549a991 ca5cbdf1 96850b06
t = 30 : a9c84bec 05b457b2 78448908 3549a991 ca5cbdf1
t = 31 : 52e31f60 a9c84bec 816d15ec 78448908 3549a991
t = 32 : 5af3242c 52e31f60 2a7212fb 816d15ec 78448908
t = 33 : 31c756a9 5af3242c 14b8c7d8 2a7212fb 816d15ec
t = 34 : e9ac987c 31c756a9 16bcc90b 14b8c7d8 2a7212fb
t = 35 : ab7c32ee e9ac987c 4c71d5aa 16bcc90b 14b8c7d8
t = 36 : 5933fc99 ab7c32ee 3a6b261f 4c71d5aa 16bcc90b
t = 37 : 43f87ae9 5933fc99 aadf0cbb 3a6b261f 4c71d5aa
t = 38 : 24957f22 43f87ae9 564cff26 aadf0cbb 3a6b261f
t = 39 : adeb7478 24957f22 50fe1eba 564cff26 aadf0cbb
t = 40 : d70e5010 adeb7478 89255fc8 50fe1eba 564cff26
t = 41 : 79bcfb08 d70e5010 2b7add1e 89255fc8 50fe1eba
t = 42 : f9bcb8de 79bcfb08 35c39404 2b7add1e 89255fc8
t = 43 : 633e9561 f9bcb8de 1e6f3ec2 35c39404 2b7add1e
t = 44 : 98c1ea64 633e9561 be6f2e37 1e6f3ec2 35c39404
t = 45 : c6ea241e 98c1ea64 58cfa558 be6f2e37 1e6f3ec2
t = 46 : a2ad4f02 c6ea241e 26307a99 58cfa558 be6f2e37
t = 47 : c8a69090 a2ad4f02 b1ba8907 26307a99 58cfa558
t = 48 : 88341600 c8a69090 a8ab53c0 b1ba8907 26307a99
t = 49 : 7e846f58 88341600 3229a424 a8ab53c0 b1ba8907
t = 50 : 86e358ba 7e846f58 220d0580 3229a424 a8ab53c0
t = 51 : 8d2e76c8 86e358ba 1fa11bd6 220d0580 3229a424
t = 52 : ce892e10 8d2e76c8 a1b8d62e 1fa11bd6 220d0580
t = 53 : edea95b1 ce892e10 234b9db2 a1b8d62e 1fa11bd6
t = 54 : 36d1230a edea95b1 33a24b84 234b9db2 a1b8d62e
t = 55 : 776c3910 36d1230a 7b7aa56c 33a24b84 234b9db2
t = 56 : a681b723 776c3910 8db448c2 7b7aa56c 33a24b84
t = 57 : ac0a794f a681b723 1ddb0e44 8db448c2 7b7aa56c
t = 58 : f03d3782 ac0a794f e9a06dc8 1ddb0e44 8db448c2
t = 59 : 9ef775c3 f03d3782 eb029e53 e9a06dc8 1ddb0e44
t = 60 : 36254b13 9ef775c3 bc0f4de0 eb029e53 e9a06dc8
t = 61 : 4080d4dc 36254b13 e7bddd70 bc0f4de0 eb029e53
t = 62 : 2bfaf7a8 4080d4dc cd8952c4 e7bddd70 bc0f4de0
t = 63 : 513f9ca0 2bfaf7a8 10203537 cd8952c4 e7bddd70
t = 64 : e5895c81 513f9ca0 0afebdea 10203537 cd8952c4
t = 65 : 1037d2d5 e5895c81 144fe728 0afebdea 10203537
t = 66 : 14a82da9 1037d2d5 79625720 144fe728 0afebdea
t = 67 : 6d17c9fd 14a82da9 440df4b5 79625720 144fe728
t = 68 : 2c7b07bd 6d17c9fd 452a0b6a 440df4b5 79625720
t = 69 : fdf6efff 2c7b07bd 5b45f27f 452a0b6a 440df4b5
t = 70 : 112b96e3 fdf6efff 4b1ec1ef 5b45f27f 452a0b6a
t = 71 : 84065712 112b96e3 ff7dbbff 4b1ec1ef 5b45f27f
t = 72 : ab89fb71 84065712 c44ae5b8 ff7dbbff 4b1ec1ef
t = 73 : c5210e35 ab89fb71 a10195c4 c44ae5b8 ff7dbbff
t = 74 : 352d9f4b c5210e35 6ae27edc a10195c4 c44ae5b8
t = 75 : 1a0e0e0a 352d9f4b 7148438d 6ae27edc a10195c4
t = 76 : d0d47349 1a0e0e0a cd4b67d2 7148438d 6ae27edc
t = 77 : ad38620d d0d47349 86838382 cd4b67d2 7148438d
t = 78 : d3ad7c25 ad38620d 74351cd2 86838382 cd4b67d2
t = 79 : 8ce34517 d3ad7c25 6b4e1883 74351cd2 86838382



DRAFT DRAFT

30

That completes the processing of the first message block, M(1). The first intermediate hash value,
H(1), is calculated to be

)1(
0H = 67452301 + 8ce34517 = f4286818

)1(
1H = efcdab89 + d3ad7c25 = c37b27ae

)1(
2H = 98badcfe + 6b4e1883 = 0408f581

)1(
3H = 10325476 + 74351cd2 = 84677148

)1(
4H = c3d2e1f0 + 86838382 = 4a566572.

The words of the second padded message block, M(2), are then assigned to the words W0,…,W15

of the message schedule:

W0 = 00000000
W1 = 00000000
W2 = 00000000
W3 = 00000000
W4 = 00000000
W5 = 00000000
W6 = 00000000
W7 = 00000000

W8 = 00000000
W9 = 00000000
W10 = 00000000
W11 = 00000000
W12 = 00000000
W13 = 00000000
W14 = 00000000
W15 = 000001c0.

The following schedule shows the hex values for a, b, c, d, and e after pass t of the “for t = 0 to
79” loop described in Sec. 6.1.2, step 4.

a b c d e

t = 0 : 2df257e9 f4286818 b0dec9eb 0408f581 84677148
t = 1 : 4d3dc58f 2df257e9 3d0a1a06 b0dec9eb 0408f581
t = 2 : c352bb05 4d3dc58f 4b7c95fa 3d0a1a06 b0dec9eb
t = 3 : eef743c6 c352bb05 d34f7163 4b7c95fa 3d0a1a06
t = 4 : 41e34277 eef743c6 70d4aec1 d34f7163 4b7c95fa
t = 5 : 5443915c 41e34277 bbbdd0f1 70d4aec1 d34f7163
t = 6 : e7fa0377 5443915c d078d09d bbbdd0f1 70d4aec1
t = 7 : c6946813 e7fa0377 1510e457 d078d09d bbbdd0f1
t = 8 : fdde1de1 c6946813 f9fe80dd 1510e457 d078d09d
t = 9 : b8538aca fdde1de1 f1a51a04 f9fe80dd 1510e457
t = 10 : 6ba94f63 b8538aca 7f778778 f1a51a04 f9fe80dd
t = 11 : 43a2792f 6ba94f63 ae14e2b2 7f778778 f1a51a04
t = 12 : fecd7bbf 43a2792f daea53d8 ae14e2b2 7f778778
t = 13 : a2604ca8 fecd7bbf d0e89e4b daea53d8 ae14e2b2
t = 14 : 258b0baa a2604ca8 ffb35eef d0e89e4b daea53d8
t = 15 : d9772360 258b0baa 2898132a ffb35eef d0e89e4b
t = 16 : 5507db6e d9772360 8962c2ea 2898132a ffb35eef
t = 17 : a51b58bc 5507db6e 365dc8d8 8962c2ea 2898132a
t = 18 : c2eb709f a51b58bc 9541f6db 365dc8d8 8962c2ea
t = 19 : d8992153 c2eb709f 2946d62f 9541f6db 365dc8d8
t = 20 : 37482f5f d8992153 f0badc27 2946d62f 9541f6db
t = 21 : ee8700bd 37482f5f f6264854 f0badc27 2946d62f
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t = 22 : 9ad594b9 ee8700bd cdd20bd7 f6264854 f0badc27
t = 23 : 8fbaa5b9 9ad594b9 7ba1c02f cdd20bd7 f6264854
t = 24 : 88fb5867 8fbaa5b9 66b5652e 7ba1c02f cdd20bd7
t = 25 : eec50521 88fb5867 63eea96e 66b5652e 7ba1c02f
t = 26 : 50bce434 eec50521 e23ed619 63eea96e 66b5652e
t = 27 : 5c416daf 50bce434 7bb14148 e23ed619 63eea96e
t = 28 : 2429be5f 5c416daf 142f390d 7bb14148 e23ed619
t = 29 : 0a2fb108 2429be5f d7105b6b 142f390d 7bb14148
t = 30 : 17986223 0a2fb108 c90a6f97 d7105b6b 142f390d
t = 31 : 8a4af384 17986223 028bec42 c90a6f97 d7105b6b
t = 32 : 6b629993 8a4af384 c5e61888 028bec42 c90a6f97
t = 33 : f15f04f3 6b629993 2292bce1 c5e61888 028bec42
t = 34 : 295cc25b f15f04f3 dad8a664 2292bce1 c5e61888
t = 35 : 696da404 295cc25b fc57c13c dad8a664 2292bce1
t = 36 : cef5ae12 696da404 ca573096 fc57c13c dad8a664
t = 37 : 87d5b80c cef5ae12 1a5b6901 ca573096 fc57c13c
t = 38 : 84e2a5f2 87d5b80c b3bd6b84 1a5b6901 ca573096
t = 39 : 03bb6310 84e2a5f2 21f56e03 b3bd6b84 1a5b6901
t = 40 : c2d8f75f 03bb6310 a138a97c 21f56e03 b3bd6b84
t = 41 : bfb25768 c2d8f75f 00eed8c4 a138a97c 21f56e03
t = 42 : 28589152 bfb25768 f0b63dd7 00eed8c4 a138a97c
t = 43 : ec1d3d61 28589152 2fec95da f0b63dd7 00eed8c4
t = 44 : 3caed7af ec1d3d61 8a162454 2fec95da f0b63dd7
t = 45 : c3d033ea 3caed7af 7b074f58 8a162454 2fec95da
t = 46 : 7316056a c3d033ea cf2bb5eb 7b074f58 8a162454
t = 47 : 46f93b68 7316056a b0f40cfa cf2bb5eb 7b074f58
t = 48 : dc8e7f26 46f93b68 9cc5815a b0f40cfa cf2bb5eb
t = 49 : 850d411c dc8e7f26 11be4eda 9cc5815a b0f40cfa
t = 50 : 7e4672c0 850d411c b7239fc9 11be4eda 9cc5815a
t = 51 : 89fbd41d 7e4672c0 21435047 b7239fc9 11be4eda
t = 52 : 1797e228 89fbd41d 1f919cb0 21435047 b7239fc9
t = 53 : 431d65bc 1797e228 627ef507 1f919cb0 21435047
t = 54 : 2bdbb8cb 431d65bc 05e5f88a 627ef507 1f919cb0
t = 55 : 6da72e7f 2bdbb8cb 10c7596f 05e5f88a 627ef507
t = 56 : a8495a9b 6da72e7f caf6ee32 10c7596f 05e5f88a
t = 57 : e785655a a8495a9b db69cb9f caf6ee32 10c7596f
t = 58 : 5b086c42 e785655a ea1256a6 db69cb9f caf6ee32
t = 59 : a65818f7 5b086c42 b9e15956 ea1256a6 db69cb9f
t = 60 : 7aab101b a65818f7 96c21b10 b9e15956 ea1256a6
t = 61 : 93614c9c 7aab101b e996063d 96c21b10 b9e15956
t = 62 : f66d9bf4 93614c9c deaac406 e996063d 96c21b10
t = 63 : d504902b f66d9bf4 24d85327 deaac406 e996063d
t = 64 : 60a9da62 d504902b 3d9b66fd 24d85327 deaac406
t = 65 : 8b687819 60a9da62 f541240a 3d9b66fd 24d85327
t = 66 : 083e90c3 8b687819 982a7698 f541240a 3d9b66fd
t = 67 : f6226bbf 083e90c3 62da1e06 982a7698 f541240a
t = 68 : 76c0563b f6226bbf c20fa430 62da1e06 982a7698
t = 69 : 989dd165 76c0563b fd889aef c20fa430 62da1e06
t = 70 : 8b2c7573 989dd165 ddb0158e fd889aef c20fa430
t = 71 : ae1b8e7b 8b2c7573 66277459 ddb0158e fd889aef
t = 72 : ca1840de ae1b8e7b e2cb1d5c 66277459 ddb0158e
t = 73 : 16f3babb ca1840de eb86e39e e2cb1d5c 66277459
t = 74 : d28d83ad 16f3babb b2861037 eb86e39e e2cb1d5c
t = 75 : 6bc02dfe d28d83ad c5bceeae b2861037 eb86e39e
t = 76 : d3a6e275 6bc02dfe 74a360eb c5bceeae b2861037
t = 77 : da955482 d3a6e275 9af00b7f 74a360eb c5bceeae
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t = 78 : 58c0aac0 da955482 74e9b89d 9af00b7f 74a360eb
t = 79 : 906fd62c 58c0aac0 b6a55520 74e9b89d 9af00b7f

That completes the processing of the second and final message block, M(2). The final hash value,
H(2), is calculated to be

)1(
0H = f4286818 + 906fd62c = 84983e44

)1(
1H = c37b27ae + 58c0aac0 = 1c3bd26e

)1(
2H = 0408f581 + b6a55520 = baae4aa1

)1(
3H = 84677148 + 74e9b89d = f95129e5

)1(
4H = 4a566572 + 9af00b7f = e54670f1.

The resulting 160-bit message digest is

84983e44 1c3bd26e baae4aa1 f95129e5 e54670f1.

A.3 SHA-1 Example (Long Message)
Let the message M be the binary-coded form of the ASCII string which consists of 1,000,000
repetitions of the character “a”.  The resulting SHA-1 message digest is

34aa973c d4c4daa4 f61eeb2b dbad2731 6534016f.
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APPENDIX B: SHA-256 EXAMPLES

This appendix is for informational purposes only and is not required to meet the standard.

B.1 SHA-256 Example (One-Block Message)
Let the message, M, be the 24-bit ( l = 24) ASCII string "abc", which is equivalent to the
following binary string:

      01100001  01100010  01100011.

The message is padded by appending a "1" bit, followed by 423 "0" bits, and ending with the
hex value 00000000 00000018 (the two 32-bit word representation of the length, 24).  Thus,
the final padded message consists of one block (N = 1).

For SHA-256, the initial hash value, H(0), is
      

)0(
0H  = 6a09e667

)0(
1H = bb67ae85

)0(
2H = 3c6ef372

)0(
3H = a54ff53a

)0(
4H = 510e527f

)0(
5H = 9b05688c

)0(
6H = 1f83d9ab

)0(
7H  = 5be0cd19.

The words of the padded message block are then assigned to the words W0,…,W15 of the message
schedule:

W0 = 61626380
W1 = 00000000
W2 = 00000000
W3 = 00000000
W4 = 00000000
W5 = 00000000
W6 = 00000000
W7 = 00000000

W8 = 00000000
W9 = 00000000
W10 = 00000000
W11 = 00000000
W12 = 00000000
W13 = 00000000
W14 = 00000000
W15 = 00000018.

The following schedule shows the hex values for a, b, c, d, e, f, g, and h after pass t of the “for t
= 0 to 63” loop described in Sec. 6.2.2, step 4.
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a b c d e f g h

t = 0 : 5d6aebcd 6a09e667 bb67ae85 3c6ef372 fa2a4622 510e527f 9b05688c 1f83d9ab

t = 1 : 5a6ad9ad 5d6aebcd 6a09e667 bb67ae85 78ce7989 fa2a4622 510e527f 9b05688c

t = 2 : c8c347a7 5a6ad9ad 5d6aebcd 6a09e667 f92939eb 78ce7989 fa2a4622 510e527f

t = 3 : d550f666 c8c347a7 5a6ad9ad 5d6aebcd 24e00850 f92939eb 78ce7989 fa2a4622

t = 4 : 04409a6a d550f666 c8c347a7 5a6ad9ad 43ada245 24e00850 f92939eb 78ce7989

t = 5 : 2b4209f5 04409a6a d550f666 c8c347a7 714260ad 43ada245 24e00850 f92939eb

t = 6 : e5030380 2b4209f5 04409a6a d550f666 9b27a401 714260ad 43ada245 24e00850

t = 7 : 85a07b5f e5030380 2b4209f5 04409a6a 0c657a79 9b27a401 714260ad 43ada245

t = 8 : 8e04ecb9 85a07b5f e5030380 2b4209f5 32ca2d8c 0c657a79 9b27a401 714260ad

t = 9 : 8c87346b 8e04ecb9 85a07b5f e5030380 1cc92596 32ca2d8c 0c657a79 9b27a401

t = 10 : 4798a3f4 8c87346b 8e04ecb9 85a07b5f 436b23e8 1cc92596 32ca2d8c 0c657a79

t = 11 : f71fc5a9 4798a3f4 8c87346b 8e04ecb9 816fd6e9 436b23e8 1cc92596 32ca2d8c

t = 12 : 87912990 f71fc5a9 4798a3f4 8c87346b 1e578218 816fd6e9 436b23e8 1cc92596

t = 13 : d932eb16 87912990 f71fc5a9 4798a3f4 745a48de 1e578218 816fd6e9 436b23e8

t = 14 : c0645fde d932eb16 87912990 f71fc5a9 0b92f20c 745a48de 1e578218 816fd6e9

t = 15 : b0fa238e c0645fde d932eb16 87912990 07590dcd 0b92f20c 745a48de 1e578218

t = 16 : 21da9a9b b0fa238e c0645fde d932eb16 8034229c 07590dcd 0b92f20c 745a48de

t = 17 : c2fbd9d1 21da9a9b b0fa238e c0645fde 846ee454 8034229c 07590dcd 0b92f20c

t = 18 : fe777bbf c2fbd9d1 21da9a9b b0fa238e cc899961 846ee454 8034229c 07590dcd

t = 19 : e1f20c33 fe777bbf c2fbd9d1 21da9a9b b0638179 cc899961 846ee454 8034229c

t = 20 : 9dc68b63 e1f20c33 fe777bbf c2fbd9d1 8ada8930 b0638179 cc899961 846ee454

t = 21 : c2606d6d 9dc68b63 e1f20c33 fe777bbf e1257970 8ada8930 b0638179 cc899961

t = 22 : a7a3623f c2606d6d 9dc68b63 e1f20c33 49f5114a e1257970 8ada8930 b0638179

t = 23 : c5d53d8d a7a3623f c2606d6d 9dc68b63 aa47c347 49f5114a e1257970 8ada8930

t = 24 : 1c2c2838 c5d53d8d a7a3623f c2606d6d 2823ef91 aa47c347 49f5114a e1257970

t = 25 : cde8037d 1c2c2838 c5d53d8d a7a3623f 14383d8e 2823ef91 aa47c347 49f5114a

t = 26 : b62ec4bc cde8037d 1c2c2838 c5d53d8d c74c6516 14383d8e 2823ef91 aa47c347

t = 27 : 77d37528 b62ec4bc cde8037d 1c2c2838 edffbff8 c74c6516 14383d8e 2823ef91

t = 28 : 363482c9 77d37528 b62ec4bc cde8037d 6112a3b7 edffbff8 c74c6516 14383d8e

t = 29 : a0060b30 363482c9 77d37528 b62ec4bc ade79437 6112a3b7 edffbff8 c74c6516

t = 30 : ea992a22 a0060b30 363482c9 77d37528 0109ab3a ade79437 6112a3b7 edffbff8

t = 31 : 73b33bf5 ea992a22 a0060b30 363482c9 ba591112 0109ab3a ade79437 6112a3b7

t = 32 : 98e12507 73b33bf5 ea992a22 a0060b30 9cd9f5f6 ba591112 0109ab3a ade79437

t = 33 : fe604df5 98e12507 73b33bf5 ea992a22 59249dd3 9cd9f5f6 ba591112 0109ab3a

t = 34 : a9a7738c fe604df5 98e12507 73b33bf5 085f3833 59249dd3 9cd9f5f6 ba591112

t = 35 : 65a0cfe4 a9a7738c fe604df5 98e12507 f4b002d6 085f3833 59249dd3 9cd9f5f6

t = 36 : 41a65cb1 65a0cfe4 a9a7738c fe604df5 0772a26b f4b002d6 085f3833 59249dd3

t = 37 : 34df1604 41a65cb1 65a0cfe4 a9a7738c a507a53d 0772a26b f4b002d6 085f3833

t = 38 : 6dc57a8a 34df1604 41a65cb1 65a0cfe4 f0781bc8 a507a53d 0772a26b f4b002d6

t = 39 : 79ea687a 6dc57a8a 34df1604 41a65cb1 1efbc0a0 f0781bc8 a507a53d 0772a26b

t = 40 : d6670766 79ea687a 6dc57a8a 34df1604 26352d63 1efbc0a0 f0781bc8 a507a53d

t = 41 : df46652f d6670766 79ea687a 6dc57a8a 838b2711 26352d63 1efbc0a0 f0781bc8

t = 42 : 17aa0dfe df46652f d6670766 79ea687a decd4715 838b2711 26352d63 1efbc0a0

t = 43 : 9d4baf93 17aa0dfe df46652f d6670766 fda24c2e decd4715 838b2711 26352d63

t = 44 : 26628815 9d4baf93 17aa0dfe df46652f a80f11f0 fda24c2e decd4715 838b2711

t = 45 : 72ab4b91 26628815 9d4baf93 17aa0dfe b7755da1 a80f11f0 fda24c2e decd4715

t = 46 : a14c14b0 72ab4b91 26628815 9d4baf93 d57b94a9 b7755da1 a80f11f0 fda24c2e

t = 47 : 4172328d a14c14b0 72ab4b91 26628815 fecf0bc6 d57b94a9 b7755da1 a80f11f0

t = 48 : 05757ceb 4172328d a14c14b0 72ab4b91 bd714038 fecf0bc6 d57b94a9 b7755da1

t = 49 : f11bfaa8 05757ceb 4172328d a14c14b0 6e5c390c bd714038 fecf0bc6 d57b94a9

t = 50 : 7a0508a1 f11bfaa8 05757ceb 4172328d 52f1ccf7 6e5c390c bd714038 fecf0bc6

t = 51 : 886e7a22 7a0508a1 f11bfaa8 05757ceb 49231c1e 52f1ccf7 6e5c390c bd714038
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t = 52 : 101fd28f 886e7a22 7a0508a1 f11bfaa8 529e7d00 49231c1e 52f1ccf7 6e5c390c

t = 53 : f5702fdb 101fd28f 886e7a22 7a0508a1 9f4787c3 529e7d00 49231c1e 52f1ccf7

t = 54 : 3ec45cdb f5702fdb 101fd28f 886e7a22 e50e1b4f 9f4787c3 529e7d00 49231c1e

t = 55 : 38cc9913 3ec45cdb f5702fdb 101fd28f 54cb266b e50e1b4f 9f4787c3 529e7d00

t = 56 : fcd1887b 38cc9913 3ec45cdb f5702fdb 9b5e906c 54cb266b e50e1b4f 9f4787c3

t = 57 : c062d46f fcd1887b 38cc9913 3ec45cdb 7e44008e 9b5e906c 54cb266b e50e1b4f

t = 58 : ffb70472 c062d46f fcd1887b 38cc9913 6d83bfc6 7e44008e 9b5e906c 54cb266b

t = 59 : b6ae8fff ffb70472 c062d46f fcd1887b b21bad3d 6d83bfc6 7e44008e 9b5e906c

t = 60 : b85e2ce9 b6ae8fff ffb70472 c062d46f 961f4894 b21bad3d 6d83bfc6 7e44008e

t = 61 : 04d24d6c b85e2ce9 b6ae8fff ffb70472 948d25b6 961f4894 b21bad3d 6d83bfc6

t = 62 : d39a2165 04d24d6c b85e2ce9 b6ae8fff fb121210 948d25b6 961f4894 b21bad3d

t = 63 : 506e3058 d39a2165 04d24d6c b85e2ce9 5ef50f24 fb121210 948d25b6 961f4894

That completes the processing of the first and only message block, M(1). The final hash value,
H(1), is calculated to be

)1(
0H  = 6a09e667 + 506e3058 = ba7816bf

)1(
1H = bb67ae85 + d39a2165 = 8f01cfea

)1(
2H = 3c6ef372 + 04d24d6c = 414140de

)1(
3H = a54ff53a + b85e2ce9 = 5dae2223

)1(
4H = 510e527f + 5ef50f24 = b00361a3

)1(
5H = 9b05688c + fb121210 = 96177a9c

)1(
6H = 1f83d9ab + 948d25b6 = b410ff61

)1(
7H  = 5be0cd19 + 961f4894 = f20015ad.

The resulting 256-bit message digest is

ba7816bf 8f01cfea 414140de 5dae2223 b00361a3 96177a9c b410ff61 f20015ad.

B.2 SHA-256 Example (Multi-Block Message)
Let the message, M, be the 448-bit ( l = 448) ASCII string

"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq".

The message is padded by appending a "1" bit, followed by 511 "0" bits, and ending with the
hex value 00000000 000001c0 (the two 32-bit word representation of the length, 448).
Thus, the final padded message consists of two blocks (N = 2).

For SHA-256, the initial hash value, H(0), is
      

)0(
0H  = 6a09e667

)0(
1H = bb67ae85

)0(
2H = 3c6ef372
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)0(
3H = a54ff53a

)0(
4H = 510e527f

)0(
5H = 9b05688c

)0(
6H = 1f83d9ab

)0(
7H  = 5be0cd19.

The words of the first padded message block, M(1), are then assigned to the words W0,…,W15 of
the message schedule:

W0 = 61626364
W1 = 62636465
W2 = 63646566
W3 = 64656667
W4 = 65666768
W5 = 66676869
W6 = 6768696a
W7 = 68696a6b

W8 = 696a6b6c
W9 = 6a6b6c6d
W10 = 6b6c6d6e
W11 = 6c6d6e6f
W12 = 6d6e6f70
W13 = 6e6f7071
W14 = 80000000
W15 = 00000000.

The following schedule shows the hex values for a, b, c, d, e, f, g, and h after pass t of the “for t
= 0 to 63” loop described in Sec. 6.2.2, step 4.

a b c d e f g h

t = 0 : 5d6aebb1 6a09e667 bb67ae85 3c6ef372 fa2a4606 510e527f 9b05688c 1f83d9ab

t = 1 : 2f2d5fcf 5d6aebb1 6a09e667 bb67ae85 4eb1cfce fa2a4606 510e527f 9b05688c

t = 2 : 97651825 2f2d5fcf 5d6aebb1 6a09e667 62d5c49e 4eb1cfce fa2a4606 510e527f

t = 3 : 4a8d64d5 97651825 2f2d5fcf 5d6aebb1 6494841b 62d5c49e 4eb1cfce fa2a4606

t = 4 : f921c212 4a8d64d5 97651825 2f2d5fcf 05c4f88a 6494841b 62d5c49e 4eb1cfce

t = 5 : 55c8ef48 f921c212 4a8d64d5 97651825 7ff91c94 05c4f88a 6494841b 62d5c49e

t = 6 : 485835b7 55c8ef48 f921c212 4a8d64d5 39a5b2ca 7ff91c94 05c4f88a 6494841b

t = 7 : d237e6db 485835b7 55c8ef48 f921c212 a401d211 39a5b2ca 7ff91c94 05c4f88a

t = 8 : 359f2bce d237e6db 485835b7 55c8ef48 c09ffec4 a401d211 39a5b2ca 7ff91c94

t = 9 : 3a474b2b 359f2bce d237e6db 485835b7 9037b3b8 c09ffec4 a401d211 39a5b2ca

t = 10 : b8e2b4cb 3a474b2b 359f2bce d237e6db 443ed29e 9037b3b8 c09ffec4 a401d211

t = 11 : 1762215c b8e2b4cb 3a474b2b 359f2bce ee1c97a8 443ed29e 9037b3b8 c09ffec4

t = 12 : 101a4861 1762215c b8e2b4cb 3a474b2b 839a0fc9 ee1c97a8 443ed29e 9037b3b8

t = 13 : d68e6457 101a4861 1762215c b8e2b4cb 9243f8af 839a0fc9 ee1c97a8 443ed29e

t = 14 : dd16cbb3 d68e6457 101a4861 1762215c 9162aded 9243f8af 839a0fc9 ee1c97a8

t = 15 : c3486194 dd16cbb3 d68e6457 101a4861 1496a54f 9162aded 9243f8af 839a0fc9

t = 16 : b9dcacb1 c3486194 dd16cbb3 d68e6457 d4f64250 1496a54f 9162aded 9243f8af

t = 17 : 046a193e b9dcacb1 c3486194 dd16cbb3 885370b6 d4f64250 1496a54f 9162aded

t = 18 : f402f058 046a193e b9dcacb1 c3486194 6f433549 885370b6 d4f64250 1496a54f

t = 19 : 2139187b f402f058 046a193e b9dcacb1 7c304206 6f433549 885370b6 d4f64250

t = 20 : d70ac17d 2139187b f402f058 046a193e 7cc6b262 7c304206 6f433549 885370b6

t = 21 : 1b2b66b8 d70ac17d 2139187b f402f058 d560b028 7cc6b262 7c304206 6f433549

t = 22 : ae2e2d4f 1b2b66b8 d70ac17d 2139187b f074fc95 d560b028 7cc6b262 7c304206

t = 23 : 59fce6b9 ae2e2d4f 1b2b66b8 d70ac17d a2c7d51d f074fc95 d560b028 7cc6b262

t = 24 : 4a885065 59fce6b9 ae2e2d4f 1b2b66b8 763597fb a2c7d51d f074fc95 d560b028
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t = 25 : 573221da 4a885065 59fce6b9 ae2e2d4f 36e74eb4 763597fb a2c7d51d f074fc95

t = 26 : 128661da 573221da 4a885065 59fce6b9 1162d575 36e74eb4 763597fb a2c7d51d

t = 27 : 73f858af 128661da 573221da 4a885065 e77c797f 1162d575 36e74eb4 763597fb

t = 28 : 74bcf468 73f858af 128661da 573221da 72abaecd e77c797f 1162d575 36e74eb4

t = 29 : df7151a0 74bcf468 73f858af 128661da 7629c961 72abaecd e77c797f 1162d575

t = 30 : eb43f3ed df7151a0 74bcf468 73f858af 0635d880 7629c961 72abaecd e77c797f

t = 31 : 5581ab07 eb43f3ed df7151a0 74bcf468 df980085 0635d880 7629c961 72abaecd

t = 32 : 9fc905c8 5581ab07 eb43f3ed df7151a0 a94d2af1 df980085 0635d880 7629c961

t = 33 : 9ce5a62f 9fc905c8 5581ab07 eb43f3ed 6ef3b6bd a94d2af1 df980085 0635d880

t = 34 : 1df8e885 9ce5a62f 9fc905c8 5581ab07 2a9e048e 6ef3b6bd a94d2af1 df980085

t = 35 : 0786dce8 1df8e885 9ce5a62f 9fc905c8 de2a21d1 2a9e048e 6ef3b6bd a94d2af1

t = 36 : 2c55d3a6 0786dce8 1df8e885 9ce5a62f b067c1af de2a21d1 2a9e048e 6ef3b6bd

t = 37 : a985b4be 2c55d3a6 0786dce8 1df8e885 f72bf353 b067c1af de2a21d1 2a9e048e

t = 38 : 91ac9d5d a985b4be 2c55d3a6 0786dce8 68d8d590 f72bf353 b067c1af de2a21d1

t = 39 : 7e4d30b8 91ac9d5d a985b4be 2c55d3a6 9f5b9b6d 68d8d590 f72bf353 b067c1af

t = 40 : 7e056794 7e4d30b8 91ac9d5d a985b4be 423b26c0 9f5b9b6d 68d8d590 f72bf353

t = 41 : 508a16ab 7e056794 7e4d30b8 91ac9d5d 45459d97 423b26c0 9f5b9b6d 68d8d590

t = 42 : b62c7013 508a16ab 7e056794 7e4d30b8 80a92a00 45459d97 423b26c0 9f5b9b6d

t = 43 : 167361de b62c7013 508a16ab 7e056794 41dd3844 80a92a00 45459d97 423b26c0

t = 44 : de71e2f2 167361de b62c7013 508a16ab ff61c636 41dd3844 80a92a00 45459d97

t = 45 : 18f0d19d de71e2f2 167361de b62c7013 6b88472c ff61c636 41dd3844 80a92a00

t = 46 : 165be9cd 18f0d19d de71e2f2 167361de a483f080 6b88472c ff61c636 41dd3844

t = 47 : 13d82741 165be9cd 18f0d19d de71e2f2 a7802a4d a483f080 6b88472c ff61c636

t = 48 : 017b9d99 13d82741 165be9cd 18f0d19d aeb10b60 a7802a4d a483f080 6b88472c

t = 49 : 543c99a1 017b9d99 13d82741 165be9cd 16f134b6 aeb10b60 a7802a4d a483f080

t = 50 : 758ca97a 543c99a1 017b9d99 13d82741 100cf2ea 16f134b6 aeb10b60 a7802a4d

t = 51 : 81c1cde0 758ca97a 543c99a1 017b9d99 5c47eb7b 100cf2ea 16f134b6 aeb10b60

t = 52 : b8d55619 81c1cde0 758ca97a 543c99a1 1c806a61 5c47eb7b 100cf2ea 16f134b6

t = 53 : 1d6de87a b8d55619 81c1cde0 758ca97a 3443bed4 1c806a61 5c47eb7b 100cf2ea

t = 54 : f907b313 1d6de87a b8d55619 81c1cde0 61a41711 3443bed4 1c806a61 5c47eb7b

t = 55 : 9e57c4a0 f907b313 1d6de87a b8d55619 eec13548 61a41711 3443bed4 1c806a61

t = 56 : 71629856 9e57c4a0 f907b313 1d6de87a 2f6c8c4e eec13548 61a41711 3443bed4

t = 57 : 7c015a2c 71629856 9e57c4a0 f907b313 cb9d3dd0 2f6c8c4e eec13548 61a41711

t = 58 : 921fccb6 7c015a2c 71629856 9e57c4a0 43d8a034 cb9d3dd0 2f6c8c4e eec13548

t = 59 : e18f259a 921fccb6 7c015a2c 71629856 51e15869 43d8a034 cb9d3dd0 2f6c8c4e

t = 60 : bcfce922 e18f259a 921fccb6 7c015a2c 962d8621 51e15869 43d8a034 cb9d3dd0

t = 61 : f6f443f8 bcfce922 e18f259a 921fccb6 acc75916 962d8621 51e15869 43d8a034

t = 62 : 86126910 f6f443f8 bcfce922 e18f259a 2fc08f85 acc75916 962d8621 51e15869

t = 63 : 1bdc6f6f 86126910 f6f443f8 bcfce922 25d2430a 2fc08f85 acc75916 962d8621

That completes the processing of the first message block, M(1). The first intermediate hash value,
H(1), is calculated to be

)1(
0H = 6a09e667 + 1bdc6f6f = 85e655d6

)1(
1H = bb67ae85 + 86126910 = 417a1795

)1(
2H = 3c6ef372 + f6f443f8 = 3363376a

)1(
3H = a54ff53a + bcfce922 = 624cde5c

)1(
4H = 510e527f + 25d2430a = 76e09589

)1(
5H = 9b05688c + 2fc08f85 = cac5f811

)1(
6H = 1f83d9ab + acc75916 = cc4b32c1
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)1(
7H = 5be0cd19 + 962d8621 = f20e533a.

The words of the second padded message block, M(2), are then assigned to the words W0,…,W15

of the message schedule:

W0 = 00000000
W1 = 00000000
W2 = 00000000
W3 = 00000000
W4 = 00000000
W5 = 00000000
W6 = 00000000
W7 = 00000000

W8 = 00000000
W9 = 00000000
W10 = 00000000
W11 = 00000000
W12 = 00000000
W13 = 00000000
W14 = 00000000
W15 = 000001c0.

The following schedule shows the hex values for a, b, c, d, e, f, g, and h after pass t of the “for t
= 0 to 63” loop described in Sec. 6.2.2, step 4.

a b c d e f g h

t = 0 : 7c20c838 85e655d6 417a1795 3363376a 4670ae6e 76e09589 cac5f811 cc4b32c1

t = 1 : 7c3c0f86 7c20c838 85e655d6 417a1795 8c51be64 4670ae6e 76e09589 cac5f811

t = 2 : fd1eebdc 7c3c0f86 7c20c838 85e655d6 af71b9ea 8c51be64 4670ae6e 76e09589

t = 3 : f268faa9 fd1eebdc 7c3c0f86 7c20c838 e20362ef af71b9ea 8c51be64 4670ae6e

t = 4 : 185a5d79 f268faa9 fd1eebdc 7c3c0f86 8dff3001 e20362ef af71b9ea 8c51be64

t = 5 : 3eeb6c06 185a5d79 f268faa9 fd1eebdc fe20cda6 8dff3001 e20362ef af71b9ea

t = 6 : 89bba3f1 3eeb6c06 185a5d79 f268faa9 0a34df03 fe20cda6 8dff3001 e20362ef

t = 7 : bf9a93a0 89bba3f1 3eeb6c06 185a5d79 059abdd1 0a34df03 fe20cda6 8dff3001

t = 8 : 2c096744 bf9a93a0 89bba3f1 3eeb6c06 abfa465b 059abdd1 0a34df03 fe20cda6

t = 9 : 2d964e86 2c096744 bf9a93a0 89bba3f1 aa27ed82 abfa465b 059abdd1 0a34df03

t = 10 : 5b35025b 2d964e86 2c096744 bf9a93a0 10e77723 aa27ed82 abfa465b 059abdd1

t = 11 : 5eb4ec40 5b35025b 2d964e86 2c096744 e11b4548 10e77723 aa27ed82 abfa465b

t = 12 : 35ee996d 5eb4ec40 5b35025b 2d964e86 5c24e2a2 e11b4548 10e77723 aa27ed82

t = 13 : d74080fa 35ee996d 5eb4ec40 5b35025b 68aa893f 5c24e2a2 e11b4548 10e77723

t = 14 : 0cea5cbc d74080fa 35ee996d 5eb4ec40 60356548 68aa893f 5c24e2a2 e11b4548

t = 15 : 16a8cc79 0cea5cbc d74080fa 35ee996d 0fcb1f6f 60356548 68aa893f 5c24e2a2

t = 16 : f16f634e 16a8cc79 0cea5cbc d74080fa 8b21cdc1 0fcb1f6f 60356548 68aa893f

t = 17 : 23dcb6c2 f16f634e 16a8cc79 0cea5cbc ca9182d3 8b21cdc1 0fcb1f6f 60356548

t = 18 : dcff40fd 23dcb6c2 f16f634e 16a8cc79 69bf7b95 ca9182d3 8b21cdc1 0fcb1f6f

t = 19 : 76f1a2bc dcff40fd 23dcb6c2 f16f634e 0dc84bb1 69bf7b95 ca9182d3 8b21cdc1

t = 20 : 20aad899 76f1a2bc dcff40fd 23dcb6c2 cc4769f2 0dc84bb1 69bf7b95 ca9182d3

t = 21 : d44dc81a 20aad899 76f1a2bc dcff40fd 5bace62d cc4769f2 0dc84bb1 69bf7b95

t = 22 : f13ae55b d44dc81a 20aad899 76f1a2bc 966aa287 5bace62d cc4769f2 0dc84bb1

t = 23 : a4195b91 f13ae55b d44dc81a 20aad899 eddbd6ed 966aa287 5bace62d cc4769f2

t = 24 : 4984fa79 a4195b91 f13ae55b d44dc81a a530d939 eddbd6ed 966aa287 5bace62d

t = 25 : aa6cb982 4984fa79 a4195b91 f13ae55b 0b5eeea4 a530d939 eddbd6ed 966aa287

t = 26 : 9450fbbc aa6cb982 4984fa79 a4195b91 09166dda 0b5eeea4 a530d939 eddbd6ed

t = 27 : 0d936bab 9450fbbc aa6cb982 4984fa79 6e495d4b 09166dda 0b5eeea4 a530d939

t = 28 : d958b529 0d936bab 9450fbbc aa6cb982 c2fa99b1 6e495d4b 09166dda 0b5eeea4

t = 29 : 1cfa5eb0 d958b529 0d936bab 9450fbbc 6c49db9f c2fa99b1 6e495d4b 09166dda

t = 30 : 02ef3a5f 1cfa5eb0 d958b529 0d936bab 5da10665 6c49db9f c2fa99b1 6e495d4b

t = 31 : b0eab1c5 02ef3a5f 1cfa5eb0 d958b529 f6d93952 5da10665 6c49db9f c2fa99b1
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t = 32 : 0bfba73c b0eab1c5 02ef3a5f 1cfa5eb0 8b99e3a9 f6d93952 5da10665 6c49db9f

t = 33 : 4bd1df96 0bfba73c b0eab1c5 02ef3a5f 905e44ac 8b99e3a9 f6d93952 5da10665

t = 34 : 9907f1b6 4bd1df96 0bfba73c b0eab1c5 66c3043d 905e44ac 8b99e3a9 f6d93952

t = 35 : ecde4e0d 9907f1b6 4bd1df96 0bfba73c 5dc119e6 66c3043d 905e44ac 8b99e3a9

t = 36 : 2f11c939 ecde4e0d 9907f1b6 4bd1df96 fed4ce1d 5dc119e6 66c3043d 905e44ac

t = 37 : d949682b 2f11c939 ecde4e0d 9907f1b6 32d99008 fed4ce1d 5dc119e6 66c3043d

t = 38 : adca7a96 d949682b 2f11c939 ecde4e0d c6cce4ff 32d99008 fed4ce1d 5dc119e6

t = 39 : 221b8a5a adca7a96 d949682b 2f11c939 0b82c5eb c6cce4ff 32d99008 fed4ce1d

t = 40 : 12d97845 221b8a5a adca7a96 d949682b e4213ca2 0b82c5eb c6cce4ff 32d99008

t = 41 : 2c794876 12d97845 221b8a5a adca7a96 ff6759ba e4213ca2 0b82c5eb c6cce4ff

t = 42 : 8300fca2 2c794876 12d97845 221b8a5a e0e3457c ff6759ba e4213ca2 0b82c5eb

t = 43 : f2ad6322 8300fca2 2c794876 12d97845 cc48c7f3 e0e3457c ff6759ba e4213ca2

t = 44 : 0f154e11 f2ad6322 8300fca2 2c794876 6f9517cb cc48c7f3 e0e3457c ff6759ba

t = 45 : 104a7db4 0f154e11 f2ad6322 8300fca2 5348e8f6 6f9517cb cc48c7f3 e0e3457c

t = 46 : 0b3303a7 104a7db4 0f154e11 f2ad6322 bbe1c39a 5348e8f6 6f9517cb cc48c7f3

t = 47 : d7354d5b 0b3303a7 104a7db4 0f154e11 aad55b6b bbe1c39a 5348e8f6 6f9517cb

t = 48 : b736d7a6 d7354d5b 0b3303a7 104a7db4 68f25260 aad55b6b bbe1c39a 5348e8f6

t = 49 : 2748e5ec b736d7a6 d7354d5b 0b3303a7 d4b58576 68f25260 aad55b6b bbe1c39a

t = 50 : d8aabcf9 2748e5ec b736d7a6 d7354d5b 27844711 d4b58576 68f25260 aad55b6b

t = 51 : 1a6bcf6a d8aabcf9 2748e5ec b736d7a6 ff5e99d0 27844711 d4b58576 68f25260

t = 52 : 4eca6fa0 1a6bcf6a d8aabcf9 2748e5ec 989ed071 ff5e99d0 27844711 d4b58576

t = 53 : ec02560a 4eca6fa0 1a6bcf6a d8aabcf9 7151df8e 989ed071 ff5e99d0 27844711

t = 54 : d9f0c115 ec02560a 4eca6fa0 1a6bcf6a 624150c4 7151df8e 989ed071 ff5e99d0

t = 55 : 92952710 d9f0c115 ec02560a 4eca6fa0 226806d6 624150c4 7151df8e 989ed071

t = 56 : 20d4d0e4 92952710 d9f0c115 ec02560a 4e515a4d 226806d6 624150c4 7151df8e

t = 57 : 4348eb1f 20d4d0e4 92952710 d9f0c115 c21eddf9 4e515a4d 226806d6 624150c4

t = 58 : 286fe5f0 4348eb1f 20d4d0e4 92952710 54076664 c21eddf9 4e515a4d 226806d6

t = 59 : 1c4cddd9 286fe5f0 4348eb1f 20d4d0e4 f487a853 54076664 c21eddf9 4e515a4d

t = 60 : a9f181dd 1c4cddd9 286fe5f0 4348eb1f 27ccb387 f487a853 54076664 c21eddf9

t = 61 : b25cef29 a9f181dd 1c4cddd9 286fe5f0 2aa1bb13 27ccb387 f487a853 54076664

t = 62 : 908c2123 b25cef29 a9f181dd 1c4cddd9 9a392956 2aa1bb13 27ccb387 f487a853

t = 63 : 9ea7148b 908c2123 b25cef29 a9f181dd 2c5c4ed0 9a392956 2aa1bb13 27ccb387

That completes the processing of the second and final message block, M(2). The final hash value,
H(2), is calculated to be

)2(
0H = 85e655d6 + 9ea7148b = 248d6a61

)2(
1H = 417a1795 + 908c2123 = d20638b8

)2(
2H = 3363376a + b25cef29 = e5c02693

)2(
3H = 624cde5c + a9f181dd = 0c3e6039

)2(
4H = 76e09589 + 2c5c4ed0 = a33ce459

)2(
5H = cac5f811 + 9a392956 = 64ff2167

)2(
6H = cc4b32c1 + 2aa1bb13 = f6ecedd4

)2(
7H = f20e533a + 27ccb387 = 19db06c1.

The resulting 256-bit message digest is

248d6a61 d20638b8 e5c02693 0c3e6039 a33ce459 64ff2167 f6ecedd4 19db06c1.
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B.3 SHA-256 Example (Long Message)
Let the message M be the binary-coded form of the ASCII string which consists of 1,000,000
repetitions of the character “a”.  The resulting SHA-256 message digest is

cdc76e5c 9914fb92 81a1c7e2 84d73e67 f1809a48 a497200e 046d39cc c7112cd0.
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APPENDIX C: SHA-512 EXAMPLES

This appendix is for informational purposes only and is not required to meet the standard.

C.1 SHA-512 Example (One-Block Message)
Let the message, M, be the 24-bit ( l = 24) ASCII string "abc", which is equivalent to the
following binary string:

01100001  01100010  01100011.

The message is padded by appending a "1" bit, followed by 871 "0" bits, and ending with the
hex value

0000000000000000 0000000000000018

(the two 64-bit word representation of the length, 24).  Thus, the final padded message consists
of one block (N = 1).

For SHA-512, the initial hash value, H(0), is
      

)0(
0H  = 6a09e667f3bcc908

)0(
1H = bb67ae8584caa73b

)0(
2H = 3c6ef372fe94f82b

)0(
3H = a54ff53a5f1d36f1

)0(
4H = 510e527fade682d1

)0(
5H = 9b05688c2b3e6c1f

)0(
6H = 1f83d9abfb41bd6b

)0(
7H  = 5be0cd19137e2179.

The words of the padded message block are then assigned to the words W0,…,W15 of the message
schedule:

W0 = 6162638000000000
W1 = 0000000000000000
W2 = 0000000000000000
W3 = 0000000000000000
W4 = 0000000000000000
W5 = 0000000000000000
W6 = 0000000000000000
W7 = 0000000000000000

W8 = 0000000000000000
W9 = 0000000000000000
W10 = 0000000000000000
W11 = 0000000000000000
W12 = 0000000000000000
W13 = 0000000000000000
W14 = 0000000000000000
W15 = 0000000000000018.
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The following schedule shows the hex values for a, b, c, d, e, f, g, and h after pass t of the “for t
= 0 to 79” loop described in Sec. 6.3.2, step 4.

a
/
e

b
/
f

c
/
g

d
/
h

t = 0 : f6afceb8bcfcddf5 6a09e667f3bcc908 bb67ae8584caa73b 3c6ef372fe94f82b
58cb02347ab51f91 510e527fade682d1 9b05688c2b3e6c1f 1f83d9abfb41bd6b

t = 1 : 1320f8c9fb872cc0 f6afceb8bcfcddf5 6a09e667f3bcc908 bb67ae8584caa73b
c3d4ebfd48650ffa 58cb02347ab51f91 510e527fade682d1 9b05688c2b3e6c1f

t = 2 : ebcffc07203d91f3 1320f8c9fb872cc0 f6afceb8bcfcddf5 6a09e667f3bcc908
dfa9b239f2697812 c3d4ebfd48650ffa 58cb02347ab51f91 510e527fade682d1

t = 3 : 5a83cb3e80050e82 ebcffc07203d91f3 1320f8c9fb872cc0 f6afceb8bcfcddf5
0b47b4bb1928990e dfa9b239f2697812 c3d4ebfd48650ffa 58cb02347ab51f91

t = 4 : b680953951604860 5a83cb3e80050e82 ebcffc07203d91f3 1320f8c9fb872cc0
745aca4a342ed2e2 0b47b4bb1928990e dfa9b239f2697812 c3d4ebfd48650ffa

t = 5 : af573b02403e89cd b680953951604860 5a83cb3e80050e82 ebcffc07203d91f3
96f60209b6dc35ba 745aca4a342ed2e2 0b47b4bb1928990e dfa9b239f2697812

t = 6 : c4875b0c7abc076b af573b02403e89cd b680953951604860 5a83cb3e80050e82
5a6c781f54dcc00c 96f60209b6dc35ba 745aca4a342ed2e2 0b47b4bb1928990e

t = 7 : 8093d195e0054fa3 c4875b0c7abc076b af573b02403e89cd b680953951604860
86f67263a0f0ec0a 5a6c781f54dcc00c 96f60209b6dc35ba 745aca4a342ed2e2

t = 8 : f1eca5544cb89225 8093d195e0054fa3 c4875b0c7abc076b af573b02403e89cd

d0403c398fc40002 86f67263a0f0ec0a 5a6c781f54dcc00c 96f60209b6dc35ba

t = 9 : 81782d4a5db48f03 f1eca5544cb89225 8093d195e0054fa3 c4875b0c7abc076b
00091f460be46c52 d0403c398fc40002 86f67263a0f0ec0a 5a6c781f54dcc00c

t = 10 : 69854c4aa0f25b59 81782d4a5db48f03 f1eca5544cb89225 8093d195e0054fa3
d375471bde1ba3f4 00091f460be46c52 d0403c398fc40002 86f67263a0f0ec0a

t = 11 : db0a9963f80c2eaa 69854c4aa0f25b59 81782d4a5db48f03 f1eca5544cb89225
475975b91a7a462c d375471bde1ba3f4 00091f460be46c52 d0403c398fc40002

t = 12 : 5e41214388186c14 db0a9963f80c2eaa 69854c4aa0f25b59 81782d4a5db48f03
cdf3bff2883fc9d9 475975b91a7a462c d375471bde1ba3f4 00091f460be46c52

t = 13 : 44249631255d2ca0 5e41214388186c14 db0a9963f80c2eaa 69854c4aa0f25b59
860acf9effba6f61 cdf3bff2883fc9d9 475975b91a7a462c d375471bde1ba3f4

t = 14 : fa967eed85a08028 44249631255d2ca0 5e41214388186c14 db0a9963f80c2eaa
874bfe5f6aae9f2f 860acf9effba6f61 cdf3bff2883fc9d9 475975b91a7a462c

t = 15 : 0ae07c86b1181c75 fa967eed85a08028 44249631255d2ca0 5e41214388186c14
a77b7c035dd4c161 874bfe5f6aae9f2f 860acf9effba6f61 cdf3bff2883fc9d9

t = 16 : caf81a425d800537 0ae07c86b1181c75 fa967eed85a08028 44249631255d2ca0
2deecc6b39d64d78 a77b7c035dd4c161 874bfe5f6aae9f2f 860acf9effba6f61

t = 17 : 4725be249ad19e6b caf81a425d800537 0ae07c86b1181c75 fa967eed85a08028
f47e8353f8047455 2deecc6b39d64d78 a77b7c035dd4c161 874bfe5f6aae9f2f

t = 18 : 3c4b4104168e3edb 4725be249ad19e6b caf81a425d800537 0ae07c86b1181c75

29695fd88d81dbd0 f47e8353f8047455 2deecc6b39d64d78 a77b7c035dd4c161

t = 19 : 9a3fb4d38ab6cf06 3c4b4104168e3edb 4725be249ad19e6b caf81a425d800537
f14998dd5f70767e 29695fd88d81dbd0 f47e8353f8047455 2deecc6b39d64d78
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t = 20 : 8dc5ae65569d3855 9a3fb4d38ab6cf06 3c4b4104168e3edb 4725be249ad19e6b
4bb9e66d1145bfdc f14998dd5f70767e 29695fd88d81dbd0 f47e8353f8047455

t = 21 : da34d6673d452dcf 8dc5ae65569d3855 9a3fb4d38ab6cf06 3c4b4104168e3edb
8e30ff09ad488753 4bb9e66d1145bfdc f14998dd5f70767e 29695fd88d81dbd0

t = 22 : 3e2644567b709a78 da34d6673d452dcf 8dc5ae65569d3855 9a3fb4d38ab6cf06
0ac2b11da8f571c6 8e30ff09ad488753 4bb9e66d1145bfdc f14998dd5f70767e

t = 23 : 4f6877b58fe55484 3e2644567b709a78 da34d6673d452dcf 8dc5ae65569d3855
c66005f87db55233 0ac2b11da8f571c6 8e30ff09ad488753 4bb9e66d1145bfdc

t = 24 : 9aff71163fa3a940 4f6877b58fe55484 3e2644567b709a78 da34d6673d452dcf
d3ecf13769180e6f c66005f87db55233 0ac2b11da8f571c6 8e30ff09ad488753

t = 25 : 0bc5f791f8e6816b 9aff71163fa3a940 4f6877b58fe55484 3e2644567b709a78
6ddf1fd7edcce336 d3ecf13769180e6f c66005f87db55233 0ac2b11da8f571c6

t = 26 : 884c3bc27bc4f941 0bc5f791f8e6816b 9aff71163fa3a940 4f6877b58fe55484
e6e48c9a8e948365 6ddf1fd7edcce336 d3ecf13769180e6f c66005f87db55233

t = 27 : eab4a9e5771b8d09 884c3bc27bc4f941 0bc5f791f8e6816b 9aff71163fa3a940
09068a4e255a0dac e6e48c9a8e948365 6ddf1fd7edcce336 d3ecf13769180e6f

t = 28 : e62349090f47d30a eab4a9e5771b8d09 884c3bc27bc4f941 0bc5f791f8e6816b
0fcdf99710f21584 09068a4e255a0dac e6e48c9a8e948365 6ddf1fd7edcce336

t = 29 : 74bf40f869094c63 e62349090f47d30a eab4a9e5771b8d09 884c3bc27bc4f941
f0aec2fe1437f085 0fcdf99710f21584 09068a4e255a0dac e6e48c9a8e948365

t = 30 : 4c4fbbb75f1873a6 74bf40f869094c63 e62349090f47d30a eab4a9e5771b8d09

73e025d91b9efea3 f0aec2fe1437f085 0fcdf99710f21584 09068a4e255a0dac

t = 31 : ff4d3f1f0d46a736 4c4fbbb75f1873a6 74bf40f869094c63 e62349090f47d30a

3cd388e119e8162e 73e025d91b9efea3 f0aec2fe1437f085 0fcdf99710f21584

t = 32 : a0509015ca08c8d4 ff4d3f1f0d46a736 4c4fbbb75f1873a6 74bf40f869094c63
e1034573654a106f 3cd388e119e8162e 73e025d91b9efea3 f0aec2fe1437f085

t = 33 : 60d4e6995ed91fe6 a0509015ca08c8d4 ff4d3f1f0d46a736 4c4fbbb75f1873a6
efabbd8bf47c041a e1034573654a106f 3cd388e119e8162e 73e025d91b9efea3

t = 34 : 2c59ec7743632621 60d4e6995ed91fe6 a0509015ca08c8d4 ff4d3f1f0d46a736
0fbae670fa780fd3 efabbd8bf47c041a e1034573654a106f 3cd388e119e8162e

t = 35 : 1a081afc59fdbc2c 2c59ec7743632621 60d4e6995ed91fe6 a0509015ca08c8d4
f098082f502b44cd 0fbae670fa780fd3 efabbd8bf47c041a e1034573654a106f

t = 36 : 88df85b0bbe77514 1a081afc59fdbc2c 2c59ec7743632621 60d4e6995ed91fe6
8fbfd0162bbf4675 f098082f502b44cd 0fbae670fa780fd3 efabbd8bf47c041a

t = 37 : 002bb8e4cd989567 88df85b0bbe77514 1a081afc59fdbc2c 2c59ec7743632621
66adcfa249ac7bbd 8fbfd0162bbf4675 f098082f502b44cd 0fbae670fa780fd3

t = 38 : b3bb8542b3376de5 002bb8e4cd989567 88df85b0bbe77514 1a081afc59fdbc2c

b49596c20feba7de 66adcfa249ac7bbd 8fbfd0162bbf4675 f098082f502b44cd

t = 39 : 8e01e125b855d225 b3bb8542b3376de5 002bb8e4cd989567 88df85b0bbe77514
0c710a47ba6a567b b49596c20feba7de 66adcfa249ac7bbd 8fbfd0162bbf4675

t = 40 : b01521dd6a6be12c 8e01e125b855d225 b3bb8542b3376de5 002bb8e4cd989567
169008b3a4bb170b 0c710a47ba6a567b b49596c20feba7de 66adcfa249ac7bbd

t = 41 : e96f89dd48cbd851 b01521dd6a6be12c 8e01e125b855d225 b3bb8542b3376de5
f0996439e7b50cb1 169008b3a4bb170b 0c710a47ba6a567b b49596c20feba7de

t = 42 : bc05ba8de5d3c480 e96f89dd48cbd851 b01521dd6a6be12c 8e01e125b855d225

639cb938e14dc190 f0996439e7b50cb1 169008b3a4bb170b 0c710a47ba6a567b

t = 43 : 35d7e7f41defcbd5 bc05ba8de5d3c480 e96f89dd48cbd851 b01521dd6a6be12c
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cc5100997f5710f2 639cb938e14dc190 f0996439e7b50cb1 169008b3a4bb170b

t = 44 : c47c9d5c7ea8a234 35d7e7f41defcbd5 bc05ba8de5d3c480 e96f89dd48cbd851
858d832ae0e8911c cc5100997f5710f2 639cb938e14dc190 f0996439e7b50cb1

t = 45 : 021fbadbabab5ac6 c47c9d5c7ea8a234 35d7e7f41defcbd5 bc05ba8de5d3c480
e95c2a57572d64d9 858d832ae0e8911c cc5100997f5710f2 639cb938e14dc190

t = 46 : f61e672694de2d67 021fbadbabab5ac6 c47c9d5c7ea8a234 35d7e7f41defcbd5
c6bc35740d8daa9a e95c2a57572d64d9 858d832ae0e8911c cc5100997f5710f2

t = 47 : 6b69fc1bb482feac f61e672694de2d67 021fbadbabab5ac6 c47c9d5c7ea8a234
35264334c03ac8ad c6bc35740d8daa9a e95c2a57572d64d9 858d832ae0e8911c

t = 48 : 571f323d96b3a047 6b69fc1bb482feac f61e672694de2d67 021fbadbabab5ac6
271580ed6c3e5650 35264334c03ac8ad c6bc35740d8daa9a e95c2a57572d64d9

t = 49 : ca9bd862c5050918 571f323d96b3a047 6b69fc1bb482feac f61e672694de2d67
dfe091dab182e645 271580ed6c3e5650 35264334c03ac8ad c6bc35740d8daa9a

t = 50 : 813a43dd2c502043 ca9bd862c5050918 571f323d96b3a047 6b69fc1bb482feac
07a0d8ef821c5e1a dfe091dab182e645 271580ed6c3e5650 35264334c03ac8ad

t = 51 : d43f83727325dd77 813a43dd2c502043 ca9bd862c5050918 571f323d96b3a047

483f80a82eaee23e 07a0d8ef821c5e1a dfe091dab182e645 271580ed6c3e5650

t = 52 : 03df11b32d42e203 d43f83727325dd77 813a43dd2c502043 ca9bd862c5050918
504f94e40591cffa 483f80a82eaee23e 07a0d8ef821c5e1a dfe091dab182e645

t = 53 : d63f68037ddf06aa 03df11b32d42e203 d43f83727325dd77 813a43dd2c502043
a6781efe1aa1ce02 504f94e40591cffa 483f80a82eaee23e 07a0d8ef821c5e1a

t = 54 : f650857b5babda4d d63f68037ddf06aa 03df11b32d42e203 d43f83727325dd77
9ccfb31a86df0f86 a6781efe1aa1ce02 504f94e40591cffa 483f80a82eaee23e

t = 55 : 63b460e42748817e f650857b5babda4d d63f68037ddf06aa 03df11b32d42e203
c6b4dd2a9931c509 9ccfb31a86df0f86 a6781efe1aa1ce02 504f94e40591cffa

t = 56 : 7a52912943d52b05 63b460e42748817e f650857b5babda4d d63f68037ddf06aa
d2e89bbd91e00be0 c6b4dd2a9931c509 9ccfb31a86df0f86 a6781efe1aa1ce02

t = 57 : 4b81c3aec976ea4b 7a52912943d52b05 63b460e42748817e f650857b5babda4d
70505988124351ac d2e89bbd91e00be0 c6b4dd2a9931c509 9ccfb31a86df0f86

t = 58 : 581ecb3355dcd9b8 4b81c3aec976ea4b 7a52912943d52b05 63b460e42748817e
6a3c9b0f71c8bf36 70505988124351ac d2e89bbd91e00be0 c6b4dd2a9931c509

t = 59 : 2c074484ef1eac8c 581ecb3355dcd9b8 4b81c3aec976ea4b 7a52912943d52b05
4797cde4ed370692 6a3c9b0f71c8bf36 70505988124351ac d2e89bbd91e00be0

t = 60 : 3857dfd2fc37d3ba 2c074484ef1eac8c 581ecb3355dcd9b8 4b81c3aec976ea4b
a6af4e9c9f807e51 4797cde4ed370692 6a3c9b0f71c8bf36 70505988124351ac

t = 61 : cfcd928c5424e2b6 3857dfd2fc37d3ba 2c074484ef1eac8c 581ecb3355dcd9b8
09aee5bda1644de5 a6af4e9c9f807e51 4797cde4ed370692 6a3c9b0f71c8bf36

t = 62 : a81dedbb9f19e643 cfcd928c5424e2b6 3857dfd2fc37d3ba 2c074484ef1eac8c
84058865d60a05fa 09aee5bda1644de5 a6af4e9c9f807e51 4797cde4ed370692

t = 63 : ab44e86276478d85 a81dedbb9f19e643 cfcd928c5424e2b6 3857dfd2fc37d3ba
cd881ee59ca6bc53 84058865d60a05fa 09aee5bda1644de5 a6af4e9c9f807e51

t = 64 : 5a806d7e9821a501 ab44e86276478d85 a81dedbb9f19e643 cfcd928c5424e2b6

aa84b086688a5c45 cd881ee59ca6bc53 84058865d60a05fa 09aee5bda1644de5

t = 65 : eeb9c21bb0102598 5a806d7e9821a501 ab44e86276478d85 a81dedbb9f19e643

3b5fed0d6a1f96e1 aa84b086688a5c45 cd881ee59ca6bc53 84058865d60a05fa

t = 66 : 46c4210ab2cc155d eeb9c21bb0102598 5a806d7e9821a501 ab44e86276478d85
29fab5a7bff53366 3b5fed0d6a1f96e1 aa84b086688a5c45 cd881ee59ca6bc53
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t = 67 : 54ba35cf56a0340e 46c4210ab2cc155d eeb9c21bb0102598 5a806d7e9821a501
1c66f46d95690bcf 29fab5a7bff53366 3b5fed0d6a1f96e1 aa84b086688a5c45

t = 68 : 181839d609c79748 54ba35cf56a0340e 46c4210ab2cc155d eeb9c21bb0102598
0ada78ba2d446140 1c66f46d95690bcf 29fab5a7bff53366 3b5fed0d6a1f96e1

t = 69 : fb6aaae5d0b6a447 181839d609c79748 54ba35cf56a0340e 46c4210ab2cc155d
e3711cb6564d112d 0ada78ba2d446140 1c66f46d95690bcf 29fab5a7bff53366

t = 70 : 7652c579cb60f19c fb6aaae5d0b6a447 181839d609c79748 54ba35cf56a0340e
aff62c9665ff80fa e3711cb6564d112d 0ada78ba2d446140 1c66f46d95690bcf

t = 71 : f15e9664b2803575 7652c579cb60f19c fb6aaae5d0b6a447 181839d609c79748
947c3dfafee570ef aff62c9665ff80fa e3711cb6564d112d 0ada78ba2d446140

t = 72 : 358406d165aee9ab f15e9664b2803575 7652c579cb60f19c fb6aaae5d0b6a447
8c7b5fd91a794ca0 947c3dfafee570ef aff62c9665ff80fa e3711cb6564d112d

t = 73 : 20878dcd29cdfaf5 358406d165aee9ab f15e9664b2803575 7652c579cb60f19c
054d3536539948d0 8c7b5fd91a794ca0 947c3dfafee570ef aff62c9665ff80fa

t = 74 : 33d48dabb5521de2 20878dcd29cdfaf5 358406d165aee9ab f15e9664b2803575
2ba18245b50de4cf 054d3536539948d0 8c7b5fd91a794ca0 947c3dfafee570ef

t = 75 : c8960e6be864b916 33d48dabb5521de2 20878dcd29cdfaf5 358406d165aee9ab
995019a6ff3ba3de 2ba18245b50de4cf 054d3536539948d0 8c7b5fd91a794ca0

t = 76 : 654ef9abec389ca9 c8960e6be864b916 33d48dabb5521de2 20878dcd29cdfaf5
ceb9fc3691ce8326 995019a6ff3ba3de 2ba18245b50de4cf 054d3536539948d0

t = 77 : d67806db8b148677 654ef9abec389ca9 c8960e6be864b916 33d48dabb5521de2
25c96a7768fb2aa3 ceb9fc3691ce8326 995019a6ff3ba3de 2ba18245b50de4cf

t = 78 : 10d9c4c4295599f6 d67806db8b148677 654ef9abec389ca9 c8960e6be864b916

9bb4d39778c07f9e 25c96a7768fb2aa3 ceb9fc3691ce8326 995019a6ff3ba3de

t = 79 : 73a54f399fa4b1b2 10d9c4c4295599f6 d67806db8b148677 654ef9abec389ca9
d08446aa79693ed7 9bb4d39778c07f9e 25c96a7768fb2aa3 ceb9fc3691ce8326

That completes the processing of the first and only message block, M(1). The final hash value,
H(1), is calculated to be

)1(
0H  = 6a09e667f3bcc908 + 73a54f399fa4b1b2 = ddaf35a193617aba

)1(
1H = bb67ae8584caa73b + 10d9c4c4295599f6 = cc417349ae204131

)1(
2H = 3c6ef372fe94f82b + d67806db8b148677 = 12e6fa4e89a97ea2

)1(
3H = a54ff53a5f1d36f1 + 654ef9abec389ca9 = 0a9eeee64b55d39a

)1(
4H = 510e527fade682d1 + d08446aa79693ed7 = 2192992a274fc1a8

)1(
5H = 9b05688c2b3e6c1f + 9bb4d39778c07f9e = 36ba3c23a3feebbd

)1(
6H = 1f83d9abfb41bd6b + 25c96a7768fb2aa3 = 454d4423643ce80e

)1(
7H  = 5be0cd19137e2179 + ceb9fc3691ce8326 = 2a9ac94fa54ca49f.

The resulting 512-bit message digest is

ddaf35a193617aba cc417349ae204131 12e6fa4e89a97ea2 0a9eeee64b55d39a
2192992a274fc1a8 36ba3c23a3feebbd 454d4423643ce80e 2a9ac94fa54ca49f.
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C.2 SHA-512 Example (Multi-Block Message)
Let the message, M, be the 896-bit ( l = 896) ASCII string

"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn
hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu".

The message is padded by appending a "1" bit, followed by 1023 "0" bits, and ending with the
hex value

0000000000000000 0000000000000380

(the two 64-bit word representation of the length, 24).  Thus, the final padded message consists
of two blocks (N = 2).

For SHA-512, the initial hash value, H(0), is
      

)0(
0H  = 6a09e667f3bcc908

)0(
1H = bb67ae8584caa73b

)0(
2H = 3c6ef372fe94f82b

)0(
3H = a54ff53a5f1d36f1

)0(
4H = 510e527fade682d1

)0(
5H = 9b05688c2b3e6c1f

)0(
6H = 1f83d9abfb41bd6b

)0(
7H  = 5be0cd19137e2179.

The words of the padded message block are then assigned to the words W0,…,W15 of the message
schedule:

W0 = 6162636465666768
W1 = 6263646566676869
W2 = 636465666768696a
W3 = 6465666768696a6b
W4 = 65666768696a6b6c
W5 = 666768696a6b6c6d
W6 = 6768696a6b6c6d6e
W7 = 68696a6b6c6d6e6f

W8 = 696a6b6c6d6e6f70
W9 = 6a6b6c6d6e6f7071
W10 = 6b6c6d6e6f707172
W11 = 6c6d6e6f70717273
W12 = 6d6e6f7071727374
W13 = 6e6f707172737475
W14 = 8000000000000000
W15 = 0000000000000000.

The following schedule shows the hex values for a, b, c, d, e, f, g, and h after pass t of the “for t
= 0 to 79” loop described in Sec. 6.3.2, step 4.
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a
/
e

b
/
f

c
/
g

d
/
h

t = 0 : f6afce9d2263455d 6a09e667f3bcc908 bb67ae8584caa73b 3c6ef372fe94f82b
58cb0218e01b86f9 510e527fade682d1 9b05688c2b3e6c1f 1f83d9abfb41bd6b

t = 1 : 0b7056a534ae5f62 f6afce9d2263455d 6a09e667f3bcc908 bb67ae8584caa73b
f8c7198fe39e4c8c 58cb0218e01b86f9 510e527fade682d1 9b05688c2b3e6c1f

t = 2 : 2ca82233760c9942 0b7056a534ae5f62 f6afce9d2263455d 6a09e667f3bcc908
303eccccd65953de f8c7198fe39e4c8c 58cb0218e01b86f9 510e527fade682d1

t = 3 : a023f17ce52cda7b 2ca82233760c9942 0b7056a534ae5f62 f6afce9d2263455d
ffdee5eedcc9ca42 303eccccd65953de f8c7198fe39e4c8c 58cb0218e01b86f9

t = 4 : 8f0a67d9d591a1a7 a023f17ce52cda7b 2ca82233760c9942 0b7056a534ae5f62
cb4cfbb166505f2f ffdee5eedcc9ca42 303eccccd65953de f8c7198fe39e4c8c

t = 5 : b466267371acc493 8f0a67d9d591a1a7 a023f17ce52cda7b 2ca82233760c9942
73d6c84c54d399ee cb4cfbb166505f2f ffdee5eedcc9ca42 303eccccd65953de

t = 6 : 658269f1a312fccd b466267371acc493 8f0a67d9d591a1a7 a023f17ce52cda7b
cdc40314975fb275 73d6c84c54d399ee cb4cfbb166505f2f ffdee5eedcc9ca42

t = 7 : 65e3519c5b88181b 658269f1a312fccd b466267371acc493 8f0a67d9d591a1a7
a657850ab3970c5a cdc40314975fb275 73d6c84c54d399ee cb4cfbb166505f2f

t = 8 : 56604fbb4b6393ec 65e3519c5b88181b 658269f1a312fccd b466267371acc493

e8b3be22fbe64df7 a657850ab3970c5a cdc40314975fb275 73d6c84c54d399ee

t = 9 : c4562769a37d02c0 56604fbb4b6393ec 65e3519c5b88181b 658269f1a312fccd
0062e70a1ef705c1 e8b3be22fbe64df7 a657850ab3970c5a cdc40314975fb275

t = 10 : 27c0b4c9186e1736 c4562769a37d02c0 56604fbb4b6393ec 65e3519c5b88181b
bc9740477a18ae2d 0062e70a1ef705c1 e8b3be22fbe64df7 a657850ab3970c5a

t = 11 : f17f52fb02f4eb74 27c0b4c9186e1736 c4562769a37d02c0 56604fbb4b6393ec
be58522cb9590ee1 bc9740477a18ae2d 0062e70a1ef705c1 e8b3be22fbe64df7

t = 12 : f2c245ac903d4a35 f17f52fb02f4eb74 27c0b4c9186e1736 c4562769a37d02c0
49d5fa3a16dcd502 be58522cb9590ee1 bc9740477a18ae2d 0062e70a1ef705c1

t = 13 : 9b04175ea8090daa f2c245ac903d4a35 f17f52fb02f4eb74 27c0b4c9186e1736
ec9c5e98ff98760d 49d5fa3a16dcd502 be58522cb9590ee1 bc9740477a18ae2d

t = 14 : 481b8a6ee5e07031 9b04175ea8090daa f2c245ac903d4a35 f17f52fb02f4eb74
e4d35b613a5ac420 ec9c5e98ff98760d 49d5fa3a16dcd502 be58522cb9590ee1

t = 15 : 9356ac3ec3e51459 481b8a6ee5e07031 9b04175ea8090daa f2c245ac903d4a35
701f17d27582443b e4d35b613a5ac420 ec9c5e98ff98760d 49d5fa3a16dcd502

t = 16 : b889ed34abd7aa37 9356ac3ec3e51459 481b8a6ee5e07031 9b04175ea8090daa
1d05d9ba779a1a78 701f17d27582443b e4d35b613a5ac420 ec9c5e98ff98760d

t = 17 : bf537b1f3edc7381 b889ed34abd7aa37 9356ac3ec3e51459 481b8a6ee5e07031
c362ff9cf932951d 1d05d9ba779a1a78 701f17d27582443b e4d35b613a5ac420

t = 18 : d4e44d54e8242ad8 bf537b1f3edc7381 b889ed34abd7aa37 9356ac3ec3e51459

459e4e6888919f36 c362ff9cf932951d 1d05d9ba779a1a78 701f17d27582443b

t = 19 : 05f3fba454e5de3d d4e44d54e8242ad8 bf537b1f3edc7381 b889ed34abd7aa37
caed4b5fa322b984 459e4e6888919f36 c362ff9cf932951d 1d05d9ba779a1a78

t = 20 : cdb73772dc0248bf 05f3fba454e5de3d d4e44d54e8242ad8 bf537b1f3edc7381
dc8049afa6acd502 caed4b5fa322b984 459e4e6888919f36 c362ff9cf932951d

t = 21 : 1d47a3268ff677ed cdb73772dc0248bf 05f3fba454e5de3d d4e44d54e8242ad8
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8407818e9b28cc12 dc8049afa6acd502 caed4b5fa322b984 459e4e6888919f36

t = 22 : af4e23eb622d0df4 1d47a3268ff677ed cdb73772dc0248bf 05f3fba454e5de3d
64b5ae5424598428 8407818e9b28cc12 dc8049afa6acd502 caed4b5fa322b984

t = 23 : be50606778de14a6 af4e23eb622d0df4 1d47a3268ff677ed cdb73772dc0248bf
0a5d727cc92e7adb 64b5ae5424598428 8407818e9b28cc12 dc8049afa6acd502

t = 24 : 821e44f6678ac478 be50606778de14a6 af4e23eb622d0df4 1d47a3268ff677ed
f367e596d0a038a5 0a5d727cc92e7adb 64b5ae5424598428 8407818e9b28cc12

t = 25 : 0c852b1359a77c18 821e44f6678ac478 be50606778de14a6 af4e23eb622d0df4
6dec8a3396a80c3f f367e596d0a038a5 0a5d727cc92e7adb 64b5ae5424598428

t = 26 : ebb574fad4b7a7e4 0c852b1359a77c18 821e44f6678ac478 be50606778de14a6
a241e7efc1eb6ff9 6dec8a3396a80c3f f367e596d0a038a5 0a5d727cc92e7adb

t = 27 : a092821c3cdf08da ebb574fad4b7a7e4 0c852b1359a77c18 821e44f6678ac478
c84e849917a7c08e a241e7efc1eb6ff9 6dec8a3396a80c3f f367e596d0a038a5

t = 28 : 82ba2e1a2df2a4f1 a092821c3cdf08da ebb574fad4b7a7e4 0c852b1359a77c18
61845f6924789851 c84e849917a7c08e a241e7efc1eb6ff9 6dec8a3396a80c3f

t = 29 : 1959ad991c63d06a 82ba2e1a2df2a4f1 a092821c3cdf08da ebb574fad4b7a7e4
231faf24910a891a 61845f6924789851 c84e849917a7c08e a241e7efc1eb6ff9

t = 30 : 9b32d4cacd9a625b 1959ad991c63d06a 82ba2e1a2df2a4f1 a092821c3cdf08da

533066919d608799 231faf24910a891a 61845f6924789851 c84e849917a7c08e

t = 31 : dc55339f4d841965 9b32d4cacd9a625b 1959ad991c63d06a 82ba2e1a2df2a4f1

e2517f359998a58d 533066919d608799 231faf24910a891a 61845f6924789851

t = 32 : fdebb1283b12514f dc55339f4d841965 9b32d4cacd9a625b 1959ad991c63d06a
b1989170a183c661 e2517f359998a58d 533066919d608799 231faf24910a891a

t = 33 : b44c7975a83e3334 fdebb1283b12514f dc55339f4d841965 9b32d4cacd9a625b
009ad175b8d588a4 b1989170a183c661 e2517f359998a58d 533066919d608799

t = 34 : 0bac61bfc53d18b7 b44c7975a83e3334 fdebb1283b12514f dc55339f4d841965
a7d5416d690557b8 009ad175b8d588a4 b1989170a183c661 e2517f359998a58d

t = 35 : 392893c22e75856a 0bac61bfc53d18b7 b44c7975a83e3334 fdebb1283b12514f
7a7c9eb7bc813248 a7d5416d690557b8 009ad175b8d588a4 b1989170a183c661

t = 36 : 824408631432e09b 392893c22e75856a 0bac61bfc53d18b7 b44c7975a83e3334
5e696a9fda56d6bf 7a7c9eb7bc813248 a7d5416d690557b8 009ad175b8d588a4

t = 37 : a64162f151a8c1cb 824408631432e09b 392893c22e75856a 0bac61bfc53d18b7
0f57062401dc680b 5e696a9fda56d6bf 7a7c9eb7bc813248 a7d5416d690557b8

t = 38 : 922537abad1e95a1 a64162f151a8c1cb 824408631432e09b 392893c22e75856a

4f4c193d435ff721 0f57062401dc680b 5e696a9fda56d6bf 7a7c9eb7bc813248

t = 39 : b80591f6fbfadcde 922537abad1e95a1 a64162f151a8c1cb 824408631432e09b
00f4407c0f37237e 4f4c193d435ff721 0f57062401dc680b 5e696a9fda56d6bf

t = 40 : 08f151f4b8d0fa2e b80591f6fbfadcde 922537abad1e95a1 a64162f151a8c1cb
ec8b96fe402094cd 00f4407c0f37237e 4f4c193d435ff721 0f57062401dc680b

t = 41 : 12b5fcc2b68f65c0 08f151f4b8d0fa2e b80591f6fbfadcde 922537abad1e95a1
d688101dfd24a148 ec8b96fe402094cd 00f4407c0f37237e 4f4c193d435ff721

t = 42 : a71bf5bd64289948 12b5fcc2b68f65c0 08f151f4b8d0fa2e b80591f6fbfadcde

e052bfb7a6945939 d688101dfd24a148 ec8b96fe402094cd 00f4407c0f37237e

t = 43 : 890c2cd670c4aea3 a71bf5bd64289948 12b5fcc2b68f65c0 08f151f4b8d0fa2e
dd13e4edeeff00e7 e052bfb7a6945939 d688101dfd24a148 ec8b96fe402094cd

t = 44 : ca61990b43297ffc 890c2cd670c4aea3 a71bf5bd64289948 12b5fcc2b68f65c0
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139aa55c51d9ee5f dd13e4edeeff00e7 e052bfb7a6945939 d688101dfd24a148

t = 45 : 7196e8fa538ba4bf ca61990b43297ffc 890c2cd670c4aea3 a71bf5bd64289948
046735513cdd14d3 139aa55c51d9ee5f dd13e4edeeff00e7 e052bfb7a6945939

t = 46 : 1f0720944dbeb6a4 7196e8fa538ba4bf ca61990b43297ffc 890c2cd670c4aea3
a41eb7e5a27588e3 046735513cdd14d3 139aa55c51d9ee5f dd13e4edeeff00e7

t = 47 : d6d4f8608b8ab199 1f0720944dbeb6a4 7196e8fa538ba4bf ca61990b43297ffc
24b9c216f915da60 a41eb7e5a27588e3 046735513cdd14d3 139aa55c51d9ee5f

t = 48 : 88761eb67845978e d6d4f8608b8ab199 1f0720944dbeb6a4 7196e8fa538ba4bf
9fe22e39448d50ed 24b9c216f915da60 a41eb7e5a27588e3 046735513cdd14d3

t = 49 : 7d40e6be47d85702 88761eb67845978e d6d4f8608b8ab199 1f0720944dbeb6a4
d9c900e01968c33e 9fe22e39448d50ed 24b9c216f915da60 a41eb7e5a27588e3

t = 50 : 7d0d988df5768598 7d40e6be47d85702 88761eb67845978e d6d4f8608b8ab199
2ec2e522a7c7d12c d9c900e01968c33e 9fe22e39448d50ed 24b9c216f915da60

t = 51 : 48a8b60575b37f31 7d0d988df5768598 7d40e6be47d85702 88761eb67845978e

7059f9bc8c88a373 2ec2e522a7c7d12c d9c900e01968c33e 9fe22e39448d50ed

t = 52 : 6bc425af294bbf79 48a8b60575b37f31 7d0d988df5768598 7d40e6be47d85702
6a8143b1716ee33d 7059f9bc8c88a373 2ec2e522a7c7d12c d9c900e01968c33e

t = 53 : 307a456158ee8849 6bc425af294bbf79 48a8b60575b37f31 7d0d988df5768598
4372e85c16ee4440 6a8143b1716ee33d 7059f9bc8c88a373 2ec2e522a7c7d12c

t = 54 : af36382c8fd716be 307a456158ee8849 6bc425af294bbf79 48a8b60575b37f31
a8f8b0033187a916 4372e85c16ee4440 6a8143b1716ee33d 7059f9bc8c88a373

t = 55 : 810ebee951c64ca1 af36382c8fd716be 307a456158ee8849 6bc425af294bbf79
16a64f5997b9cca6 a8f8b0033187a916 4372e85c16ee4440 6a8143b1716ee33d

t = 56 : 2dd7659f1b4d13cd 810ebee951c64ca1 af36382c8fd716be 307a456158ee8849
5da6793bb7286a4b 16a64f5997b9cca6 a8f8b0033187a916 4372e85c16ee4440

t = 57 : 5ac712acff4b98be 2dd7659f1b4d13cd 810ebee951c64ca1 af36382c8fd716be
91f6395b301adbfd 5da6793bb7286a4b 16a64f5997b9cca6 a8f8b0033187a916

t = 58 : c1af358833cb03c0 5ac712acff4b98be 2dd7659f1b4d13cd 810ebee951c64ca1
d4883c0c21dda190 91f6395b301adbfd 5da6793bb7286a4b 16a64f5997b9cca6

t = 59 : 88a306074d388c7d c1af358833cb03c0 5ac712acff4b98be 2dd7659f1b4d13cd
9fc52468b897f9c8 d4883c0c21dda190 91f6395b301adbfd 5da6793bb7286a4b

t = 60 : f11bfd0cf67d3040 88a306074d388c7d c1af358833cb03c0 5ac712acff4b98be
47efb6407f74d318 9fc52468b897f9c8 d4883c0c21dda190 91f6395b301adbfd

t = 61 : 1f065e7828ed4e1b f11bfd0cf67d3040 88a306074d388c7d c1af358833cb03c0
7481899904a4ce23 47efb6407f74d318 9fc52468b897f9c8 d4883c0c21dda190

t = 62 : aebde39f2bc42ec1 1f065e7828ed4e1b f11bfd0cf67d3040 88a306074d388c7d
62ab526ff177a988 7481899904a4ce23 47efb6407f74d318 9fc52468b897f9c8

t = 63 : d35a94706e3e5df2 aebde39f2bc42ec1 1f065e7828ed4e1b f11bfd0cf67d3040
53f92b648d5d815c 62ab526ff177a988 7481899904a4ce23 47efb6407f74d318

t = 64 : d72d727c53e09ab9 d35a94706e3e5df2 aebde39f2bc42ec1 1f065e7828ed4e1b

10746426ba9824f4 53f92b648d5d815c 62ab526ff177a988 7481899904a4ce23

t = 65 : 3a7235e5a4051d94 d72d727c53e09ab9 d35a94706e3e5df2 aebde39f2bc42ec1

afe455daec5c2b00 10746426ba9824f4 53f92b648d5d815c 62ab526ff177a988

t = 66 : f7f510fe73ef7e76 3a7235e5a4051d94 d72d727c53e09ab9 d35a94706e3e5df2
f1202c0bb7c4583f afe455daec5c2b00 10746426ba9824f4 53f92b648d5d815c

t = 67 : 23c2acfb393523e9 f7f510fe73ef7e76 3a7235e5a4051d94 d72d727c53e09ab9
a0bc2a61044ac12e f1202c0bb7c4583f afe455daec5c2b00 10746426ba9824f4
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t = 68 : 0307d241a1ed7121 23c2acfb393523e9 f7f510fe73ef7e76 3a7235e5a4051d94
fad5f38f1e0aea12 a0bc2a61044ac12e f1202c0bb7c4583f afe455daec5c2b00

t = 69 : 191814d82f0a16fb 0307d241a1ed7121 23c2acfb393523e9 f7f510fe73ef7e76
39d325086e66e200 fad5f38f1e0aea12 a0bc2a61044ac12e f1202c0bb7c4583f

t = 70 : 0a1ed41b6da18c01 191814d82f0a16fb 0307d241a1ed7121 23c2acfb393523e9
b3d3521e166e5df1 39d325086e66e200 fad5f38f1e0aea12 a0bc2a61044ac12e

t = 71 : 8a3f07db93f6c827 0a1ed41b6da18c01 191814d82f0a16fb 0307d241a1ed7121
6b370074be040ed7 b3d3521e166e5df1 39d325086e66e200 fad5f38f1e0aea12

t = 72 : 002744d87ef80d28 8a3f07db93f6c827 0a1ed41b6da18c01 191814d82f0a16fb
8c5a245de2d72fe6 6b370074be040ed7 b3d3521e166e5df1 39d325086e66e200

t = 73 : 778dc7880a4a2aa0 002744d87ef80d28 8a3f07db93f6c827 0a1ed41b6da18c01
45a375b466e5e342 8c5a245de2d72fe6 6b370074be040ed7 b3d3521e166e5df1

t = 74 : a3f11de5ede05b11 778dc7880a4a2aa0 002744d87ef80d28 8a3f07db93f6c827
f5bbf52f1ab7cc05 45a375b466e5e342 8c5a245de2d72fe6 6b370074be040ed7

t = 75 : 629c8ae6ecd8af4b a3f11de5ede05b11 778dc7880a4a2aa0 002744d87ef80d28
5a8fe5919d3cf136 f5bbf52f1ab7cc05 45a375b466e5e342 8c5a245de2d72fe6

t = 76 : c9a8c1e2d063ce94 629c8ae6ecd8af4b a3f11de5ede05b11 778dc7880a4a2aa0
aacd089bfae8faf9 5a8fe5919d3cf136 f5bbf52f1ab7cc05 45a375b466e5e342

t = 77 : c517cba6a09bb26a c9a8c1e2d063ce94 629c8ae6ecd8af4b a3f11de5ede05b11
e1682bd33c8f8e23 aacd089bfae8faf9 5a8fe5919d3cf136 f5bbf52f1ab7cc05

t = 78 : 11e3570e06e3b74e c517cba6a09bb26a c9a8c1e2d063ce94 629c8ae6ecd8af4b

075aabbade34fd01 e1682bd33c8f8e23 aacd089bfae8faf9 5a8fe5919d3cf136

t = 79 : d90f1b1237b3a561 11e3570e06e3b74e c517cba6a09bb26a c9a8c1e2d063ce94
867983f69d3a3ad1 075aabbade34fd01 e1682bd33c8f8e23 aacd089bfae8faf9

That completes the processing of the first message block, M(1). The intermediate hash value, H(1),
is calculated to be

)1(
0H  = 6a09e667f3bcc908 + d90f1b1237b3a561 = 4319017a2b706e69

)1(
1H = bb67ae8584caa73b + 11e3570e06e3b74e = cd4b05938bae5e89

)1(
2H = 3c6ef372fe94f82b + c517cba6a09bb26a = 0186bf199f30aa95

)1(
3H = a54ff53a5f1d36f1 + c9a8c1e2d063ce94 = 6ef8b71d2f810585

)1(
4H = 510e527fade682d1 + 867983f69d3a3ad1 = d787d6764b20bda2

)1(
5H = 9b05688c2b3e6c1f + 075aabbade34fd01 = a260144709736920

)1(
6H = 1f83d9abfb41bd6b + e1682bd33c8f8e23 = 00ec057f37d14b8e

)1(
7H  = 5be0cd19137e2179 + aacd089bfae8faf9 = 06add5b50e671c72.

The words of the second padded message block, M(2), are then assigned to the words W0,…,W15

of the message schedule:
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W0 = 0000000000000000
W1 = 0000000000000000
W2 = 0000000000000000
W3 = 0000000000000000
W4 = 0000000000000000
W5 = 0000000000000000
W6 = 0000000000000000
W7 = 0000000000000000

W8 = 0000000000000000
W9 = 0000000000000000
W10 = 0000000000000000
W11 = 0000000000000000
W12 = 0000000000000000
W13 = 0000000000000000
W14 = 0000000000000000
W15 = 0000000000000380.

The following schedule shows the hex values for a, b, c, d, e, f, g, and h after pass t of the “for t
= 0 to 79” loop described in Sec. 6.1.2, step 4.

a
/
e

b
/
f

c
/
g

d
/
h

t = 0 : b8fdb92bdfb187e8 4319017a2b706e69 cd4b05938bae5e89 0186bf199f30aa95
1d5f4d5ad031b8e6 d787d6764b20bda2 a260144709736920 00ec057f37d14b8e

t = 1 : 6eb90718369c5cd7 b8fdb92bdfb187e8 4319017a2b706e69 cd4b05938bae5e89
4b9b4877d987b0fe 1d5f4d5ad031b8e6 d787d6764b20bda2 a260144709736920

t = 2 : c83451f2335d5144 6eb90718369c5cd7 b8fdb92bdfb187e8 4319017a2b706e69
d6b67350e0781e99 4b9b4877d987b0fe 1d5f4d5ad031b8e6 d787d6764b20bda2

t = 3 : 28ec1deb2a9ee6e3 c83451f2335d5144 6eb90718369c5cd7 b8fdb92bdfb187e8
25e3136be5999b8c d6b67350e0781e99 4b9b4877d987b0fe 1d5f4d5ad031b8e6

t = 4 : 806abd86c0479e5b 28ec1deb2a9ee6e3 c83451f2335d5144 6eb90718369c5cd7
1b8f7670eab1cf89 25e3136be5999b8c d6b67350e0781e99 4b9b4877d987b0fe

t = 5 : 234788f8a54aed38 806abd86c0479e5b 28ec1deb2a9ee6e3 c83451f2335d5144
4fabe51c67d5d156 1b8f7670eab1cf89 25e3136be5999b8c d6b67350e0781e99

t = 6 : 01264f18257b5e2c 234788f8a54aed38 806abd86c0479e5b 28ec1deb2a9ee6e3
1c3506096b99de50 4fabe51c67d5d156 1b8f7670eab1cf89 25e3136be5999b8c

t = 7 : 5b14f38104dde991 01264f18257b5e2c 234788f8a54aed38 806abd86c0479e5b
13f8bfdc4001c362 1c3506096b99de50 4fabe51c67d5d156 1b8f7670eab1cf89

t = 8 : f522574a41b2aac6 5b14f38104dde991 01264f18257b5e2c 234788f8a54aed38

63a5f09617622ed2 13f8bfdc4001c362 1c3506096b99de50 4fabe51c67d5d156

t = 9 : 6ec258b855afae5a f522574a41b2aac6 5b14f38104dde991 01264f18257b5e2c
211e271d92770b36 63a5f09617622ed2 13f8bfdc4001c362 1c3506096b99de50

t = 10 : 9364214ba48b416c 6ec258b855afae5a f522574a41b2aac6 5b14f38104dde991
d64dcb6ec0fe5bac 211e271d92770b36 63a5f09617622ed2 13f8bfdc4001c362

t = 11 : 082ba62147ecbbd5 9364214ba48b416c 6ec258b855afae5a f522574a41b2aac6
34fe78473b61266e d64dcb6ec0fe5bac 211e271d92770b36 63a5f09617622ed2

t = 12 : 5790f6ba82bba809 082ba62147ecbbd5 9364214ba48b416c 6ec258b855afae5a
d491e309141dcaa3 34fe78473b61266e d64dcb6ec0fe5bac 211e271d92770b36

t = 13 : a6b8aefd086d33ce 5790f6ba82bba809 082ba62147ecbbd5 9364214ba48b416c
044943c2992cc0f0 d491e309141dcaa3 34fe78473b61266e d64dcb6ec0fe5bac

t = 14 : bf2324a9a363abe7 a6b8aefd086d33ce 5790f6ba82bba809 082ba62147ecbbd5
0cf5f4bde5977c54 044943c2992cc0f0 d491e309141dcaa3 34fe78473b61266e

t = 15 : 00e8e32076a61aff bf2324a9a363abe7 a6b8aefd086d33ce 5790f6ba82bba809
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43bf4eb269a2650c 0cf5f4bde5977c54 044943c2992cc0f0 d491e309141dcaa3

t = 16 : f0376dff66fff4a7 00e8e32076a61aff bf2324a9a363abe7 a6b8aefd086d33ce
69fa5896969e85b8 43bf4eb269a2650c 0cf5f4bde5977c54 044943c2992cc0f0

t = 17 : 2fad194272cda857 f0376dff66fff4a7 00e8e32076a61aff bf2324a9a363abe7
ddb519d663b7b6ec 69fa5896969e85b8 43bf4eb269a2650c 0cf5f4bde5977c54

t = 18 : 9ae56936e95325ac 2fad194272cda857 f0376dff66fff4a7 00e8e32076a61aff

04ceb04676619057 ddb519d663b7b6ec 69fa5896969e85b8 43bf4eb269a2650c

t = 19 : d94ccb853f53433b 9ae56936e95325ac 2fad194272cda857 f0376dff66fff4a7
dcdc0f45813fb5a2 04ceb04676619057 ddb519d663b7b6ec 69fa5896969e85b8

t = 20 : 837f8075d2945995 d94ccb853f53433b 9ae56936e95325ac 2fad194272cda857
272b5f79a91419d8 dcdc0f45813fb5a2 04ceb04676619057 ddb519d663b7b6ec

t = 21 : 786bde689f7aa62d 837f8075d2945995 d94ccb853f53433b 9ae56936e95325ac
566586e69ad3f487 272b5f79a91419d8 dcdc0f45813fb5a2 04ceb04676619057

t = 22 : 276457f01812aa6f 786bde689f7aa62d 837f8075d2945995 d94ccb853f53433b
e78fb8b0dfbbc62f 566586e69ad3f487 272b5f79a91419d8 dcdc0f45813fb5a2

t = 23 : 0de519f5d6c2c298 276457f01812aa6f 786bde689f7aa62d 837f8075d2945995
5ca3e5cd1a30b954 e78fb8b0dfbbc62f 566586e69ad3f487 272b5f79a91419d8

t = 24 : 54314dff825e2b22 0de519f5d6c2c298 276457f01812aa6f 786bde689f7aa62d
b81a51e0c96ccf77 5ca3e5cd1a30b954 e78fb8b0dfbbc62f 566586e69ad3f487

t = 25 : 5d3f98dd7b29c363 54314dff825e2b22 0de519f5d6c2c298 276457f01812aa6f
95d49494f5a0d14a b81a51e0c96ccf77 5ca3e5cd1a30b954 e78fb8b0dfbbc62f

t = 26 : 5e9da426aa7d4a58 5d3f98dd7b29c363 54314dff825e2b22 0de519f5d6c2c298
d22cccad2e391cd4 95d49494f5a0d14a b81a51e0c96ccf77 5ca3e5cd1a30b954

t = 27 : 3b62dd973298ea43 5e9da426aa7d4a58 5d3f98dd7b29c363 54314dff825e2b22
aceb5d06101e514e d22cccad2e391cd4 95d49494f5a0d14a b81a51e0c96ccf77

t = 28 : fd258ff809b2253d 3b62dd973298ea43 5e9da426aa7d4a58 5d3f98dd7b29c363
26c991e85352da6f aceb5d06101e514e d22cccad2e391cd4 95d49494f5a0d14a

t = 29 : b462a20846af417d fd258ff809b2253d 3b62dd973298ea43 5e9da426aa7d4a58
291eee54c034c326 26c991e85352da6f aceb5d06101e514e d22cccad2e391cd4

t = 30 : d5471e3dc7171224 b462a20846af417d fd258ff809b2253d 3b62dd973298ea43

0aaf99c59e7fadbd 291eee54c034c326 26c991e85352da6f aceb5d06101e514e

t = 31 : 9ace856ba1290e6e d5471e3dc7171224 b462a20846af417d fd258ff809b2253d

658f0bea63804d05 0aaf99c59e7fadbd 291eee54c034c326 26c991e85352da6f

t = 32 : 80a0d154506b37c4 9ace856ba1290e6e d5471e3dc7171224 b462a20846af417d
bbe6e3b3bb7fefab 658f0bea63804d05 0aaf99c59e7fadbd 291eee54c034c326

t = 33 : fb90a8a76dea1bfe 80a0d154506b37c4 9ace856ba1290e6e d5471e3dc7171224
65234d5b5049e665 bbe6e3b3bb7fefab 658f0bea63804d05 0aaf99c59e7fadbd

t = 34 : f517b690d940a294 fb90a8a76dea1bfe 80a0d154506b37c4 9ace856ba1290e6e
e4dd663f44d313bc 65234d5b5049e665 bbe6e3b3bb7fefab 658f0bea63804d05

t = 35 : b70883992932880d f517b690d940a294 fb90a8a76dea1bfe 80a0d154506b37c4
dc5dd7c12b1cb6e3 e4dd663f44d313bc 65234d5b5049e665 bbe6e3b3bb7fefab

t = 36 : b2a2be77b0fcf3bf b70883992932880d f517b690d940a294 fb90a8a76dea1bfe
50fca57291e19874 dc5dd7c12b1cb6e3 e4dd663f44d313bc 65234d5b5049e665

t = 37 : 8575839b0f08472b b2a2be77b0fcf3bf b70883992932880d f517b690d940a294
bd7176bd099bb2f2 50fca57291e19874 dc5dd7c12b1cb6e3 e4dd663f44d313bc

t = 38 : 4405d2765de0adfc 8575839b0f08472b b2a2be77b0fcf3bf b70883992932880d
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7ca4916f2cd8db10 bd7176bd099bb2f2 50fca57291e19874 dc5dd7c12b1cb6e3

t = 39 : eec6fca5aa657661 4405d2765de0adfc 8575839b0f08472b b2a2be77b0fcf3bf
7be0b7e70bdabe53 7ca4916f2cd8db10 bd7176bd099bb2f2 50fca57291e19874

t = 40 : bb3fcd7585b59e32 eec6fca5aa657661 4405d2765de0adfc 8575839b0f08472b
2201c7cbd34e31fe 7be0b7e70bdabe53 7ca4916f2cd8db10 bd7176bd099bb2f2

t = 41 : 0e109efc47927341 bb3fcd7585b59e32 eec6fca5aa657661 4405d2765de0adfc
d43e5686506fa05d 2201c7cbd34e31fe 7be0b7e70bdabe53 7ca4916f2cd8db10

t = 42 : 55c0dba83bcdc6e0 0e109efc47927341 bb3fcd7585b59e32 eec6fca5aa657661

5b634502f1671535 d43e5686506fa05d 2201c7cbd34e31fe 7be0b7e70bdabe53

t = 43 : f5756f847bfaef67 55c0dba83bcdc6e0 0e109efc47927341 bb3fcd7585b59e32
e2d307fd94f4818a 5b634502f1671535 d43e5686506fa05d 2201c7cbd34e31fe

t = 44 : f1438c9cf271c06e f5756f847bfaef67 55c0dba83bcdc6e0 0e109efc47927341
ad8ac1ed966b2dc6 e2d307fd94f4818a 5b634502f1671535 d43e5686506fa05d

t = 45 : a7dcaffdbefb9d4a f1438c9cf271c06e f5756f847bfaef67 55c0dba83bcdc6e0
9e46e9f915099c34 ad8ac1ed966b2dc6 e2d307fd94f4818a 5b634502f1671535

t = 46 : 985ba373680b8e94 a7dcaffdbefb9d4a f1438c9cf271c06e f5756f847bfaef67
7d4c0abc676b1a8b 9e46e9f915099c34 ad8ac1ed966b2dc6 e2d307fd94f4818a

t = 47 : 807f45784852303f 985ba373680b8e94 a7dcaffdbefb9d4a f1438c9cf271c06e
082ee70d3f352aac 7d4c0abc676b1a8b 9e46e9f915099c34 ad8ac1ed966b2dc6

t = 48 : d9c523173b1a1e05 807f45784852303f 985ba373680b8e94 a7dcaffdbefb9d4a
e301dca32c44ca05 082ee70d3f352aac 7d4c0abc676b1a8b 9e46e9f915099c34

t = 49 : b6df019ca515cafb d9c523173b1a1e05 807f45784852303f 985ba373680b8e94
754b3a461a665640 e301dca32c44ca05 082ee70d3f352aac 7d4c0abc676b1a8b

t = 50 : 427a642921b2e645 b6df019ca515cafb d9c523173b1a1e05 807f45784852303f
08a30fefe981f2ec 754b3a461a665640 e301dca32c44ca05 082ee70d3f352aac

t = 51 : 7aab58dbe1b9df7b 427a642921b2e645 b6df019ca515cafb d9c523173b1a1e05

2749c52d0b3d1225 08a30fefe981f2ec 754b3a461a665640 e301dca32c44ca05

t = 52 : 974ddd552aec16ce 7aab58dbe1b9df7b 427a642921b2e645 b6df019ca515cafb
a9e6cbfb416a591f 2749c52d0b3d1225 08a30fefe981f2ec 754b3a461a665640

t = 53 : 55e0b99d4404f6ca 974ddd552aec16ce 7aab58dbe1b9df7b 427a642921b2e645
6c24ad697b41b1b9 a9e6cbfb416a591f 2749c52d0b3d1225 08a30fefe981f2ec

t = 54 : 901f632579ee1eee 55e0b99d4404f6ca 974ddd552aec16ce 7aab58dbe1b9df7b
4ee99476db1bb7a9 6c24ad697b41b1b9 a9e6cbfb416a591f 2749c52d0b3d1225

t = 55 : f90db9f292a60463 901f632579ee1eee 55e0b99d4404f6ca 974ddd552aec16ce
5401644992a1f8b8 4ee99476db1bb7a9 6c24ad697b41b1b9 a9e6cbfb416a591f

t = 56 : 9b906a7df1007357 f90db9f292a60463 901f632579ee1eee 55e0b99d4404f6ca
f5e402ee21db8915 5401644992a1f8b8 4ee99476db1bb7a9 6c24ad697b41b1b9

t = 57 : 71a0a998fb48c0fc 9b906a7df1007357 f90db9f292a60463 901f632579ee1eee
96bece755cd203cb f5e402ee21db8915 5401644992a1f8b8 4ee99476db1bb7a9

t = 58 : c25e798e50752535 71a0a998fb48c0fc 9b906a7df1007357 f90db9f292a60463
9d548440d8e110f2 96bece755cd203cb f5e402ee21db8915 5401644992a1f8b8

t = 59 : 1ce4f2591812e6ae c25e798e50752535 71a0a998fb48c0fc 9b906a7df1007357
b27252537a83cf27 9d548440d8e110f2 96bece755cd203cb f5e402ee21db8915

t = 60 : c1700e250dc6ffed 1ce4f2591812e6ae c25e798e50752535 71a0a998fb48c0fc
970088839126bda5 b27252537a83cf27 9d548440d8e110f2 96bece755cd203cb

t = 61 : f8e6924412fd0c64 c1700e250dc6ffed 1ce4f2591812e6ae c25e798e50752535
d50cf4f73910e3ee 970088839126bda5 b27252537a83cf27 9d548440d8e110f2
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t = 62 : d53e0a39eee47528 f8e6924412fd0c64 c1700e250dc6ffed 1ce4f2591812e6ae
1b6d7234ace15d7d d50cf4f73910e3ee 970088839126bda5 b27252537a83cf27

t = 63 : 3960545ab926c0d5 d53e0a39eee47528 f8e6924412fd0c64 c1700e250dc6ffed
9eabb5618b4fcd13 1b6d7234ace15d7d d50cf4f73910e3ee 970088839126bda5

t = 64 : b2c164d71abb92fe 3960545ab926c0d5 d53e0a39eee47528 f8e6924412fd0c64

f1736fbbfb6ebe72 9eabb5618b4fcd13 1b6d7234ace15d7d d50cf4f73910e3ee

t = 65 : 4d979e985b067e75 b2c164d71abb92fe 3960545ab926c0d5 d53e0a39eee47528

d1fb300f35992350 f1736fbbfb6ebe72 9eabb5618b4fcd13 1b6d7234ace15d7d

t = 66 : 59d0238ce137abd7 4d979e985b067e75 b2c164d71abb92fe 3960545ab926c0d5
5f3c64b7546e2cec d1fb300f35992350 f1736fbbfb6ebe72 9eabb5618b4fcd13

t = 67 : bf8d9453b9876b0a 59d0238ce137abd7 4d979e985b067e75 b2c164d71abb92fe
6c27893a31b0e07e 5f3c64b7546e2cec d1fb300f35992350 f1736fbbfb6ebe72

t = 68 : c45dd4a2d2fea059 bf8d9453b9876b0a 59d0238ce137abd7 4d979e985b067e75
48253e21b26d8cf9 6c27893a31b0e07e 5f3c64b7546e2cec d1fb300f35992350

t = 69 : e08471946c17b0b6 c45dd4a2d2fea059 bf8d9453b9876b0a 59d0238ce137abd7
714e2adf4e23ff24 48253e21b26d8cf9 6c27893a31b0e07e 5f3c64b7546e2cec

t = 70 : b4838c1c28fee7bc e08471946c17b0b6 c45dd4a2d2fea059 bf8d9453b9876b0a
371f12f333f7e5b9 714e2adf4e23ff24 48253e21b26d8cf9 6c27893a31b0e07e

t = 71 : 851cf60a77f6e6d1 b4838c1c28fee7bc e08471946c17b0b6 c45dd4a2d2fea059
a2a475deac0e8b42 371f12f333f7e5b9 714e2adf4e23ff24 48253e21b26d8cf9

t = 72 : f53d23c50249af2d 851cf60a77f6e6d1 b4838c1c28fee7bc e08471946c17b0b6
1e99cae9d4cf0409 a2a475deac0e8b42 371f12f333f7e5b9 714e2adf4e23ff24

t = 73 : b81e85d427045550 f53d23c50249af2d 851cf60a77f6e6d1 b4838c1c28fee7bc
f5794711faa60f63 1e99cae9d4cf0409 a2a475deac0e8b42 371f12f333f7e5b9

t = 74 : ae70c7d11ea84a83 b81e85d427045550 f53d23c50249af2d 851cf60a77f6e6d1
dc0d633411c289b2 f5794711faa60f63 1e99cae9d4cf0409 a2a475deac0e8b42

t = 75 : 5c54592e13c76135 ae70c7d11ea84a83 b81e85d427045550 f53d23c50249af2d
1620dd5479e94b9b dc0d633411c289b2 f5794711faa60f63 1e99cae9d4cf0409

t = 76 : 03a0f79087078a93 5c54592e13c76135 ae70c7d11ea84a83 b81e85d427045550
57e90fa678e4cc97 1620dd5479e94b9b dc0d633411c289b2 f5794711faa60f63

t = 77 : 8df0baad4c6ed50c 03a0f79087078a93 5c54592e13c76135 ae70c7d11ea84a83
c6e7246f7f0bdac6 57e90fa678e4cc97 1620dd5479e94b9b dc0d633411c289b2

t = 78 : bfa9f194894db5b6 8df0baad4c6ed50c 03a0f79087078a93 5c54592e13c76135

90bb8597bb41da1a c6e7246f7f0bdac6 57e90fa678e4cc97 1620dd5479e94b9b

t = 79 : 4b7c99fbaf72a571 bfa9f194894db5b6 8df0baad4c6ed50c 03a0f79087078a93
78955227fde03a42 90bb8597bb41da1a c6e7246f7f0bdac6 57e90fa678e4cc97

That completes the processing of the second and final message block, M(2). The final hash value,
H(2), is calculated to be

)2(
0H  = 4319017a2b706e69 + 4b7c99fbaf72a571 = 8e959b75dae313da

)2(
1H = cd4b05938bae5e89 + bfa9f194894db5b6 = 8cf4f72814fc143f

)2(
2H = 0186bf199f30aa95 + 8df0baad4c6ed50c = 8f7779c6eb9f7fa1

)2(
3H = 6ef8b71d2f810585 + 03a0f79087078a93 = 7299aeadb6889018

)2(
4H = d787d6764b20bda2 + 78955227fde03a42 = 501d289e4900f7e4
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)2(
5H = a260144709736920 + 90bb8597bb41da1a = 331b99dec4b5433a

)2(
6H = 00ec057f37d14b8e + c6e7246f7f0bdac6 = c7d329eeb6dd2654

)2(
7H  = 06add5b50e671c72 + 57e90fa678e4cc97 = 5e96e55b874be909.

The resulting 512-bit message digest is

8e959b75dae313da 8cf4f72814fc143f 8f7779c6eb9f7fa1 7299aeadb6889018

501d289e4900f7e4 331b99dec4b5433a c7d329eeb6dd2654 5e96e55b874be909.

C.3 SHA-512 Example (Long Message)
Let the message M be the binary-coded form of the ASCII string which consists of 1,000,000
repetitions of the character “a”.  The resulting SHA-512 message digest is

e718483d0ce76964 4e2e42c7bc15b463 8e1f98b13b204428 5632a803afa973eb

de0ff244877ea60a 4cb0432ce577c31b eb009c5c2c49aa2e 4eadb217ad8cc09b.
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APPENDIX D: SHA-384 EXAMPLES

This appendix is for informational purposes only and is not required to meet the standard.

D.1 SHA-384 Example (One-Block Message)
Let the message, M, be the 24-bit ( l = 24) ASCII string "abc", which is equivalent to the
following binary string:

01100001  01100010  01100011.

The message is padded by appending a "1" bit, followed by 871 "0" bits, and ending with the
hex value

0000000000000000 0000000000000018

(the two 64-bit word representation of the length, 24).  Thus, the final padded message consists
of one block (N = 1).

For SHA-384, the initial hash value, H(0), is
      

)0(
0H = cbbb9d5dc1059ed8

)0(
1H = 629a292a367cd507

)0(
2H = 9159015a3070dd17

)0(
3H = 152fecd8f70e5939

)0(
4H = 67332667ffc00b31

)0(
5H = 8eb44a8768581511

)0(
6H = db0c2e0d64f98fa7

)0(
7H = 47b5481dbefa4fa4.

The words of the padded message block are then assigned to the words W0,…,W15 of the message
schedule:

W0 = 6162638000000000
W1 = 0000000000000000
W2 = 0000000000000000
W3 = 0000000000000000
W4 = 0000000000000000
W5 = 0000000000000000
W6 = 0000000000000000
W7 = 0000000000000000

W8 = 0000000000000000
W9 = 0000000000000000
W10 = 0000000000000000
W11 = 0000000000000000
W12 = 0000000000000000
W13 = 0000000000000000
W14 = 0000000000000000
W15 = 0000000000000018.
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The following schedule shows the hex values for a, b, c, d, e, f, g, and h after pass t of the “for t
= 0 to 79” loop described in Sec. 6.3.2, step 4.

a
/
e

b
/
f

c
/
g

d
/
h

t = 0 : 470994ad30873f88 cbbb9d5dc1059ed8 629a292a367cd507 9159015a3070dd17
bd03f724be6075f9 67332667ffc00b31 8eb44a8768581511 db0c2e0d64f98fa7

t = 1 : 2e91230306a12ae0 470994ad30873f88 cbbb9d5dc1059ed8 629a292a367cd507
5e1b4e1695372b9e bd03f724be6075f9 67332667ffc00b31 8eb44a8768581511

t = 2 : eebe5d379be707ad 2e91230306a12ae0 470994ad30873f88 cbbb9d5dc1059ed8
54074a65aef34336 5e1b4e1695372b9e bd03f724be6075f9 67332667ffc00b31

t = 3 : e308483153e15ad6 eebe5d379be707ad 2e91230306a12ae0 470994ad30873f88
086c5b2d36a89178 54074a65aef34336 5e1b4e1695372b9e bd03f724be6075f9

t = 4 : 3a7a023c593d8479 e308483153e15ad6 eebe5d379be707ad 2e91230306a12ae0
8aa1144850633794 086c5b2d36a89178 54074a65aef34336 5e1b4e1695372b9e

t = 5 : 333199a85f92b052 3a7a023c593d8479 e308483153e15ad6 eebe5d379be707ad
7a6316f0ef047ce7 8aa1144850633794 086c5b2d36a89178 54074a65aef34336

t = 6 : 76f0741213dd2ef6 333199a85f92b052 3a7a023c593d8479 e308483153e15ad6
74063cba385f0675 7a6316f0ef047ce7 8aa1144850633794 086c5b2d36a89178

t = 7 : 02f2a04d3aab1629 76f0741213dd2ef6 333199a85f92b052 3a7a023c593d8479
1688b9bf14980fc0 74063cba385f0675 7a6316f0ef047ce7 8aa1144850633794

t = 8 : 73e5b2a1704a0349 02f2a04d3aab1629 76f0741213dd2ef6 333199a85f92b052

fd00139f705907d0 1688b9bf14980fc0 74063cba385f0675 7a6316f0ef047ce7

t = 9 : bf3f67ba12882648 73e5b2a1704a0349 02f2a04d3aab1629 76f0741213dd2ef6
652e311d4f0a4257 fd00139f705907d0 1688b9bf14980fc0 74063cba385f0675

t = 10 : 33254508bb2ea48d bf3f67ba12882648 73e5b2a1704a0349 02f2a04d3aab1629
9e18991c4f39f0ba 652e311d4f0a4257 fd00139f705907d0 1688b9bf14980fc0

t = 11 : c1fdb2a0205ea0e5 33254508bb2ea48d bf3f67ba12882648 73e5b2a1704a0349
04732e8bc4044582 9e18991c4f39f0ba 652e311d4f0a4257 fd00139f705907d0

t = 12 : 185f9ff038a50f39 c1fdb2a0205ea0e5 33254508bb2ea48d bf3f67ba12882648
8b4acfc4d2b8afe6 04732e8bc4044582 9e18991c4f39f0ba 652e311d4f0a4257

t = 13 : e5f06744c0d7563a 185f9ff038a50f39 c1fdb2a0205ea0e5 33254508bb2ea48d
2fa93d1ce9523015 8b4acfc4d2b8afe6 04732e8bc4044582 9e18991c4f39f0ba

t = 14 : 7e32dc0e9f414783 e5f06744c0d7563a 185f9ff038a50f39 c1fdb2a0205ea0e5
3a9950aaa5e75884 2fa93d1ce9523015 8b4acfc4d2b8afe6 04732e8bc4044582

t = 15 : 1eab6159ae87ef6d 7e32dc0e9f414783 e5f06744c0d7563a 185f9ff038a50f39
153b895cfbc436c5 3a9950aaa5e75884 2fa93d1ce9523015 8b4acfc4d2b8afe6

t = 16 : 33ef2cebbf1739aa 1eab6159ae87ef6d 7e32dc0e9f414783 e5f06744c0d7563a
9d1a64baf1d366aa 153b895cfbc436c5 3a9950aaa5e75884 2fa93d1ce9523015

t = 17 : 7df1b65f1b87d6ca 33ef2cebbf1739aa 1eab6159ae87ef6d 7e32dc0e9f414783
5b6e369d36e8e181 9d1a64baf1d366aa 153b895cfbc436c5 3a9950aaa5e75884

t = 18 : 63a24014a34bb0f6 7df1b65f1b87d6ca 33ef2cebbf1739aa 1eab6159ae87ef6d

e13e610eae680d85 5b6e369d36e8e181 9d1a64baf1d366aa 153b895cfbc436c5

t = 19 : f1aabd313309509b 63a24014a34bb0f6 7df1b65f1b87d6ca 33ef2cebbf1739aa
674385f0d87db94f e13e610eae680d85 5b6e369d36e8e181 9d1a64baf1d366aa
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t = 20 : 9ba737ae88a72c64 f1aabd313309509b 63a24014a34bb0f6 7df1b65f1b87d6ca
3fc2614c43906c0f 674385f0d87db94f e13e610eae680d85 5b6e369d36e8e181

t = 21 : 042c2dc9a5bf558a 9ba737ae88a72c64 f1aabd313309509b 63a24014a34bb0f6
19316bebc88e01f2 3fc2614c43906c0f 674385f0d87db94f e13e610eae680d85

t = 22 : 7799c75acc748c0f 042c2dc9a5bf558a 9ba737ae88a72c64 f1aabd313309509b
a7bbd65bf64f58c8 19316bebc88e01f2 3fc2614c43906c0f 674385f0d87db94f

t = 23 : ccf99a80f92bf002 7799c75acc748c0f 042c2dc9a5bf558a 9ba737ae88a72c64
e52a24fae4e8fc9b a7bbd65bf64f58c8 19316bebc88e01f2 3fc2614c43906c0f

t = 24 : ae993474363efe68 ccf99a80f92bf002 7799c75acc748c0f 042c2dc9a5bf558a
587f308d58681928 e52a24fae4e8fc9b a7bbd65bf64f58c8 19316bebc88e01f2

t = 25 : 335063d1a2aec92f ae993474363efe68 ccf99a80f92bf002 7799c75acc748c0f
c2d6d65e38c6ea79 587f308d58681928 e52a24fae4e8fc9b a7bbd65bf64f58c8

t = 26 : 53a78b0cca01ba37 335063d1a2aec92f ae993474363efe68 ccf99a80f92bf002
3b65a26c3c92c8f3 c2d6d65e38c6ea79 587f308d58681928 e52a24fae4e8fc9b

t = 27 : ab7ffa529f622930 53a78b0cca01ba37 335063d1a2aec92f ae993474363efe68
b9d8a2f2762901ea 3b65a26c3c92c8f3 c2d6d65e38c6ea79 587f308d58681928

t = 28 : e428bb43afe3d63e ab7ffa529f622930 53a78b0cca01ba37 335063d1a2aec92f
6a8527525f898726 b9d8a2f2762901ea 3b65a26c3c92c8f3 c2d6d65e38c6ea79

t = 29 : bbed541a5128088c e428bb43afe3d63e ab7ffa529f622930 53a78b0cca01ba37
7973aadbde294be9 6a8527525f898726 b9d8a2f2762901ea 3b65a26c3c92c8f3

t = 30 : 4c5c38df7ec8baf4 bbed541a5128088c e428bb43afe3d63e ab7ffa529f622930

422ceea0200e9ee4 7973aadbde294be9 6a8527525f898726 b9d8a2f2762901ea

t = 31 : 4ba456ec244033ed 4c5c38df7ec8baf4 bbed541a5128088c e428bb43afe3d63e

7cf40857056d86b0 422ceea0200e9ee4 7973aadbde294be9 6a8527525f898726

t = 32 : aa4a6ab2ac5f5dd8 4ba456ec244033ed 4c5c38df7ec8baf4 bbed541a5128088c
ad2b1ecfb5bfc556 7cf40857056d86b0 422ceea0200e9ee4 7973aadbde294be9

t = 33 : 9cb941f2ced774b3 aa4a6ab2ac5f5dd8 4ba456ec244033ed 4c5c38df7ec8baf4
029f66c7b4569bf0 ad2b1ecfb5bfc556 7cf40857056d86b0 422ceea0200e9ee4

t = 34 : 39265f358594de27 9cb941f2ced774b3 aa4a6ab2ac5f5dd8 4ba456ec244033ed
3f7b1c260c82e54f 029f66c7b4569bf0 ad2b1ecfb5bfc556 7cf40857056d86b0

t = 35 : 09cca487d39b02a1 39265f358594de27 9cb941f2ced774b3 aa4a6ab2ac5f5dd8
4a22b37b58a5b1b0 3f7b1c260c82e54f 029f66c7b4569bf0 ad2b1ecfb5bfc556

t = 36 : d48d97ce438cf4f0 09cca487d39b02a1 39265f358594de27 9cb941f2ced774b3
a239e00b8baa0410 4a22b37b58a5b1b0 3f7b1c260c82e54f 029f66c7b4569bf0

t = 37 : d6f41e25a8b634d6 d48d97ce438cf4f0 09cca487d39b02a1 39265f358594de27
25755cb8179dd0b0 a239e00b8baa0410 4a22b37b58a5b1b0 3f7b1c260c82e54f

t = 38 : 54078334358573b4 d6f41e25a8b634d6 d48d97ce438cf4f0 09cca487d39b02a1

0e419fb0802b0efc 25755cb8179dd0b0 a239e00b8baa0410 4a22b37b58a5b1b0

t = 39 : db24f9a03f4fff6b 54078334358573b4 d6f41e25a8b634d6 d48d97ce438cf4f0
d30e99b4b394b090 0e419fb0802b0efc 25755cb8179dd0b0 a239e00b8baa0410

t = 40 : 3604c53a845efc37 db24f9a03f4fff6b 54078334358573b4 d6f41e25a8b634d6
791b2b4af7338b99 d30e99b4b394b090 0e419fb0802b0efc 25755cb8179dd0b0

t = 41 : f41b1c0eee89bdc6 3604c53a845efc37 db24f9a03f4fff6b 54078334358573b4
e319b77d9e4e87f9 791b2b4af7338b99 d30e99b4b394b090 0e419fb0802b0efc

t = 42 : 36644ae374632e3a f41b1c0eee89bdc6 3604c53a845efc37 db24f9a03f4fff6b

458250878a3972b2 e319b77d9e4e87f9 791b2b4af7338b99 d30e99b4b394b090

t = 43 : 88806f6ae9fcd65b 36644ae374632e3a f41b1c0eee89bdc6 3604c53a845efc37
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cfde2e6ea54fa576 458250878a3972b2 e319b77d9e4e87f9 791b2b4af7338b99

t = 44 : 51dcaa36995c301d 88806f6ae9fcd65b 36644ae374632e3a f41b1c0eee89bdc6
e37f778353998050 cfde2e6ea54fa576 458250878a3972b2 e319b77d9e4e87f9

t = 45 : ef5e3885a2f238df 51dcaa36995c301d 88806f6ae9fcd65b 36644ae374632e3a
740e347f24e18fda e37f778353998050 cfde2e6ea54fa576 458250878a3972b2

t = 46 : eb3753f4283f4818 ef5e3885a2f238df 51dcaa36995c301d 88806f6ae9fcd65b
0ae48cf840bb8be9 740e347f24e18fda e37f778353998050 cfde2e6ea54fa576

t = 47 : a6998d63a5d09e04 eb3753f4283f4818 ef5e3885a2f238df 51dcaa36995c301d
e21095012ee0b72a 0ae48cf840bb8be9 740e347f24e18fda e37f778353998050

t = 48 : d3698fb64df175b0 a6998d63a5d09e04 eb3753f4283f4818 ef5e3885a2f238df
c2f0b90ffce80739 e21095012ee0b72a 0ae48cf840bb8be9 740e347f24e18fda

t = 49 : 317a3b295b991914 d3698fb64df175b0 a6998d63a5d09e04 eb3753f4283f4818
1cadff2e6cb5aa4d c2f0b90ffce80739 e21095012ee0b72a 0ae48cf840bb8be9

t = 50 : 0941da08148ba463 317a3b295b991914 d3698fb64df175b0 a6998d63a5d09e04
833eb9a4bb5a073e 1cadff2e6cb5aa4d c2f0b90ffce80739 e21095012ee0b72a

t = 51 : 494ac238d68c3d0b 0941da08148ba463 317a3b295b991914 d3698fb64df175b0

80c8fc138e645028 833eb9a4bb5a073e 1cadff2e6cb5aa4d c2f0b90ffce80739

t = 52 : c87e9168db9e97de 494ac238d68c3d0b 0941da08148ba463 317a3b295b991914
65cf7f6a829aca04 80c8fc138e645028 833eb9a4bb5a073e 1cadff2e6cb5aa4d

t = 53 : edb4448879391dbb c87e9168db9e97de 494ac238d68c3d0b 0941da08148ba463
7729c85475dd318f 65cf7f6a829aca04 80c8fc138e645028 833eb9a4bb5a073e

t = 54 : 073775c2456dc7db edb4448879391dbb c87e9168db9e97de 494ac238d68c3d0b
a9cca0b6266b1d77 7729c85475dd318f 65cf7f6a829aca04 80c8fc138e645028

t = 55 : 54de8857b24afaf7 073775c2456dc7db edb4448879391dbb c87e9168db9e97de
8de51cff2ae4b068 a9cca0b6266b1d77 7729c85475dd318f 65cf7f6a829aca04

t = 56 : 8a9cdd80f7f09c05 54de8857b24afaf7 073775c2456dc7db edb4448879391dbb
a60ba5e9ebaeb96a 8de51cff2ae4b068 a9cca0b6266b1d77 7729c85475dd318f

t = 57 : 3eeb22a7524d8d7f 8a9cdd80f7f09c05 54de8857b24afaf7 073775c2456dc7db
e2e6830b139df58f a60ba5e9ebaeb96a 8de51cff2ae4b068 a9cca0b6266b1d77

t = 58 : 0ed77c9cde8883d3 3eeb22a7524d8d7f 8a9cdd80f7f09c05 54de8857b24afaf7
38413a2052387a9e e2e6830b139df58f a60ba5e9ebaeb96a 8de51cff2ae4b068

t = 59 : e64e4135f9d30dbc 0ed77c9cde8883d3 3eeb22a7524d8d7f 8a9cdd80f7f09c05
45b640454c75c349 38413a2052387a9e e2e6830b139df58f a60ba5e9ebaeb96a

t = 60 : 1ca93a293d544328 e64e4135f9d30dbc 0ed77c9cde8883d3 3eeb22a7524d8d7f
efbef83a35c0319e 45b640454c75c349 38413a2052387a9e e2e6830b139df58f

t = 61 : 3dc764f89e54043a 1ca93a293d544328 e64e4135f9d30dbc 0ed77c9cde8883d3
a57784945550cf94 efbef83a35c0319e 45b640454c75c349 38413a2052387a9e

t = 62 : 56fb5883f1c87a05 3dc764f89e54043a 1ca93a293d544328 e64e4135f9d30dbc
f5198a41eb80e022 a57784945550cf94 efbef83a35c0319e 45b640454c75c349

t = 63 : 24a1124262a331c7 56fb5883f1c87a05 3dc764f89e54043a 1ca93a293d544328
06edacae6e7b54ad f5198a41eb80e022 a57784945550cf94 efbef83a35c0319e

t = 64 : eb85d19201c89694 24a1124262a331c7 56fb5883f1c87a05 3dc764f89e54043a

9ced24983eec8723 06edacae6e7b54ad f5198a41eb80e022 a57784945550cf94

t = 65 : cc981ab3a59c1db4 eb85d19201c89694 24a1124262a331c7 56fb5883f1c87a05

eac5516336bc8882 9ced24983eec8723 06edacae6e7b54ad f5198a41eb80e022

t = 66 : ceef5d997e148b44 cc981ab3a59c1db4 eb85d19201c89694 24a1124262a331c7
617bbf70bb165212 eac5516336bc8882 9ced24983eec8723 06edacae6e7b54ad
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t = 67 : 689edf608a8e3f14 ceef5d997e148b44 cc981ab3a59c1db4 eb85d19201c89694
3280d88472c100fd 617bbf70bb165212 eac5516336bc8882 9ced24983eec8723

t = 68 : 1e6e0255ab88079f 689edf608a8e3f14 ceef5d997e148b44 cc981ab3a59c1db4
f2001138439902b1 3280d88472c100fd 617bbf70bb165212 eac5516336bc8882

t = 69 : 8c5d3b7fdad66e70 1e6e0255ab88079f 689edf608a8e3f14 ceef5d997e148b44
90d18ec8b69f0345 f2001138439902b1 3280d88472c100fd 617bbf70bb165212

t = 70 : 32e5ed8655871e9b 8c5d3b7fdad66e70 1e6e0255ab88079f 689edf608a8e3f14
51105f6241313777 90d18ec8b69f0345 f2001138439902b1 3280d88472c100fd

t = 71 : bcd5061679be7336 32e5ed8655871e9b 8c5d3b7fdad66e70 1e6e0255ab88079f
454b99f654443ad0 51105f6241313777 90d18ec8b69f0345 f2001138439902b1

t = 72 : e7d913b6678e78ef bcd5061679be7336 32e5ed8655871e9b 8c5d3b7fdad66e70
1ff613b5aa63776e 454b99f654443ad0 51105f6241313777 90d18ec8b69f0345

t = 73 : e6b8cb8dfa3475ab e7d913b6678e78ef bcd5061679be7336 32e5ed8655871e9b
2e75f34303d39bb0 1ff613b5aa63776e 454b99f654443ad0 51105f6241313777

t = 74 : fdd4a30e168c4ae5 e6b8cb8dfa3475ab e7d913b6678e78ef bcd5061679be7336
83a35dbe2a64fc26 2e75f34303d39bb0 1ff613b5aa63776e 454b99f654443ad0

t = 75 : 12aeb6268dfa3e14 fdd4a30e168c4ae5 e6b8cb8dfa3475ab e7d913b6678e78ef
f660943b276786f7 83a35dbe2a64fc26 2e75f34303d39bb0 1ff613b5aa63776e

t = 76 : 055b73814cf102b4 12aeb6268dfa3e14 fdd4a30e168c4ae5 e6b8cb8dfa3475ab
c4b149710f5d6a71 f660943b276786f7 83a35dbe2a64fc26 2e75f34303d39bb0

t = 77 : 95d33150de6df44c 055b73814cf102b4 12aeb6268dfa3e14 fdd4a30e168c4ae5
c7f7bff08ebf0d30 c4b149710f5d6a71 f660943b276786f7 83a35dbe2a64fc26

t = 78 : 5306143f64497b00 95d33150de6df44c 055b73814cf102b4 12aeb6268dfa3e14

ca06a219cc701096 c7f7bff08ebf0d30 c4b149710f5d6a71 f660943b276786f7

t = 79 : ff44d7e1849dbfb3 5306143f64497b00 95d33150de6df44c 055b73814cf102b4
1952e0c3a227c0f2 ca06a219cc701096 c7f7bff08ebf0d30 c4b149710f5d6a71

That completes the processing of the first and only message block, M(1). The final hash value,
H(1), is calculated to be

)1(
0H  = cbbb9d5dc1059ed8 + ff44d7e1849dbfb3 = cb00753f45a35e8b

)1(
1H = 629a292a367cd507 + 5306143f64497b00 = b5a03d699ac65007

)1(
2H = 9159015a3070dd17 + 95d33150de6df44c = 272c32ab0eded163

)1(
3H = 152fecd8f70e5939 + 055b73814cf102b4 = 1a8b605a43ff5bed

)1(
4H = 67332667ffc00b31 + 1952e0c3a227c0f2 = 8086072ba1e7cc23

)1(
5H = 8eb44a8768581511 + ca06a219cc701096 = 58baeca134c825a7

)1(
6H = db0c2e0d64f98fa7 + c7f7bff08ebf0d30 = a303edfdf3b89cd7

)1(
7H  = 47b5481dbefa4fa4 + c4b149710f5d6a71 = 0c66918ece57ba15.

The final hash value is truncated to its left-most 384 bits (i.e., )1(
5

)1(
0 ,, HH K ), resulting in the 384-bit

message digest

cb00753f45a35e8b b5a03d699ac65007 272c32ab0eded163 1a8b605a43ff5bed

8086072ba1e7cc23 58baeca134c825a7.
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D.2 SHA-384 Example (Multi-Block Message)
Let the message, M, be the 896-bit ( l = 896) ASCII string

"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn
hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu".

The message is padded by appending a "1" bit, followed by 1023 "0" bits, and ending with the
hex value

0000000000000000 0000000000000380

(the two 64-bit word representation of the length, 24).  Thus, the final padded message consists
of two blocks (N = 2).

For SHA-384, the initial hash value, H(0), is
      

)0(
0H = cbbb9d5dc1059ed8

)0(
1H = 629a292a367cd507

)0(
2H = 9159015a3070dd17

)0(
3H = 152fecd8f70e5939

)0(
4H = 67332667ffc00b31

)0(
5H = 8eb44a8768581511

)0(
6H = db0c2e0d64f98fa7

)0(
7H = 47b5481dbefa4fa4.

The words of the padded message block are then assigned to the words W0,…,W15 of the message
schedule:

W0 = 6162636465666768
W1 = 6263646566676869
W2 = 636465666768696a
W3 = 6465666768696a6b
W4 = 65666768696a6b6c
W5 = 666768696a6b6c6d
W6 = 6768696a6b6c6d6e
W7 = 68696a6b6c6d6e6f

W8 = 696a6b6c6d6e6f70
W9 = 6a6b6c6d6e6f7071
W10 = 6b6c6d6e6f707172
W11 = 6c6d6e6f70717273
W12 = 6d6e6f7071727374
W13 = 6e6f707172737475
W14 = 8000000000000000
W15 = 0000000000000000.

The following schedule shows the hex values for a, b, c, d, e, f, g, and h after pass t of the “for t
= 0 to 79” loop described in Sec. 6.3.2, step 4.
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a
/
e

b
/
f

c
/
g

d
/
h

t = 0 : 4709949195eda6f0 cbbb9d5dc1059ed8 629a292a367cd507 9159015a3070dd17
bd03f70923c6dd61 67332667ffc00b31 8eb44a8768581511 db0c2e0d64f98fa7

t = 1 : 78d3f8bc03a38303 4709949195eda6f0 cbbb9d5dc1059ed8 629a292a367cd507
ae067f071cd18a36 bd03f70923c6dd61 67332667ffc00b31 8eb44a8768581511

t = 2 : ed59d30beff95306 78d3f8bc03a38303 4709949195eda6f0 cbbb9d5dc1059ed8
c180c7a74ed5cf1f ae067f071cd18a36 bd03f70923c6dd61 67332667ffc00b31

t = 3 : 8e7fe2aba3168f2b ed59d30beff95306 78d3f8bc03a38303 4709949195eda6f0
d92d19667920b327 c180c7a74ed5cf1f ae067f071cd18a36 bd03f70923c6dd61

t = 4 : 1174f9b374a9263a 8e7fe2aba3168f2b ed59d30beff95306 78d3f8bc03a38303
dd371f2d13661c52 d92d19667920b327 c180c7a74ed5cf1f ae067f071cd18a36

t = 5 : 27aaafb7fbef806b 1174f9b374a9263a 8e7fe2aba3168f2b ed59d30beff95306
21af3c6430a9af9c dd371f2d13661c52 d92d19667920b327 c180c7a74ed5cf1f

t = 6 : b352d03a0bd34d65 27aaafb7fbef806b 1174f9b374a9263a 8e7fe2aba3168f2b
69397de9a30e1473 21af3c6430a9af9c dd371f2d13661c52 d92d19667920b327

t = 7 : 412db7f990563d7c b352d03a0bd34d65 27aaafb7fbef806b 1174f9b374a9263a
5062fd5924e2b62e 69397de9a30e1473 21af3c6430a9af9c dd371f2d13661c52

t = 8 : 0f79040546e6edf7 412db7f990563d7c b352d03a0bd34d65 27aaafb7fbef806b

6b6c511b25a6bdbc 5062fd5924e2b62e 69397de9a30e1473 21af3c6430a9af9c

t = 9 : ebf02410f67b8ee7 0f79040546e6edf7 412db7f990563d7c b352d03a0bd34d65
dac695b91543ae80 6b6c511b25a6bdbc 5062fd5924e2b62e 69397de9a30e1473

t = 10 : 97aa05d89b8dbe6d ebf02410f67b8ee7 0f79040546e6edf7 412db7f990563d7c
83b8b72646c0b598 dac695b91543ae80 6b6c511b25a6bdbc 5062fd5924e2b62e

t = 11 : 23d0a36b692118eb 97aa05d89b8dbe6d ebf02410f67b8ee7 0f79040546e6edf7
a5f6c5155e221e8c 83b8b72646c0b598 dac695b91543ae80 6b6c511b25a6bdbc

t = 12 : e1041368d2fca1a2 23d0a36b692118eb 97aa05d89b8dbe6d ebf02410f67b8ee7
ae01675bfb003180 a5f6c5155e221e8c 83b8b72646c0b598 dac695b91543ae80

t = 13 : 45bd6f69efec540d e1041368d2fca1a2 23d0a36b692118eb 97aa05d89b8dbe6d
c35cc50c1cf7ef98 ae01675bfb003180 a5f6c5155e221e8c 83b8b72646c0b598

t = 14 : c237fa23abb9bc16 45bd6f69efec540d e1041368d2fca1a2 23d0a36b692118eb
a16c4f134b28923e c35cc50c1cf7ef98 ae01675bfb003180 a5f6c5155e221e8c

t = 15 : b4092df1c0f81853 c237fa23abb9bc16 45bd6f69efec540d e1041368d2fca1a2
008178e17fa649f2 a16c4f134b28923e c35cc50c1cf7ef98 ae01675bfb003180

t = 16 : 21e5c91d11809c13 b4092df1c0f81853 c237fa23abb9bc16 45bd6f69efec540d
a26dfa04ed8c9b63 008178e17fa649f2 a16c4f134b28923e c35cc50c1cf7ef98

t = 17 : 2c957137cd4304a5 21e5c91d11809c13 b4092df1c0f81853 c237fa23abb9bc16
6be210614b10949b a26dfa04ed8c9b63 008178e17fa649f2 a16c4f134b28923e

t = 18 : 2180e61afe322bc7 2c957137cd4304a5 21e5c91d11809c13 b4092df1c0f81853

76396996200065f7 6be210614b10949b a26dfa04ed8c9b63 008178e17fa649f2

t = 19 : f2911c11c96e5ff5 2180e61afe322bc7 2c957137cd4304a5 21e5c91d11809c13
1bc2160f4f3711dc 76396996200065f7 6be210614b10949b a26dfa04ed8c9b63

t = 20 : 5eab10b19a5143a8 f2911c11c96e5ff5 2180e61afe322bc7 2c957137cd4304a5
98d2b19d201f2bb6 1bc2160f4f3711dc 76396996200065f7 6be210614b10949b

t = 21 : 29c5348d87cd5590 5eab10b19a5143a8 f2911c11c96e5ff5 2180e61afe322bc7
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4324c8caccf7753c 98d2b19d201f2bb6 1bc2160f4f3711dc 76396996200065f7

t = 22 : 33c6b4a0166b7c9c 29c5348d87cd5590 5eab10b19a5143a8 f2911c11c96e5ff5
d49cef5bd2dec121 4324c8caccf7753c 98d2b19d201f2bb6 1bc2160f4f3711dc

t = 23 : 1db4ee606d2a7a96 33c6b4a0166b7c9c 29c5348d87cd5590 5eab10b19a5143a8
b17d15b397521ab3 d49cef5bd2dec121 4324c8caccf7753c 98d2b19d201f2bb6

t = 24 : 5cef5b2f00142660 1db4ee606d2a7a96 33c6b4a0166b7c9c 29c5348d87cd5590
789e540f22e13932 b17d15b397521ab3 d49cef5bd2dec121 4324c8caccf7753c

t = 25 : ff74f4a162435903 5cef5b2f00142660 1db4ee606d2a7a96 33c6b4a0166b7c9c
6c0be33dcc6e7572 789e540f22e13932 b17d15b397521ab3 d49cef5bd2dec121

t = 26 : 41740b736e9676a9 ff74f4a162435903 5cef5b2f00142660 1db4ee606d2a7a96
d8e401251592da6c 6c0be33dcc6e7572 789e540f22e13932 b17d15b397521ab3

t = 27 : 931059fe9279ff1d 41740b736e9676a9 ff74f4a162435903 5cef5b2f00142660
7f31116887eea596 d8e401251592da6c 6c0be33dcc6e7572 789e540f22e13932

t = 28 : 356d08d982e2ead4 931059fe9279ff1d 41740b736e9676a9 ff74f4a162435903
40c28c34b1bbe906 7f31116887eea596 d8e401251592da6c 6c0be33dcc6e7572

t = 29 : 89dc825e7235c74b 356d08d982e2ead4 931059fe9279ff1d 41740b736e9676a9
7a499ae05da50bf2 40c28c34b1bbe906 7f31116887eea596 d8e401251592da6c

t = 30 : 97901f333e662fdc 89dc825e7235c74b 356d08d982e2ead4 931059fe9279ff1d

4472b2e331ddfab4 7a499ae05da50bf2 40c28c34b1bbe906 7f31116887eea596

t = 31 : 69c8f40eb38b6022 97901f333e662fdc 89dc825e7235c74b 356d08d982e2ead4

177589502dd39aa2 4472b2e331ddfab4 7a499ae05da50bf2 40c28c34b1bbe906

t = 32 : 4920943ffe52b207 69c8f40eb38b6022 97901f333e662fdc 89dc825e7235c74b
6b813a0d0cdf4991 177589502dd39aa2 4472b2e331ddfab4 7a499ae05da50bf2

t = 33 : b4cb0df332d108ab 4920943ffe52b207 69c8f40eb38b6022 97901f333e662fdc
8fe3d28097f18618 6b813a0d0cdf4991 177589502dd39aa2 4472b2e331ddfab4

t = 34 : e7748fbf744a5240 b4cb0df332d108ab 4920943ffe52b207 69c8f40eb38b6022
0d7ab03208f1d7a5 8fe3d28097f18618 6b813a0d0cdf4991 177589502dd39aa2

t = 35 : 7416ca18d9e265e0 e7748fbf744a5240 b4cb0df332d108ab 4920943ffe52b207
11200c2d47c082f8 0d7ab03208f1d7a5 8fe3d28097f18618 6b813a0d0cdf4991

t = 36 : 75476f5456e82f9c 7416ca18d9e265e0 e7748fbf744a5240 b4cb0df332d108ab
3024702447f76224 11200c2d47c082f8 0d7ab03208f1d7a5 8fe3d28097f18618

t = 37 : f638a568b53a2f8f 75476f5456e82f9c 7416ca18d9e265e0 e7748fbf744a5240
6217c1c02153302c 3024702447f76224 11200c2d47c082f8 0d7ab03208f1d7a5

t = 38 : c418f6f90602c79a f638a568b53a2f8f 75476f5456e82f9c 7416ca18d9e265e0

87f0901c227adbb3 6217c1c02153302c 3024702447f76224 11200c2d47c082f8

t = 39 : 4f1f4f21df3dcf43 c418f6f90602c79a f638a568b53a2f8f 75476f5456e82f9c
fb7c63fcddf4a1c2 87f0901c227adbb3 6217c1c02153302c 3024702447f76224

t = 40 : 13eb82e4b98d0e67 4f1f4f21df3dcf43 c418f6f90602c79a f638a568b53a2f8f
fb6c0e54d48d4f2d fb7c63fcddf4a1c2 87f0901c227adbb3 6217c1c02153302c

t = 41 : 820e75046567bace 13eb82e4b98d0e67 4f1f4f21df3dcf43 c418f6f90602c79a
b16a9397472f0123 fb6c0e54d48d4f2d fb7c63fcddf4a1c2 87f0901c227adbb3

t = 42 : 741fa5dc290dd02c 820e75046567bace 13eb82e4b98d0e67 4f1f4f21df3dcf43

ed40c88214823792 b16a9397472f0123 fb6c0e54d48d4f2d fb7c63fcddf4a1c2

t = 43 : a4809bf6da6aa8bd 741fa5dc290dd02c 820e75046567bace 13eb82e4b98d0e67
bec3d7e88c855194 ed40c88214823792 b16a9397472f0123 fb6c0e54d48d4f2d

t = 44 : d70b1aa4c800979c a4809bf6da6aa8bd 741fa5dc290dd02c 820e75046567bace
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4962f310bdbd54b0 bec3d7e88c855194 ed40c88214823792 b16a9397472f0123

t = 45 : 9a195492cfdb4745 d70b1aa4c800979c a4809bf6da6aa8bd 741fa5dc290dd02c
2c82d09cf05cf687 4962f310bdbd54b0 bec3d7e88c855194 ed40c88214823792

t = 46 : b7e68364f07f017e 9a195492cfdb4745 d70b1aa4c800979c a4809bf6da6aa8bd
2a1ffb84031b1b6c 2c82d09cf05cf687 4962f310bdbd54b0 bec3d7e88c855194

t = 47 : 0e574b8e0b35e452 b7e68364f07f017e 9a195492cfdb4745 d70b1aa4c800979c
29bdab29ee472a23 2a1ffb84031b1b6c 2c82d09cf05cf687 4962f310bdbd54b0

t = 48 : c176009cf82fa842 0e574b8e0b35e452 b7e68364f07f017e 9a195492cfdb4745
cca47fbe31b335f4 29bdab29ee472a23 2a1ffb84031b1b6c 2c82d09cf05cf687

t = 49 : 5d4f78c7a9bdbed2 c176009cf82fa842 0e574b8e0b35e452 b7e68364f07f017e
eaf198615e99ffdc cca47fbe31b335f4 29bdab29ee472a23 2a1ffb84031b1b6c

t = 50 : 51ab3be828d8d13c 5d4f78c7a9bdbed2 c176009cf82fa842 0e574b8e0b35e452
bd527cd188fb59ae eaf198615e99ffdc cca47fbe31b335f4 29bdab29ee472a23

t = 51 : 4d639ef80d0f6d3e 51ab3be828d8d13c 5d4f78c7a9bdbed2 c176009cf82fa842

b2611b90f90d732f bd527cd188fb59ae eaf198615e99ffdc cca47fbe31b335f4

t = 52 : bba9c9efe0fbc6c8 4d639ef80d0f6d3e 51ab3be828d8d13c 5d4f78c7a9bdbed2
fc0579337591a2c9 b2611b90f90d732f bd527cd188fb59ae eaf198615e99ffdc

t = 53 : 3405d7cad2e8a689 bba9c9efe0fbc6c8 4d639ef80d0f6d3e 51ab3be828d8d13c
0f6649f64ec8e109 fc0579337591a2c9 b2611b90f90d732f bd527cd188fb59ae

t = 54 : ea54d908505798b3 3405d7cad2e8a689 bba9c9efe0fbc6c8 4d639ef80d0f6d3e
ef48a48999108077 0f6649f64ec8e109 fc0579337591a2c9 b2611b90f90d732f

t = 55 : be31d1c0ccc143bc ea54d908505798b3 3405d7cad2e8a689 bba9c9efe0fbc6c8
4fc2d4cad0c91afc ef48a48999108077 0f6649f64ec8e109 fc0579337591a2c9

t = 56 : 285a76d23f6a0073 be31d1c0ccc143bc ea54d908505798b3 3405d7cad2e8a689
a730855599b738a3 4fc2d4cad0c91afc ef48a48999108077 0f6649f64ec8e109

t = 57 : a714ceff14bebc24 285a76d23f6a0073 be31d1c0ccc143bc ea54d908505798b3
53c581dae1831d80 a730855599b738a3 4fc2d4cad0c91afc ef48a48999108077

t = 58 : 697ca14913a50a26 a714ceff14bebc24 285a76d23f6a0073 be31d1c0ccc143bc
34d39344354aacd2 53c581dae1831d80 a730855599b738a3 4fc2d4cad0c91afc

t = 59 : 3a38fa3775d7007c 697ca14913a50a26 a714ceff14bebc24 285a76d23f6a0073
e26f3a21e9a27691 34d39344354aacd2 53c581dae1831d80 a730855599b738a3

t = 60 : 44ea14d8e450c844 3a38fa3775d7007c 697ca14913a50a26 a714ceff14bebc24
5319374fb88dd485 e26f3a21e9a27691 34d39344354aacd2 53c581dae1831d80

t = 61 : 0928b75c925f91e2 44ea14d8e450c844 3a38fa3775d7007c 697ca14913a50a26
79f4be3c5a372911 5319374fb88dd485 e26f3a21e9a27691 34d39344354aacd2

t = 62 : 6db5469fa19c0e27 0928b75c925f91e2 44ea14d8e450c844 3a38fa3775d7007c
16beec0fec168e79 79f4be3c5a372911 5319374fb88dd485 e26f3a21e9a27691

t = 63 : 384e3159898a7362 6db5469fa19c0e27 0928b75c925f91e2 44ea14d8e450c844
55fa3ad1102298a8 16beec0fec168e79 79f4be3c5a372911 5319374fb88dd485

t = 64 : 483c64d3fdebf828 384e3159898a7362 6db5469fa19c0e27 0928b75c925f91e2

1a238431921ea75e 55fa3ad1102298a8 16beec0fec168e79 79f4be3c5a372911

t = 65 : c9464988a1939bcf 483c64d3fdebf828 384e3159898a7362 6db5469fa19c0e27

e3f3f08ac90f86cd 1a238431921ea75e 55fa3ad1102298a8 16beec0fec168e79

t = 66 : 98bc93bca795059c c9464988a1939bcf 483c64d3fdebf828 384e3159898a7362
9e04fb49a5fd91de e3f3f08ac90f86cd 1a238431921ea75e 55fa3ad1102298a8

t = 67 : b6fc101ad1d74e20 98bc93bca795059c c9464988a1939bcf 483c64d3fdebf828
fd13cd3620f6c1f4 9e04fb49a5fd91de e3f3f08ac90f86cd 1a238431921ea75e
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t = 68 : fac26e6e4da4705d b6fc101ad1d74e20 98bc93bca795059c c9464988a1939bcf
0d60228aa6e55b6e fd13cd3620f6c1f4 9e04fb49a5fd91de e3f3f08ac90f86cd

t = 69 : 2a630c58cc27fcaa fac26e6e4da4705d b6fc101ad1d74e20 98bc93bca795059c
a2f7f27a3ec25aba 0d60228aa6e55b6e fd13cd3620f6c1f4 9e04fb49a5fd91de

t = 70 : 159a02d4faee11b4 2a630c58cc27fcaa fac26e6e4da4705d b6fc101ad1d74e20
b2860fc55bdedaa6 a2f7f27a3ec25aba 0d60228aa6e55b6e fd13cd3620f6c1f4

t = 71 : 9d38bdb9df22b557 159a02d4faee11b4 2a630c58cc27fcaa fac26e6e4da4705d
dfc37c68af65f8bc b2860fc55bdedaa6 a2f7f27a3ec25aba 0d60228aa6e55b6e

t = 72 : d42c3a57cfa78513 9d38bdb9df22b557 159a02d4faee11b4 2a630c58cc27fcaa
bb56dea6a325ba32 dfc37c68af65f8bc b2860fc55bdedaa6 a2f7f27a3ec25aba

t = 73 : abab4b0ca75a17c7 d42c3a57cfa78513 9d38bdb9df22b557 159a02d4faee11b4
9ac71d1c037a8bbd bb56dea6a325ba32 dfc37c68af65f8bc b2860fc55bdedaa6

t = 74 : 500f7b61186f6c2e abab4b0ca75a17c7 d42c3a57cfa78513 9d38bdb9df22b557
8347f5736531b3ec 9ac71d1c037a8bbd bb56dea6a325ba32 dfc37c68af65f8bc

t = 75 : 4abe0af6a67db2fe 500f7b61186f6c2e abab4b0ca75a17c7 d42c3a57cfa78513
14e986342ddced0f 8347f5736531b3ec 9ac71d1c037a8bbd bb56dea6a325ba32

t = 76 : e1053fc85f9e56be 4abe0af6a67db2fe 500f7b61186f6c2e abab4b0ca75a17c7
4779767cc2ec5321 14e986342ddced0f 8347f5736531b3ec 9ac71d1c037a8bbd

t = 77 : 7001201948fb3d71 e1053fc85f9e56be 4abe0af6a67db2fe 500f7b61186f6c2e
5cdf6c58fc052572 4779767cc2ec5321 14e986342ddced0f 8347f5736531b3ec

t = 78 : 88146da76ff6f23a 7001201948fb3d71 e1053fc85f9e56be 4abe0af6a67db2fe

8901cffe7a74db98 5cdf6c58fc052572 4779767cc2ec5321 14e986342ddced0f

t = 79 : 5ec3802b9ecfef33 88146da76ff6f23a 7001201948fb3d71 e1053fc85f9e56be
5f2eead69efb4233 8901cffe7a74db98 5cdf6c58fc052572 4779767cc2ec5321

That completes the processing of the first message block, M(1). The intermediate hash value, H(1),
is calculated to be

)1(
0H  = cbbb9d5dc1059ed8 + 5ec3802b9ecfef33 = 2a7f1d895fd58e0b

)1(
1H = 629a292a367cd507 + 88146da76ff6f23a = eaae96d1a673c741

)1(
2H = 9159015a3070dd17 + 7001201948fb3d71 = 015a2173796c1a88

)1(
3H = 152fecd8f70e5939 + e1053fc85f9e56be = f6352ca156acaff7

)1(
4H = 67332667ffc00b31 + 5f2eead69efb4233 = c662113e9ebb4d64

)1(
5H = 8eb44a8768581511 + 8901cffe7a74db98 = 17b61a85e2ccf0a9

)1(
6H = db0c2e0d64f98fa7 + 5cdf6c58fc052572 = 37eb9a6660feb519

)1(
7H  = 47b5481dbefa4fa4 + 4779767cc2ec5321 = 8f2ebe9a81e6a2c5.

The words of the second padded message block, M(2), are then assigned to the words W0,…,W15

of the message schedule:
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W0 = 0000000000000000
W1 = 0000000000000000
W2 = 0000000000000000
W3 = 0000000000000000
W4 = 0000000000000000
W5 = 0000000000000000
W6 = 0000000000000000
W7 = 0000000000000000

W8 = 0000000000000000
W9 = 0000000000000000
W10 = 0000000000000000
W11 = 0000000000000000
W12 = 0000000000000000
W13 = 0000000000000000
W14 = 0000000000000000
W15 = 0000000000000380.

The following schedule shows the hex values for a, b, c, d, e, f, g, and h after pass t of the “for t
= 0 to 79” loop described in Sec. 6.3.2, step 4.

a
/
e

b
/
f

c
/
g

d
/
h

t = 0 : 657a3c2ca9639d40 2a7f1d895fd58e0b eaae96d1a673c741 015a2173796c1a88
791f2ad0055fdd62 c662113e9ebb4d64 17b61a85e2ccf0a9 37eb9a6660feb519

t = 1 : 2a4ad5d9b9fd6d86 657a3c2ca9639d40 2a7f1d895fd58e0b eaae96d1a673c741
dbf2e656b5be3f14 791f2ad0055fdd62 c662113e9ebb4d64 17b61a85e2ccf0a9

t = 2 : f0aa6758653d1664 2a4ad5d9b9fd6d86 657a3c2ca9639d40 2a7f1d895fd58e0b
6e0466c82f4fd35d dbf2e656b5be3f14 791f2ad0055fdd62 c662113e9ebb4d64

t = 3 : 43a76f011a73d317 f0aa6758653d1664 2a4ad5d9b9fd6d86 657a3c2ca9639d40
1367bd36d15e8b40 6e0466c82f4fd35d dbf2e656b5be3f14 791f2ad0055fdd62

t = 4 : d802c2dfd7cc48f6 43a76f011a73d317 f0aa6758653d1664 2a4ad5d9b9fd6d86
f73d759b839a2a21 1367bd36d15e8b40 6e0466c82f4fd35d dbf2e656b5be3f14

t = 5 : 481208e5e8314602 d802c2dfd7cc48f6 43a76f011a73d317 f0aa6758653d1664
6b2271a46f14c843 f73d759b839a2a21 1367bd36d15e8b40 6e0466c82f4fd35d

t = 6 : af9f8112df35cf33 481208e5e8314602 d802c2dfd7cc48f6 43a76f011a73d317
257f4a7d524d7b0b 6b2271a46f14c843 f73d759b839a2a21 1367bd36d15e8b40

t = 7 : 6730781342d1131b af9f8112df35cf33 481208e5e8314602 d802c2dfd7cc48f6
81957ad408cec995 257f4a7d524d7b0b 6b2271a46f14c843 f73d759b839a2a21

t = 8 : 82e64c677356a82e 6730781342d1131b af9f8112df35cf33 481208e5e8314602

10b62fdce4ebaa51 81957ad408cec995 257f4a7d524d7b0b 6b2271a46f14c843

t = 9 : 203578820a8f27d0 82e64c677356a82e 6730781342d1131b af9f8112df35cf33
9937b3a0cb9248a1 10b62fdce4ebaa51 81957ad408cec995 257f4a7d524d7b0b

t = 10 : 0bac2a84c29a1e2b 203578820a8f27d0 82e64c677356a82e 6730781342d1131b
6ad288dab3de0d53 9937b3a0cb9248a1 10b62fdce4ebaa51 81957ad408cec995

t = 11 : dd3ff8a140485c25 0bac2a84c29a1e2b 203578820a8f27d0 82e64c677356a82e
3149b728123c465e 6ad288dab3de0d53 9937b3a0cb9248a1 10b62fdce4ebaa51

t = 12 : e826239f830c5346 dd3ff8a140485c25 0bac2a84c29a1e2b 203578820a8f27d0
4bb7b199c4ced186 3149b728123c465e 6ad288dab3de0d53 9937b3a0cb9248a1

t = 13 : 32215ce49aae40f8 e826239f830c5346 dd3ff8a140485c25 0bac2a84c29a1e2b
9a2872c72d790d49 4bb7b199c4ced186 3149b728123c465e 6ad288dab3de0d53

t = 14 : 859533bac457f94e 32215ce49aae40f8 e826239f830c5346 dd3ff8a140485c25
539f225d25ebeb4c 9a2872c72d790d49 4bb7b199c4ced186 3149b728123c465e

t = 15 : a88704d9962849f3 859533bac457f94e 32215ce49aae40f8 e826239f830c5346
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63bf0472ef24f7a5 539f225d25ebeb4c 9a2872c72d790d49 4bb7b199c4ced186

t = 16 : 3aa5c566a6cfad1c a88704d9962849f3 859533bac457f94e 32215ce49aae40f8
ce23f6380ead33c2 63bf0472ef24f7a5 539f225d25ebeb4c 9a2872c72d790d49

t = 17 : 2e9c483a7c08c9c1 3aa5c566a6cfad1c a88704d9962849f3 859533bac457f94e
b033f945f3e6b4a2 ce23f6380ead33c2 63bf0472ef24f7a5 539f225d25ebeb4c

t = 18 : 5a68585ae0835231 2e9c483a7c08c9c1 3aa5c566a6cfad1c a88704d9962849f3

8a0187a9ce93d875 b033f945f3e6b4a2 ce23f6380ead33c2 63bf0472ef24f7a5

t = 19 : cf9cd481e6407ced 5a68585ae0835231 2e9c483a7c08c9c1 3aa5c566a6cfad1c
37a29fa30531bac7 8a0187a9ce93d875 b033f945f3e6b4a2 ce23f6380ead33c2

t = 20 : 3f463f864f6474d9 cf9cd481e6407ced 5a68585ae0835231 2e9c483a7c08c9c1
0cf45bb3c07e847d 37a29fa30531bac7 8a0187a9ce93d875 b033f945f3e6b4a2

t = 21 : cea26288dff931a5 3f463f864f6474d9 cf9cd481e6407ced 5a68585ae0835231
34f1b5f46bf48a73 0cf45bb3c07e847d 37a29fa30531bac7 8a0187a9ce93d875

t = 22 : 89634cd0f4f6c08a cea26288dff931a5 3f463f864f6474d9 cf9cd481e6407ced
3a728a543405a8e4 34f1b5f46bf48a73 0cf45bb3c07e847d 37a29fa30531bac7

t = 23 : 625fa38464e5c880 89634cd0f4f6c08a cea26288dff931a5 3f463f864f6474d9
cee1b47a49b2fc42 3a728a543405a8e4 34f1b5f46bf48a73 0cf45bb3c07e847d

t = 24 : 7dd21453a15a3b92 625fa38464e5c880 89634cd0f4f6c08a cea26288dff931a5
9308bfa1be1f800b cee1b47a49b2fc42 3a728a543405a8e4 34f1b5f46bf48a73

t = 25 : 3d76277bc8cb0601 7dd21453a15a3b92 625fa38464e5c880 89634cd0f4f6c08a
480e017f5d1f0b1e 9308bfa1be1f800b cee1b47a49b2fc42 3a728a543405a8e4

t = 26 : c8d904196f5a1f54 3d76277bc8cb0601 7dd21453a15a3b92 625fa38464e5c880
4bd2f1f6e940c332 480e017f5d1f0b1e 9308bfa1be1f800b cee1b47a49b2fc42

t = 27 : b033139b58b6e423 c8d904196f5a1f54 3d76277bc8cb0601 7dd21453a15a3b92
f816ec1cbe0adafb 4bd2f1f6e940c332 480e017f5d1f0b1e 9308bfa1be1f800b

t = 28 : 097768182cb65f57 b033139b58b6e423 c8d904196f5a1f54 3d76277bc8cb0601
62e3de54dcd8f974 f816ec1cbe0adafb 4bd2f1f6e940c332 480e017f5d1f0b1e

t = 29 : 3196649ab5f5cc39 097768182cb65f57 b033139b58b6e423 c8d904196f5a1f54
f6887de116d0bd8f 62e3de54dcd8f974 f816ec1cbe0adafb 4bd2f1f6e940c332

t = 30 : f78d3d221d16965f 3196649ab5f5cc39 097768182cb65f57 b033139b58b6e423

c7e4859c2858ed3c f6887de116d0bd8f 62e3de54dcd8f974 f816ec1cbe0adafb

t = 31 : f58e9876b4984b51 f78d3d221d16965f 3196649ab5f5cc39 097768182cb65f57

621352b394b8ca02 c7e4859c2858ed3c f6887de116d0bd8f 62e3de54dcd8f974

t = 32 : 38fbf0e726e04f78 f58e9876b4984b51 f78d3d221d16965f 3196649ab5f5cc39
4319856f17a0a430 621352b394b8ca02 c7e4859c2858ed3c f6887de116d0bd8f

t = 33 : f4be0b32a57597a2 38fbf0e726e04f78 f58e9876b4984b51 f78d3d221d16965f
c6d392a3b4eb0ed8 4319856f17a0a430 621352b394b8ca02 c7e4859c2858ed3c

t = 34 : f8a6b3fe2e4f0634 f4be0b32a57597a2 38fbf0e726e04f78 f58e9876b4984b51
602663c0f34eff33 c6d392a3b4eb0ed8 4319856f17a0a430 621352b394b8ca02

t = 35 : 9bc3871be8046113 f8a6b3fe2e4f0634 f4be0b32a57597a2 38fbf0e726e04f78
05542ecd9883c6ba 602663c0f34eff33 c6d392a3b4eb0ed8 4319856f17a0a430

t = 36 : f1bd2d46be619585 9bc3871be8046113 f8a6b3fe2e4f0634 f4be0b32a57597a2
e47b9933bafdc655 05542ecd9883c6ba 602663c0f34eff33 c6d392a3b4eb0ed8

t = 37 : 24c84b58d119affe f1bd2d46be619585 9bc3871be8046113 f8a6b3fe2e4f0634
5ae0b1175beb5d2b e47b9933bafdc655 05542ecd9883c6ba 602663c0f34eff33

t = 38 : ec6d3abc2b291fd3 24c84b58d119affe f1bd2d46be619585 9bc3871be8046113
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9ecc381d277748a3 5ae0b1175beb5d2b e47b9933bafdc655 05542ecd9883c6ba

t = 39 : e266c1f77d5ee90e ec6d3abc2b291fd3 24c84b58d119affe f1bd2d46be619585
d92f34c110296b32 9ecc381d277748a3 5ae0b1175beb5d2b e47b9933bafdc655

t = 40 : 5adbaa463642b570 e266c1f77d5ee90e ec6d3abc2b291fd3 24c84b58d119affe
83e8f410f859388e d92f34c110296b32 9ecc381d277748a3 5ae0b1175beb5d2b

t = 41 : 50fdb7bb2e499a34 5adbaa463642b570 e266c1f77d5ee90e ec6d3abc2b291fd3
257ed8ea645e933a 83e8f410f859388e d92f34c110296b32 9ecc381d277748a3

t = 42 : 06514212bb7fa152 50fdb7bb2e499a34 5adbaa463642b570 e266c1f77d5ee90e

466781db35181abe 257ed8ea645e933a 83e8f410f859388e d92f34c110296b32

t = 43 : 673ed5a55ff2b07d 06514212bb7fa152 50fdb7bb2e499a34 5adbaa463642b570
ba78f3545e7914f0 466781db35181abe 257ed8ea645e933a 83e8f410f859388e

t = 44 : 125e2e5118393e2b 673ed5a55ff2b07d 06514212bb7fa152 50fdb7bb2e499a34
4453b23a3e13b090 ba78f3545e7914f0 466781db35181abe 257ed8ea645e933a

t = 45 : 07ee813df5910cec 125e2e5118393e2b 673ed5a55ff2b07d 06514212bb7fa152
eae013a0510d23cc 4453b23a3e13b090 ba78f3545e7914f0 466781db35181abe

t = 46 : 0a0508f0a1d719c3 07ee813df5910cec 125e2e5118393e2b 673ed5a55ff2b07d
a93815eb58891016 eae013a0510d23cc 4453b23a3e13b090 ba78f3545e7914f0

t = 47 : 0fc8f3b3efcb1b96 0a0508f0a1d719c3 07ee813df5910cec 125e2e5118393e2b
a071cc73b966e801 a93815eb58891016 eae013a0510d23cc 4453b23a3e13b090

t = 48 : 02aa5b28199f304a 0fc8f3b3efcb1b96 0a0508f0a1d719c3 07ee813df5910cec
a49f1e14f8a2be7a a071cc73b966e801 a93815eb58891016 eae013a0510d23cc

t = 49 : 9223e1b34382f104 02aa5b28199f304a 0fc8f3b3efcb1b96 0a0508f0a1d719c3
bfe2106e512a7331 a49f1e14f8a2be7a a071cc73b966e801 a93815eb58891016

t = 50 : e01a1e47ee8d5656 9223e1b34382f104 02aa5b28199f304a 0fc8f3b3efcb1b96
592b899b35469a78 bfe2106e512a7331 a49f1e14f8a2be7a a071cc73b966e801

t = 51 : fa7b17aad857c2f4 e01a1e47ee8d5656 9223e1b34382f104 02aa5b28199f304a

eb6e85e4682c1671 592b899b35469a78 bfe2106e512a7331 a49f1e14f8a2be7a

t = 52 : 0c523b7a3c84ab77 fa7b17aad857c2f4 e01a1e47ee8d5656 9223e1b34382f104
b5e80e871ac0c005 eb6e85e4682c1671 592b899b35469a78 bfe2106e512a7331

t = 53 : c773d8b69da1fde2 0c523b7a3c84ab77 fa7b17aad857c2f4 e01a1e47ee8d5656
be2b0602fc6f8f65 b5e80e871ac0c005 eb6e85e4682c1671 592b899b35469a78

t = 54 : c6b1bc79a4f23679 c773d8b69da1fde2 0c523b7a3c84ab77 fa7b17aad857c2f4
c80bdc57f38a05e4 be2b0602fc6f8f65 b5e80e871ac0c005 eb6e85e4682c1671

t = 55 : bef9bb0fe467fd60 c6b1bc79a4f23679 c773d8b69da1fde2 0c523b7a3c84ab77
1dab0bd116e434e5 c80bdc57f38a05e4 be2b0602fc6f8f65 b5e80e871ac0c005

t = 56 : 8e3db3e380ec7f22 bef9bb0fe467fd60 c6b1bc79a4f23679 c773d8b69da1fde2
32ef50751734ffee 1dab0bd116e434e5 c80bdc57f38a05e4 be2b0602fc6f8f65

t = 57 : 1003ec42412c7b7d 8e3db3e380ec7f22 bef9bb0fe467fd60 c6b1bc79a4f23679
1ec0d46f349fd058 32ef50751734ffee 1dab0bd116e434e5 c80bdc57f38a05e4

t = 58 : 375facc76291f85e 1003ec42412c7b7d 8e3db3e380ec7f22 bef9bb0fe467fd60
59c8bc0488f9768b 1ec0d46f349fd058 32ef50751734ffee 1dab0bd116e434e5

t = 59 : bd113d92e0354fb9 375facc76291f85e 1003ec42412c7b7d 8e3db3e380ec7f22
e66c73db3fad397d 59c8bc0488f9768b 1ec0d46f349fd058 32ef50751734ffee

t = 60 : 2f61d4fd8e36d9d4 bd113d92e0354fb9 375facc76291f85e 1003ec42412c7b7d
e9f21933e1c02948 e66c73db3fad397d 59c8bc0488f9768b 1ec0d46f349fd058

t = 61 : 1b1ad88b92701ae2 2f61d4fd8e36d9d4 bd113d92e0354fb9 375facc76291f85e
6fd0c1719bcac335 e9f21933e1c02948 e66c73db3fad397d 59c8bc0488f9768b
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t = 62 : 93d09fc06a19c5da 1b1ad88b92701ae2 2f61d4fd8e36d9d4 bd113d92e0354fb9
b765273f571a571e 6fd0c1719bcac335 e9f21933e1c02948 e66c73db3fad397d

t = 63 : 04bea2ce99cc3bf6 93d09fc06a19c5da 1b1ad88b92701ae2 2f61d4fd8e36d9d4
6ab0e443c2f63714 b765273f571a571e 6fd0c1719bcac335 e9f21933e1c02948

t = 64 : 02ebfc0a13492f52 04bea2ce99cc3bf6 93d09fc06a19c5da 1b1ad88b92701ae2

77300c52e05af415 6ab0e443c2f63714 b765273f571a571e 6fd0c1719bcac335

t = 65 : 1bf525abce8d6f04 02ebfc0a13492f52 04bea2ce99cc3bf6 93d09fc06a19c5da

8faf12c33bb371b9 77300c52e05af415 6ab0e443c2f63714 b765273f571a571e

t = 66 : b6a36a3431547328 1bf525abce8d6f04 02ebfc0a13492f52 04bea2ce99cc3bf6
fa8bb40b4e08100f 8faf12c33bb371b9 77300c52e05af415 6ab0e443c2f63714

t = 67 : ffdaf83202af0d72 b6a36a3431547328 1bf525abce8d6f04 02ebfc0a13492f52
8045a82f723a9b4e fa8bb40b4e08100f 8faf12c33bb371b9 77300c52e05af415

t = 68 : 12737373d2985232 ffdaf83202af0d72 b6a36a3431547328 1bf525abce8d6f04
870dbce23bad8988 8045a82f723a9b4e fa8bb40b4e08100f 8faf12c33bb371b9

t = 69 : 6189f68162b256b5 12737373d2985232 ffdaf83202af0d72 b6a36a3431547328
8c059af157146580 870dbce23bad8988 8045a82f723a9b4e fa8bb40b4e08100f

t = 70 : 20b0a9a1d21c482d 6189f68162b256b5 12737373d2985232 ffdaf83202af0d72
f22b874c96785ec8 8c059af157146580 870dbce23bad8988 8045a82f723a9b4e

t = 71 : ef6d863c2127b394 20b0a9a1d21c482d 6189f68162b256b5 12737373d2985232
b7aee28337d69dab f22b874c96785ec8 8c059af157146580 870dbce23bad8988

t = 72 : d3efe8b442689074 ef6d863c2127b394 20b0a9a1d21c482d 6189f68162b256b5
22491ab9cdecb6b0 b7aee28337d69dab f22b874c96785ec8 8c059af157146580

t = 73 : 4694354944a9f487 d3efe8b442689074 ef6d863c2127b394 20b0a9a1d21c482d
659890a5818d0c50 22491ab9cdecb6b0 b7aee28337d69dab f22b874c96785ec8

t = 74 : b93c2403773dd08c 4694354944a9f487 d3efe8b442689074 ef6d863c2127b394
88c2c2ac52c4f679 659890a5818d0c50 22491ab9cdecb6b0 b7aee28337d69dab

t = 75 : 025848e3ab6b69d3 b93c2403773dd08c 4694354944a9f487 d3efe8b442689074
750da3d4e16a1b64 88c2c2ac52c4f679 659890a5818d0c50 22491ab9cdecb6b0

t = 76 : 396b53e58d04471b 025848e3ab6b69d3 b93c2403773dd08c 4694354944a9f487
700486bf252cba75 750da3d4e16a1b64 88c2c2ac52c4f679 659890a5818d0c50

t = 77 : 51b6f9a3c1ceeb4a 396b53e58d04471b 025848e3ab6b69d3 b93c2403773dd08c
e6b3850de8ae6230 700486bf252cba75 750da3d4e16a1b64 88c2c2ac52c4f679

t = 78 : 526a98f5dc595406 51b6f9a3c1ceeb4a 396b53e58d04471b 025848e3ab6b69d3

4f0dcf74aea76f90 e6b3850de8ae6230 700486bf252cba75 750da3d4e16a1b64

t = 79 : deb3eeaa973bb9dd 526a98f5dc595406 51b6f9a3c1ceeb4a 396b53e58d04471b
3665b5dbb6c2e055 4f0dcf74aea76f90 e6b3850de8ae6230 700486bf252cba75

That completes the processing of the second and final message block, M(2). The final hash value,
H(2), is calculated to be

)2(
0H  = 2a7f1d895fd58e0b + deb3eeaa973bb9dd = 09330c33f71147e8

)2(
1H = eaae96d1a673c741 + 526a98f5dc595406 = 3d192fc782cd1b47

)2(
2H = 015a2173796c1a88 + 51b6f9a3c1ceeb4a = 53111b173b3b05d2

)2(
3H = f6352ca156acaff7 + 396b53e58d04471b = 2fa08086e3b0f712

)2(
4H = c662113e9ebb4d64 + 3665b5dbb6c2e055 = fcc7c71a557e2db9
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)2(
5H = 17b61a85e2ccf0a9 + 4f0dcf74aea76f90 = 66c3e9fa91746039

)2(
6H = 37eb9a6660feb519 + e6b3850de8ae6230 = 1e9f1f7449ad1749

)2(
7H  = 8f2ebe9a81e6a2c5 + 700486bf252cba75 = ff334559a7135d3a.

The final hash value is truncated to its left-most 384 bits (i.e., )1(
5

)1(
0 ,, HH K ), resulting in the 384-bit

message digest

09330c33f71147e8 3d192fc782cd1b47 53111b173b3b05d2 2fa08086e3b0f712

fcc7c71a557e2db9 66c3e9fa91746039.

D.3 SHA-384 Example (Long Message)
Let the message M be the binary-coded form of the ASCII string which consists of 1,000,000
repetitions of the character “a”.  The resulting SHA-384 message digest is

9d0e1809716474cb 086e834e310a4a1c ed149e9c00f24852 7972cec5704c2a5b

07b8b3dc38ecc4eb ae97ddd87f3d8985.
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Foreword

Business practice has changed with the introduction of computer-based technologies. The
substitution of electronic transactions for their paper-based predecessors has reduced costs and
improved efficiency. Trillions of dollars in funds and securities are transferred daily by
telephone, wire services, and other electronic communication mechanisms. The high value or
sheer volume of such transactions within an open environment exposes the financial community
and its customers to potentially severe risks from the accidental or deliberate disclosure,
alteration, substitution, or destruction of data. These risks are compounded by interconnected
networks, and the increased number and sophistication of malicious adversaries. Electronically
communicated data may be secured through the use of symmetrically keyed encryption
algorithms (e.g. ANSI X9.52, Triple-DEA) in combination with public-key cryptography-based
key management techniques.

This standard, X9.63-2001, Public Key Cryptography For The Financial Services Industry: Key
Agreement and Key Transport Using Elliptic Curve Cryptography, defines a suite of
mechanisms designed to facilitate the secure establishment of cryptographic data for the keying
of symmetrically keyed algorithms (e.g. DEA, TDEA). These mechanisms are based on the
elliptic curve analogue of the Diffie-Hellman key agreement mechanism [4]. Because the
mechanisms are based on the same fundamental mathematics as the Elliptic Curve Digital
Signature Algorithm (ECDSA) (see [7]), additional efficiencies and functionality may be
obtained by combining these and other cryptographic techniques.

While the techniques specified in this standard are designed to facilitate key management
applications, the standard does not guarantee that a particular implementation is secure. It is the
responsibility of the financial institution to put an overall process in place with the necessary
controls to ensure that the process is securely implemented. Furthermore, the controls should
include the application of appropriate audit tests in order to verify compliance.

The user’s attention is called to the possibility that compliance with this standard may require the
use of an invention covered by patent rights. By publication of this standard, no position is taken
with respect to the validity of potential claims or of any patent rights in connection therewith.
The patent holders have, however, filed a statement of willingness to grant a license under these
rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain
such a license. Details may be obtained from the X9 Secretariat,
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America
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Annex K
(informative)
Bibliography

A comprehensive treatment of modern cryptography can be found in [57].

Elliptic curve cryptosystems were first proposed in 1985 independently by Neil Koblitz [48] and
Victor Miller [58]. Since then, much research has been undertaken towards improving the
efficiency of these systems and evaluating their security. For a summary of this work, consult
[54]. A description of a hardware implementation of an elliptic curve cryptosystem can be found
in [12]. ECDSA is specified in [7]. For a detailed treatment of the mathematical theory of elliptic
curves, see [63]. A less technical approach to the theory can be found in [54].

Three references on the theory of finite fields are the books of McEliece [53], Lidl and
Neiderreiter [52], and Jungnickel [44]. Lidl and Neiderreiter’s book [52] contains introductory
material on polynomial and normal bases. The article [11] discusses methods that efficiently
perform arithmetic operations in finite fields of characteristic 2. A hardware implementation of
arithmetic in such fields that exploits the properties of optimal normal bases is described in [13].

SHA-1 is specified in [3] and [25].
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Abstract

This standard specifies a suite of algorithms which can be used to generate a digital signature. 
Digital signatures are used to detect unauthorized modifications to data and to authenticate the
identity of the signatory.  In addition, the recipient of signed data can use a digital signature in
proving to a third party that the signature was in fact generated by the signatory.  This is known as
nonrepudiation since the signatory cannot, at a later time, repudiate the signature.
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Announcing the

DIGITAL SIGNATURE STANDARD (DSS)

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National
Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce pursuant
to Section 5131 of the Information Technology Management Reform Act of 1996 (Public Law 104-
106), and the Computer Security Act of 1987 (Public Law 100-235).

Name of Standard: Digital Signature Standard (DSS).

Category of Standard: Computer Security, Cryptography.

Explanation: This Standard specifies algorithms appropriate for applications requiring a digital,
rather than written, signature.  A digital signature is represented in a computer as a string of binary
digits.  A digital signature is computed using a set of rules and a set of parameters such that the
identity of the signatory and integrity of the data can be verified.  An algorithm provides the
capability to generate and verify signatures.  Signature generation makes use of a private key to
generate a digital signature.  Signature verification makes use of a public key which corresponds to,
but is not the same as, the private key.  Each user possesses a private and public key pair.  Public
keys are assumed to be known to the public in general.  Private keys are never shared.  Anyone can
verify the signature of a user by employing that user's public key.  Signature generation can be
performed only by the possessor of the user's private key.

A hash function is used in the signature generation process to obtain a condensed version of data,
called a message digest (see Figure 1).  The message digest is then input to the digital signature (ds)
algorithm to generate the digital signature.  The digital signature is sent to the intended verifier along
with the signed data (often called the message).  The verifier of the message and signature verifies
the signature by using the sender's public key.  The same hash function must also be used in the
verification process.  The hash function is specified in a separate standard, the Secure Hash Standard
(SHS), FIPS 180-1.  FIPS approved ds algorithms must be implemented with the SHS.  Similar
procedures may be used to generate and verify signatures for stored as well as transmitted data.
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Approving Authority: Secretary of Commerce.

Maintenance Agency: U.S. Department of Commerce, National Institute of Standards and
Technology (NIST), Information Technology Laboratory (ITL).

Applicability: This standard is applicable to all Federal departments and agencies for the protection
of sensitive unclassified information that is not subject to section 2315 of Title 10, United States
Code, or section 3502(2) of Title 44, United States Code.  This standard shall be used in designing
and implementing public-key based signature systems that Federal departments and agencies operate
or which are operated for them under contract.  Adoption and use of this standard is available to
private and commercial organizations.

Applications: A digital signature (ds) algorithm authenticates the integrity of the signed data and
the identity of the signatory.  A ds algorithm may also be used in proving to a third party that data
was actually signed by the generator of the signature.  A ds algorithm is intended for use in electronic
mail, electronic funds transfer, electronic data interchange, software distribution, data storage, and
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other applications that require data integrity assurance and data origin authentication.  The
techniques specified in ANSI X9.31 and ANSI X9.62 may be used in addition to the Digital
Signature Algorithm (DSA) specified herein.  (NIST editorial note: either DSA, RSA [ANSI X9.31],
or ECDSA [ANSI X9.62] may be used; all three do not have to be implemented.)

Implementations: A ds algorithm may be implemented in software firmware, hardware or any
combination thereof.  NIST has developed a validation program to test implementations for
conformance to DSA.  Currently, conformance tests for ANSI X9.31 and ANSI X9.62 have not been
developed.  These tests will be developed and made available in the future. Information about the
planned validation program can be obtained from the National Institute of Standards and
Technology, Information Technology Laboratory, Attn: DSS Validation, 100 Bureau Drive Stop
8930, Gaithersburg, MD 20899-8930.

Agencies are advised that separate keys should be used for signature and confidentiality purposes
when using the X9.31 standard.  This is because the RSA algorithm can be used for both data
encryption and digital signature purposes.

Export Control: Certain cryptographic devices and technical data regarding them are subject to
Federal export controls.  Applicable Federal government export controls are specified in Title 15,
Code of Federal Regulations (CFR) Part 740.17; Title 15, CFR Part 742; and Title 15, CFR Part 774,
Category 5, Part 2.

Patents: The algorithms in this standard may be covered by U.S. or foreign patents.

Implementation Schedule: This standard becomes effective July 27, 2000.  A transition period from
July 27, 2000 until July 27, 2001 is provided to enable all agencies to develop plans for the
acquisition of equipment which implements the digital signature techniques adopted by FIPS 186-2.
 During the transition period, agencies may continue to use their existing digital signature systems
and to acquire additional equipment that may be needed to interoperate with these legacy digital
signature systems.  Agencies without legacy digital signature systems should plan for the acquisition
and use of equipment implementing the digital signature techniques that are adopted by FIPS 186-2.
 After the transition period, only equipment that implements FIPS 186-2 endorsed techniques should
be acquired.

Specifications: Federal Information Processing Standard (FIPS) 186-2 Digital Signature Standard
(affixed). Also see an important change notice at the end of this document.

Cross Index:

a.  FIPS PUB 46-3, Data Encryption Standard.

b.  FIPS PUB 73, Guidelines for Security of Computer Applications.



4

c. FIPS PUB 140-1, Security Requirements for Cryptographic Modules.
  
d. FIPS PUB 171, Key Management Using ANSI X9.17.

e. FIPS PUB 180-1, Secure Hash Standard.

f.  ANSI X9.31-1998, Digital Signatures Using Reversible Public Key Cryptography for the
Financial Services Industry (rDSA).

g.  ANSI X9.62-1998, Public Key Cryptography for the Financial Services Industry: The Elliptic
Curve Digital Signature Algorithm (ECDSA).

Qualifications: The security of a digital signature system is dependent on maintaining the secrecy
of users' private keys.  Users must therefore guard against the unauthorized acquisition of their
private keys.  While it is the intent of this standard to specify general security requirements for
generating digital signatures, conformance to this standard does not assure that a particular
implementation is secure.  The responsible authority in each agency or department shall assure that
an overall implementation provides an acceptable level of security.  This standard will be reviewed
every five years in order to assess its adequacy.

Waiver Procedure: Under certain exceptional circumstances, the heads of Federal agencies, or their
delegates, may approve waivers to Federal Information Processing Standards (FIPS).  The head of
such agency may redelegate such authority only to a senior official designated pursuant to section
3506(b) of Title 44, United States Code.  Waiver shall be granted only when:

a. Compliance with a standard would adversely affect the accomplishment of the mission of an
operator of a Federal computer system; or

b. Cause a major adverse financial impact on the operator which is not offset by Government wide
savings.

Agency heads may act upon a written waiver request containing the information detailed above. 
Agency heads may also act without a written waiver request when they determine that conditions for
meeting the standard cannot be met.  Agency heads may approve waivers only by a written decision
which explains the basis on which the agency head made the required finding(s).  A copy of each
such decision, with procurement sensitive or classified portions clearly identified, shall be sent to:
National Institute of Standards and Technology; ATTN: FIPS Waiver Decisions, 100 Bureau Drive
Stop 8970, Gaithersburg, MD 20899-8970.

In addition, notice of each waiver granted and each delegation of authority to approve waivers shall
be sent promptly to the Committee on Government Operations of the House of Representatives and
the Committee on Governmental Affairs of the Senate and shall be published promptly in the Federal
Register.
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When the determination on a waiver applies to the procurement of equipment and/or services, a
notice of the waiver determination must be published in the Commerce Business Daily as a part of
the notice of solicitation for offers of an acquisition or, if the waiver determination is made after that
notice is published, by amendment to such notice.

A copy of the waiver, any supporting documents, the document approving the waiver and any
supporting and accompanying documents, with such deletions as the agency is authorized and
decides to make under 5 U.S.C. Sec. 552(b), shall be part of the procurement documentation and
retained by the agency.

Where to Obtain Copies of the Standard: Copies of this publication are for sale by the National
Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.  When
ordering, refer to Federal Information Processing Standards Publication 186-2 (FIPSPUB186-2), and
identify the title.  When microfiche is desired, this should be specified.  Prices are published by NTIS
in current catalogs and other issuances.  Payment may be made by check, money order, deposit
account or charged to a credit card accepted by NTIS.
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Federal Information
Processing Standards Publication 186-2

2000 January 27

Specifications for the

DIGITAL SIGNATURE STANDARD (DSS)

1. INTRODUCTION

This publication prescribes three algorithms suitable for digital signature (ds) generation and
verification.  The first algorithm, the Digital Signature Algorithm (DSA), is described in sections
4 - 6 and appendices 1 - 5.  The second algorithm, the RSA ds algorithm, is discussed in section 7
and the third algorithm, the ECDSA algorithm, is discussed in section 8 and recommended elliptic
curves in appendix 6. An important change notice has been appended to this document.

2. GENERAL

When a message is received, the recipient may desire to verify that the message has not been altered
in transit.  Furthermore, the recipient may wish to be certain of the originator's identity.  Both of
these services can be provided by a ds algorithm.  A digital signature is an electronic analogue of a
written signature in that the digital signature can be used in proving to the recipient or a third party
that the message was, in fact, signed by the originator.  Digital signatures may also be generated for
stored data and programs so that the integrity of the data and programs may be verified at any later
time.

This publication prescribes two algorithms suitable for digital signature generation and verification.

3. USE OF A DIGITAL SIGNATURE (ds) ALGORITHM

A ds algorithm is used by a signatory to generate a digital signature on data and by a verifier to
verify the authenticity of the signature.  Each signatory has a public and private key.  The private key
is used in the signature generation process and the public key is used in the signature verification
process.  For both signature generation and verification, the data which is referred to as a message,
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M, is reduced by means of the Secure Hash Algorithm (SHA-1) specified in FIPS 180-1. An
adversary, who does not know the private key of the signatory, cannot generate the correct signature
of the signatory.  In other words, signatures cannot be forged.  However, by using the signatory's
public key, anyone can verify a correctly signed message.  A means of associating public and private
key pairs to the corresponding users is required.  That is, there must be a binding of a user's identity
and the user's public key. This binding may be certified by a mutually trusted party.  For example,
a certifying authority could sign credentials containing a user's public key and identity to form a
certificate.  Systems for certifying credentials and distributing certificates are beyond the scope of
this standard. NIST intends to publish separate document(s) on certifying credentials and distributing
certificates.

4. DSA PARAMETERS

The DSA makes use of the following parameters:

   1. p = a prime modulus, where 2L-1 < p < 2L for 512 ≤ L ≤ 1024 and L a multiple of 64

   2. q = a prime divisor of p - 1, where 2159 < q < 2160

   3. g = h(p-1)/q mod p, where h is any integer with 1 < h < p - 1 such that h(p-1)/q mod p > 1
       (g has order q mod p)

   4. x = a randomly or pseudorandomly generated integer with 0 < x < q

   5. y = gx mod p

   6. k = a randomly or pseudorandomly generated integer with 0 < k < q

The integers p, q, and g can be public and can be common to a group of users.  A user's private and
public keys are x and y, respectively.  They are normally fixed for a period of time.  Parameters x
and k are used for signature generation only, and must be kept secret.  Parameter k must be
regenerated for each signature.

Parameters p and q shall be generated as specified in Appendix 2, or using other FIPS approved
security methods.  Parameters x and k shall be generated as specified in Appendix 3, or using other
FIPS approved security methods.

5. DSA SIGNATURE GENERATION

The signature of a message M is the pair of numbers r and s computed according to the equations
below:
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   r = (gk mod p) mod q    and
   s = (k-1(SHA-1(M) + xr)) mod q.

In the above, k-1 is the multiplicative inverse of k, mod q; i.e., (k-1 k) mod q = 1 and 0 < k-1 < q.  The
value of SHA-1(M) is a 160-bit string output by the Secure Hash Algorithm specified in FIPS 180-1.
 For use in computing s, this string must be converted to an integer.  The conversion rule is given
in Appendix 2.2.

As an option, one may wish to check if r = 0 or s = 0.  If either r = 0 or s = 0, a new value of k should
be generated and the signature should be recalculated (it is extremely unlikely that r = 0 or s = 0 if
signatures are generated properly).

The signature is transmitted along with the message to the verifier.

6. DSA SIGNATURE VERIFICATION

Prior to verifying the signature in a signed message, p, q and g plus the sender's public key and
identity are made available to the verifier in an authenticated manner.

Let M′, r′, and s′ be the received versions of M, r, and s, respectively, and let y be the public key of
the signatory.  To verify the signature, the verifier first checks to see that 0 < r′ < q and 0 < s′ < q;
if either condition is violated the signature shall be rejected.  If these two conditions are satisfied,
the verifier computes

   w  = (s′)-1 mod q

   u1 = ((SHA-1(M′))w) mod q

   u2 = ((r′)w) mod q
 
   v  = (((g)u1 (y)u2) mod p) mod q.

If v = r′, then the signature is verified and the verifier can have high confidence that the received
message was sent by the party holding the secret key x corresponding to y. For a proof that v = r′
when M′ = M, r′ = r, and s′ = s, see Appendix 1.

If v does not equal r′, then the message may have been modified, the message may have been
incorrectly signed by the signatory, or the message may have been signed by an impostor.  The
message should be considered invalid.

7.  RSA DIGITAL SIGNATURE ALGORITHM
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The RSA ds algorithm is a FIPS approved cryptographic algorithm for digital signature generation
and verification.  This is described in ANSI X9.31.

8.  ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM (ECDSA)

The ECDSA ds algorithm is a FIPS approved cryptographic algorithm for digital signature
generation and verification.  ECDSA is the elliptic curve analogue of the DSA.  ECDSA is
described in ANSI X9.62.  The recommended elliptic curves for Federal Government use are
included in Appendix 6.
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APPENDIX 1. A PROOF THAT v = r′′ IN THE DSA

This appendix is for informational purposes only and is not required to meet the standard.

The purpose of this appendix is to show that in the DSA, if M′ = M, r′ = r and s′ = s in the signature
verification then v = r′. We need the following easy result.

LEMMA.  Let p and q be primes so that q divides p - 1, h a positive integer less than p, and g = h(p-

1)/q mod p. Then gq mod p = 1, and if m mod q = n mod q, then gm mod p = gn mod p.

Proof:  We have

  gq mod p = (h(p-1)/q mod p)q mod p

            = h(p-1) mod p

            = 1

by Fermat's Little Theorem.  Now let m mod q = n mod q, i.e., m = n + kq for some integer k. Then

   gm mod p    = gn+kq mod p

               = (gn gkq) mod p
                 
               = ((gn mod p) (gq mod p)k) mod p
                 
               = gn mod p

since gq mod p = 1. n

We are now ready to prove the main result.

THEOREM.  If M′ = M, r′ = r, and s′ = s in the signature verification, then v = r′.

Proof:  We have

   w = (s′)-1 mod q = s-1 mod q

   u1 = ((SHA-1(M′))w) mod q = ((SHA-1(M))w) mod q

   u2 = ((r′)w) mod q = (rw) mod q.
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Now y = gx mod p, so that by the lemma,

   v = ((gu1 yu2) mod p) mod q

     = ((gSHA-1(M)w yrw) mod p) mod q

     = ((gSHA-1(M)w gxrw) mod p) mod q
    
     = ((g(SHA-1(M)+xr)w) mod p) mod q.

Also

   s = (k-1(SHA-1(M) + xr)) mod q.

Hence

   w = (k(SHA-1(M) + xr)-1) mod q

   (SHA-1(M) + xr)w mod q = k mod q.

Thus by the lemma,

   v = (gk mod p) mod q

     = r

     = r′. n
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APPENDIX 2. GENERATION OF PRIMES FOR THE DSA

This appendix includes algorithms for generating the primes p and q used in the DSA.  These
algorithms require a random number generator (see Appendix 3), and an efficient modular
exponentiation algorithm.  Generation of p and q shall be performed as specified in this appendix,
or using other FIPS approved security methods.

2.1. A PROBABILISTIC PRIMALITY TEST

In order to generate the primes p and q, a primality test is required. 

There are several fast probabilistic algorithms available.  The following algorithm is a simplified
version of a procedure due to M.O. Rabin, based in part on ideas of Gary L. Miller.  [See Knuth, The
Art of Computer Programming, Vol. 2, Addison-Wesley, 1981, Algorithm P, page 379.]  If this
algorithm is iterated n times, it will produce a false prime with probability no greater than 1/4n. 
Therefore, n ≥ 50 will give an acceptable probability of error.  To test whether an integer is prime:

   Step 1. Set i = 1 and n ≥ 50.

   Step 2. Set w = the integer to be tested, w = 1 + 2am, where m is odd and 2a is the largest          
     power of 2 dividing w - 1.

   Step 3. Generate a random integer b in the range 1 < b < w.

   Step 4. Set j = 0 and z = bm mod w.

   Step 5. If j = 0 and z = 1, or if z = w - 1, go to step 9.

   Step 6. If j > 0 and z = 1, go to step 8.

   Step 7. j = j + 1. If j < a, set z = z2 mod w and go to step 5.

   Step 8. w is not prime.  Stop.

   Step 9. If i < n, set i = i + 1 and go to step 3.  Otherwise, w is probably prime.

2.2. GENERATION OF PRIMES

The DSA requires two primes, p and q, satisfying the following three conditions:

   a. 2159 < q < 2160

   b. 2L-1 < p < 2L for a specified L, where L = 512 + 64j for some 0 ≤ j ≤ 8



14

   c. q divides p - 1.

This prime generation scheme starts by using the SHA-1 and a user supplied SEED to construct a
prime, q, in the range 2159 < q < 2160.  Once this is accomplished, the same SEED value is used to
construct an X in the range 2L-1 < X < 2L.  The prime, p, is then formed by rounding X to a number
congruent to 1 mod 2q as described below.

An integer x in the range 0 ≤ x < 2g may be converted to a g-long sequence of bits by using its binary
expansion as shown below:

   x = x1*2g-1 + x2*2g-2 + ... + xg-1*2 + xg -> { x1,...,xg }.

Conversely, a g-long sequence of bits { x1,...,xg } is converted to an integer by the rule

   { x1,...,xg } -> x1*2g-1 + x2*2g-2 + ... + xg-1*2 + xg.

Note that the first bit of a sequence corresponds to the most significant bit of the corresponding
integer and the last bit to the least significant bit.

Let L - 1 = n*160 + b, where both b and n are integers and 0 ≤ b < 160.

   Step 1.  Choose an arbitrary sequence of at least 160 bits and call it SEED. Let g be the length  
             of SEED in bits.

   Step 2.  Compute

                  U = SHA-1[SEED] XOR SHA-1[(SEED+1) mod 2g ].

   Step 3.  Form q from U by setting the most significant bit (the 2159 bit) and the least significant
              bit to 1. In terms of boolean operations, q = U OR 2159 OR 1. Note that 2159 < q < 2160.

   Step 4.  Use a robust primality testing algorithm to test whether q is prime1.

   Step 5.  If q is not prime, go to step 1.

   Step 6.  Let counter = 0 and offset = 2.

   Step 7.  For k = 0,...,n let

                  Vk = SHA-1[(SEED + offset + k) mod 2g ].

1A robust primality test is one where the probability of a non-prime number passing the test is at
most 2-80.
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   Step 8.  Let W be the integer

                  W = V0 + V1*2160 + ... + Vn-1*2(n-1)*160 + (Vn mod 2b) * 2n*160

              and let X = W + 2L-1. Note that 0 ≤ W < 2L-1 and hence 2L-1 ≤ X < 2L.

   Step 9.  Let c = X mod 2q and set p = X - (c - 1). Note that p is congruent to 1 mod 2q.

   Step 10. If p < 2L-1, then go to step 13.

   Step 11. Perform a robust primality test on p.

   Step 12. If p passes the test performed in step 11, go to step 15.

   Step 13. Let counter = counter + 1 and offset = offset + n + 1.

   Step 14. If counter ≥ 212 = 4096 go to step 1, otherwise (i.e. if counter < 4096) go to step 7.

   Step 15. Save the value of SEED and the value of counter for use in certifying the proper          
        generation of p and q.
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APPENDIX 3. RANDOM NUMBER GENERATION FOR THE DSA

Any implementation of the DSA requires the ability to generate random or pseudorandom integers.
 Such numbers are used to derive a user's private key, x, and a user's per message secret number, k.
 These randomly or pseudorandomly generated integers are selected to be between 0 and the 160-bit
prime q (as specified in the standard).  They shall be generated by the techniques given in this
appendix, or using other FIPS approved security methods.
  
One FIPS approved pseudorandom integer generator is supplied in Appendix C of ANSI X9.17,
"Financial Institution Key Management (Wholesale)."

Other pseudorandom integer generators are given in this appendix.  These permit generation of
pseudorandom values of x and k for use in the DSA.  The algorithm in section 3.1 may be used to
generate values for x.  An algorithm for k and r is given in section 3.2.  The latter algorithm allows
most of the signature computation to be precomputed without knowledge of the message to be
signed.

The algorithms employ a one-way function G(t,c), where t is 160 bits, c is b bits (160 ≤ b ≤ 512) and
G(t,c) is 160 bits.  One way to construct G is via the Secure Hash Algorithm (SHA-1), as defined
in the Secure Hash Standard (SHS).  The 160-bit message digest output of the SHA-1 algorithm
when message M is input is denoted by SHA-1(M).  A second method for constructing G is to use
the Data Encryption Standard (DES).  The construction of G by these techniques is discussed in
sections 3.3 and 3.4 of this appendix.

In the algorithms in sections 3.1 and 3.2, a secret b-bit seed-key is used.  The algorithm in section
3.1 optionally allows the use of a user provided input.  If G is constructed via the SHA-1 as defined
in section 3.3, then b is between 160 and 512.  If DES is used to construct G as defined in section
3.4, then b is equal to 160.

3.1. ALGORITHM FOR COMPUTING m VALUES OF x

Let x be the signer's private key.  The following may be used to generate m values of x:

   Step 1. Choose a new, secret value for the seed-key, XKEY.

   Step 2. In hexadecimal notation let

                  t = 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0.

            This is the initial value for H0 || H1 || H2 || H3 || H4 in the SHS.

   Step 3. For j = 0 to m - 1 do
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              a. XSEEDj = optional user input.
              b. XVAL = (XKEY + XSEEDj) mod 2b.

              c. xj = G(t,XVAL) mod q.

              d. XKEY = (1 + XKEY + xj) mod 2b.

3.2. ALGORITHM FOR PRECOMPUTING ONE OR MORE k AND r VALUES

This algorithm can be used to precompute k, k-1, and r for m messages at a time.  Note that
implementation of the DSA with precomputation may be covered by U.S. and foreign patents.

Algorithm:

   Step 1. Choose a secret initial value for the seed-key, KKEY.

   Step 2. In hexadecimal notation let

                  t = EFCDAB89 98BADCFE 10325476 C3D2E1F0 67452301.

             This is a cyclic shift of the initial value for H0 || H1 || H2 || H3 || H4 in the SHS.

   Step 3. For j = 0 to m - 1 do

               a. k = G(t,KKEY) mod q.
                
               b. Compute kj

-1 = k-1 mod q.
 
               c. Compute rj = (gk mod p) mod q.

               d. KKEY = (1 + KKEY + k) mod 2b.

   Step 4. Suppose M0 , ... , Mm-1 are the next m messages. For j = 0 to m - 1 do

               a. Let h = SHA-1(Mj).

               b. Let sj = (kj
-1(h + xrj)) mod q.

               c. The signature for Mj is (rj,sj).
        
   Step 5. Let t = h.
    
   Step 6. Go to step 3.
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Step 3 permits precomputation of the quantities needed to sign the next m messages.  Step 4 can
begin whenever the first of these m messages is ready.  The execution of step 4 can be suspended
whenever the next of the m messages is not ready.  As soon as steps 4 and 5 have completed, step
3 can be executed, and the results saved until the first member of the next group of m messages is
ready.

In addition to space for KKEY, two arrays of length m are needed to store r0 , ... rm-1 and k0
-1, ... , km-

1
-1 when they are computed in step 3.  Storage for s0 , ... , sm-1 is only needed if the signatures for a

group of messages are stored; otherwise sj in step 4 can be replaced by s and a single space allocated.

3.3. CONSTRUCTING THE FUNCTION G FROM THE SHA-1

G(t,c) may be constructed using steps (a) - (e) in section 7 of the Specifications for the Secure Hash
Standard.  Before executing these steps, {Hj} and M1 must be initialized as follows:

   i. Initialize the {Hj} by dividing the 160 bit value t into five 32-bit segments as follows:

         t = t0  ||  t1  ||  t2  ||  t3  ||  t4

       Then Hj = tj for j = 0 through 4.

   ii. There will be only one message block, M1, which is initialized as follows:

         M1 = c || 0512-b

        (The first b bits of M1 contain c, and the remaining (512-b) bits are set to zero).

Then steps (a) through (e) of section 7 are executed, and G(t,c) is the 160 bit string represented by
the five words:

    H0  ||  H1  ||  H2  ||  H3  ||  H4

     
at the end of step (e).

3.4. CONSTRUCTING THE FUNCTION G FROM THE DES

Let a XOR b denote the bitwise exclusive-or of bit strings a and b.  Suppose a1, a2, b1, b2 are 32-bit
strings. Let b1' be the 24 least significant bits of b1.  Let K = b1' || b2 and A = a1 || a2.  Define

   DESb1,b2(a1,a2) = DESK(A)

In the above, DESK(A) represents ordinary DES encryption of the 64-bit block A using the 56-bit
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key K.  Now suppose t and c are each 160 bits.  To compute G(t,c):

   Step 1. Write

                 t = t1 || t2 || t3 || t4 || t5

                 c = c1 || c2 || c3 || c4 || c5

             In the above, each ti and ci is 32 bits.

   Step 2. For i = 1 to 5 do

                 xi = ti XOR ci

   Step 3. For i = 1 to 5 do

                 b1 = c((i+3) mod 5) + 1

                 b2 = c((i+2) mod 5) + 1

                 a1 = xi

                 a2 = x(i mod 5) + 1   XOR  x((i+3) mod 5) + 1

                 yi,1 || yi,2 = DESb1,b2(a1,a2)    (yi,1, yi,2 = 32 bits)
     
   Step 4. For i = 1 to 5 do

                 zi = yi,1 XOR y((i+1) mod 5)+1,2 XOR y((i+2) mod 5)+1,1

   Step 5. Let

                 G(t,c) = z1 || z2 || z3 || z4 || z5
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APPENDIX 4. GENERATION OF OTHER QUANTITIES FOR THE DSA

This appendix is for informational purposes only and is not required to meet the standard.

The algorithms given in this appendix may be used to generate the quantities g, k-1, and s-1 used in
the DSA.

To generate g:

   Step 1. Generate p and q as specified in Appendix 2.

   Step 2. Let e = (p - 1)/q.

   Step 3. Set h = any integer, where 1 < h < p - 1 and h differs from any value previously tried.

   Step 4. Set g = he mod p.

   Step 5. If g = 1, go to step 3.

To compute the multiplicative inverse n-1 mod q for n with 0 < n < q, where 0 < n-1 < q:

   Step 1. Set i = q, h = n, v = 0, and d = 1.

   Step 2. Let t = i DIV h, where DIV is defined as integer division.

   Step 3. Set x = h.

   Step 4. Set h = i - tx.

   Step 5. Set i = x.

   Step 6. Set x = d.

   Step 7. Set d = v - tx.

   Step 8. Set v = x.

   Step 9. If h > 0, go to step 2.

   Step 10. Let n-1 = v mod q.

Note that in step 10, v may be negative. The v mod q operation should yield a value between 1 and
q - 1 inclusive.
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APPENDIX 5. EXAMPLE OF THE DSA

This appendix is for informational purposes only and is not required to meet the standard.
Let L = 512 (size of p).  The values in this example are expressed in hexadecimal notation.  The p
and q given here were generated by the prime generation standard described in appendix 2 using the
160-bit SEED:

d5014e4b 60ef2ba8 b6211b40 62ba3224 e0427dd3

With this SEED, the algorithm found p and q when the counter was at 105. x was generated by the
algorithm described in appendix 3, section 3.1, using the SHA-1 to construct G (as in appendix 3,
section 3.3) and a 160-bit XKEY:

XKEY =

bd029bbe 7f51960b cf9edb2b 61f06f0f eb5a38b6
t =

67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0

x = G(t,XKEY) mod q

k was generated by the algorithm described in appendix 3, section 3.2, using the SHA-1 to construct
G (as in appendix 3, section 3.3) and a 160-bit KKEY:

KKEY =

687a66d9 0648f993 867e121f 4ddf9ddb 01205584

t =

EFCDAB89 98BADCFE 10325476 C3D2E1F0 67452301

k = G(t,KKEY) mod q

Finally:

h = 2

p =

8df2a494 492276aa 3d25759b b06869cb eac0d83a fb8d0cf7
cbb8324f 0d7882e5 d0762fc5 b7210eaf c2e9adac 32ab7aac
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49693dfb f83724c2 ec0736ee 31c80291

q =

c773218c 737ec8ee 993b4f2d ed30f48e dace915f

g =

626d0278 39ea0a13 413163a5 5b4cb500 299d5522 956cefcb
3bff10f3 99ce2c2e 71cb9de5 fa24babf 58e5b795 21925c9c
c42e9f6f 464b088c c572af53 e6d78802

x =

2070b322 3dba372f de1c0ffc 7b2e3b49 8b260614

k =

358dad57 1462710f 50e254cf 1a376b2b deaadfbf

k-1 =

0d516729 8202e49b 4116ac10 4fc3f415 ae52f917

M = ASCII form of "abc" (See FIPS PUB 180-1, Appendix A)

(SHA-1)(M) =

a9993e36 4706816a ba3e2571 7850c26c 9cd0d89d

y =

19131871 d75b1612 a819f29d 78d1b0d7 346f7aa7 7bb62a85
9bfd6c56 75da9d21 2d3a36ef 1672ef66 0b8c7c25 5cc0ec74
858fba33 f44c0669 9630a76b 030ee333

r =

8bac1ab6 6410435c b7181f95 b16ab97c 92b341c0

s =

41e2345f 1f56df24 58f426d1 55b4ba2d b6dcd8c8

w =

9df4ece5 826be95f ed406d41 b43edc0b 1c18841b
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u1 =

bf655bd0 46f0b35e c791b004 804afcbb 8ef7d69d

u2 =

821a9263 12e97ade abcc8d08 2b527897 8a2df4b0

gu1 mod p =

51b1bf86 7888e5f3 af6fb476 9dd016bc fe667a65 aafc2753
9063bd3d 2b138b4c e02cc0c0 2ec62bb6 7306c63e 4db95bbf
6f96662a 1987a21b e4ec1071 010b6069

yu2 mod p =

8b510071 2957e950 50d6b8fd 376a668e 4b0d633c 1e46e665
5c611a72 e2b28483 be52c74d 4b30de61 a668966e dc307a67
c19441f4 22bf3c34 08aeba1f 0a4dbec7

v =

8bac1ab6 6410435c b7181f95 b16ab97c 92b341c0
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APPENDIX 6. RECOMMENDED ELLIPTIC CURVES FOR FEDERAL
GOVERNMENT USE

July 1999

This collection of elliptic curves is recommended for Federal government use and

contains choices of private key length and underlying fields.

1. Parameter Choices

1.1 Choice of Key Lengths

The principal parameters for elliptic curve cryptography are the elliptic curve

E and a designated point G on E called the base point.  The base point has order r, a

large prime. The number of points on the curve is n = fr for some integer f (the

cofactor) not divisible by r.  For efficiency  reasons, it is desirable to take the

cofactor to be as small as possible.

All of the curves given below have cofactors 1, 2, or 4. As a result, the

private and public keys are approximately the same length. Each length is chosen to

correspond to the cryptovariable length of a common symmetric cryptologic. In

each case, the private key length is, at least, approximately twice the symmetric

cryptovariable length.

1.2 Choice of Underlying Fields

For each cryptovariable length, there are given two kinds of fields.

• A prime field is the field GF(p) which contains a prime number p of

elements.  The elements of this field are the integers modulo p, and the
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field arithmetic is implemented in terms of the arithmetic of integers

modulo p.

• A binary field is the field GF(2m) which contains 2m elements for some m

(called the degree of the field). The elements of this field are the bit

strings of length m, and the field arithmetic is implemented in terms of

operations on the bits.

The following table gives the sizes of the various underlying fields. By ||p|| is

meant the length of the binary expansion of the integer p.

Symmetric Example

CV Length Algorithm Prime Field Binary Field

80 SKIPJACK ||p|| = 192 m = 163

112 Triple-DES ||p|| = 224 m = 233

128 AES Small ||p|| = 256 m = 283

192 AES Medium ||p|| = 384 m = 409

256 AES Large ||p|| = 521 m = 571

1.3 Choice of Basis

To describe the arithmetic of a binary field, it is first necessary to specify

how a bit string is to be interpreted. This is referred to as choosing a basis for the

field. There are two common types of bases: a polynomial basis and a normal basis.
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• A polynomial basis is specified by an irreducible polynomial modulo 2,

called the field polynomial . The bit string (am-1 … a 2  a1  a0) is taken to

represent the polynomial

am-1 t 
m-1 +…+ a2 t

2 + a1 t + a0

over GF(2).  The field arithmetic is implemented as polynomial arithmetic

modulo p(t), where p(t) is the field polynomial.

• A normal basis is specified by an element θ of a particular kind. The bit

string (a0  a1  a2  … a m-1) is taken to represent the element

a0θ + a1θ 2 + a2θ 2 2 + am-1θ 2 m-1
 .

Normal basis field arithmetic is not easy to describe or efficient to

implement in general, but is for a special class called Type T low-

complexity  normal bases.  For a given field degree m, the choice of T

specifies the basis and the field arithmetic (see Appendix 6.2).

There are many polynomial bases and normal bases from which to choose.  The

following procedures are commonly used to select a basis representation. 

• Polynomial Basis: If an irreducible trinomial tm +  tk +  1 exists over GF

(2), then the field polynomial p(t) is chosen to be the irreducible trinomial

with the lowest-degree middle term tk . If no irreducible trinomial exists,

then one selects instead a pentanomial t m +  t a +  t b + t c +  1. The

particular pentanomial chosen has the following properties: the second

term ta has the lowest degree m; the third term tb has the lowest degree

among all irreducible pentanomials of degree m and second term ta; and

the fourth term tc has the lowest degree among all irreducible

pentanomials of degree m, second term ta, and third term tb.
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• Normal Basis: Choose the Type T low-complexity normal basis with the

smallest T.

For each binary field, the parameters are given for the above basis representations.

1.4 Choice of Curves

Two kinds of curves are given:

• Pseudo-random curves are those whose coefficients are generated from

the output of a seeded cryptographic hash. If the seed value is given 

along with the coefficients, it can be verified easily that the coefficients 

were indeed generated by that method.

• Special curves whose coefficients and underlying field have been selected

to optimize the efficiency of the elliptic curve operations.

For each size, the following curves are given:

→ A pseudo-random curve over GF(p).

→ A pseudo-random curve over GF(2m).

→ A special curve over GF(2m) called a Koblitz curve  or anomalous binary

curve.

The pseudo-random curves are generated via the SHA-1 based method given in the

ANSI X9.62 and IEEE P1363 standards.  (The generation and verification

processes are given in Appendices 6-4 through 6-7.)

1.5 Choice of Base Points



28

Any point of order r can serve as the base point.  Each curve is supplied with

a sample base point G = (Gx , Gy ).  Users may want to generate their own base

points to ensure cryptographic separation of networks.

2. Curves over Prime Fields

For each prime p, a pseudo-random curve

E :  y2 ≡  x3 - 3x +b (mod p)

of prime order r is listed1.  (Thus, for these curves, the cofactor is always f  = 1.) 

The following parameters are given:

• The prime modulus p

• The order r

• the 160-bit input seed s to SHA-1 based algorithm

• The output c of the SHA-1 based algorithm

• The coefficient b (satisfying b2 c ≡ -27 (mod p))

• The base point x coordinate Gx

• The base point y coordinate Gy

The integers p and r are given in decimal form; bit strings and field elements are

given in hex.

                                                
1 The selection a ≡ -3 for the coefficient of x was made for reasons of efficiency; see IEEE P1363.
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Curve P-192

p = 62771017353866807638357894232076664160839087\

00390324961279

r = 62771017353866807638357894231760590137671947\

73182842284081

s = 3045ae6f c8422f64 ed579528 d38120ea e12196d5

c =     3099d2bb

bfcb2538 542dcd5f b078b6ef 5f3d6fe2 c745de65

b = 64210519

e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1

G x = 188da80e

b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

G y = 07192b95

ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811
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Curve P-224

p = 26959946667150639794667015087019630673557916\

260026308143510066298881

r = 26959946667150639794667015087019625940457807\

714424391721682722368061

s = bd713447 99d5c7fc dc45b59f a3b9ab8f 6a948bc5

c = 5b056c7e 11dd68f4

0469ee7f 3c7a7d74 f7d12111 6506d031 218291fb

b = b4050a85 0c04b3ab

f5413256 5044b0b7 d7bfd8ba 270b3943 2355ffb4

G x = b70e0cbd 6bb4bf7f

321390b9 4a03c1d3 56c21122 343280d6 115c1d21

G y = bd376388 b5f723fb

4c22dfe6 cd4375a0 5a074764 44d58199 85007e34
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Curve P-256

p = 11579208921035624876269744694940757353008614\

3415290314195533631308867097853951

r = 11579208921035624876269744694940757352999695\

 5224135760342422259061068512044369

s = c49d3608 86e70493 6a6678e1 139d26b7 819f7e90

c =         7efba166 2985be94 03cb055c

75d4f7e0 ce8d84a9 c5114abc af317768 0104fa0d

b =          5ac635d8 aa3a93e7 b3ebbd55

769886bc 651d06b0 cc53b0f6 3bce3c3e 27d2604b

G x = 6b17d1f2 e12c4247 f8bce6e5

63a440f2 77037d81 2deb33a0 f4a13945 d898c296

G y = 4fe342e2 fe1a7f9b 8ee7eb4a

7c0f9e16 2bce3357 6b315ece cbb64068 37bf51f5
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Curve P-384

p = 39402006196394479212279040100143613805079739\

27046544666794829340424572177149687032904726\

6088258938001861606973112319

r = 39402006196394479212279040100143613805079739\

27046544666794690527962765939911326356939895\

6308152294913554433653942643

s = a335926a a319a27a 1d00896a 6773a482 7acdac73

c =   79d1e655 f868f02f

ff48dcde e14151dd b80643c1 406d0ca1 0dfe6fc5

2009540a 495e8042 ea5f744f 6e184667 cc722483

b =   b3312fa7 e23ee7e4

988e056b e3f82d19 181d9c6e fe814112 0314088f

5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

G x =   aa87ca22 be8b0537

8eb1c71e f320ad74 6e1d3b62 8ba79b98 59f741e0

82542a38 5502f25d bf55296c 3a545e38 72760ab7

G y = 3617de4a 96262c6f

5d9e98bf 9292dc29 f8f41dbd 289a147c e9da3113

b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f
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Curve P-521

p = 68647976601306097149819007990813932172694353\

00143305409394463459185543183397656052122559\

64066145455497729631139148085803712198799971\

6643812574028291115057151

r = 68647976601306097149819007990813932172694353\

00143305409394463459185543183397655394245057\

74633321719753296399637136332111386476861244\

0380340372808892707005449

s = d09e8800 291cb853 96cc6717 393284aa a0da64ba

c = 0b4 8bfa5f42

0a349495 39d2bdfc 264eeeeb 077688e4 4fbf0ad8

f6d0edb3 7bd6b533 28100051 8e19f1b9 ffbe0fe9

ed8a3c22 00b8f875 e523868c 70c1e5bf 55bad637

b = 051 953eb961

8e1c9a1f 929a21a0 b68540ee a2da725b 99b315f3

b8b48991 8ef109e1 56193951 ec7e937b 1652c0bd

3bb1bf07 3573df88 3d2c34f1 ef451fd4 6b503f00

G x =  c6 858e06b7

0404e9cd 9e3ecb66 2395b442 9c648139 053fb521

f828af60 6b4d3dba a14b5e77 efe75928 fe1dc127

a2ffa8de 3348b3c1 856a429b f97e7e31 c2e5bd66

G y = 118 39296a78

9a3bc004 5c8a5fb4 2c7d1bd9 98f54449 579b4468

17afbd17 273e662c 97ee7299 5ef42640 c550b901
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3fad0761 353c7086 a272c240 88be9476 9fd16650

3. Curves over Binary Fields

For each field degree m, a pseudo-random curve is given, along with a

Koblitz curve. The pseudo-random curve has the form

E: y 2 +  x y = x 3 +  x 2 +  b,

and the Koblitz curve has the form

Ea: y2 + x y = x 3 + ax 2 +  1

where a = 0 or 1.

For each pseudorandom curve, the cofactor is f = 2. The cofactor of each

Koblitz curve is f = 2 if a = 1 and f = 4 if a = 0.

The coefficients of the pseudo-random curves, and the coordinates of the

base points of both kinds of curves, are given in terms of both the polynomial and

normal basis representations discussed in 1.3.

For each m, the following parameters are given:

Field Representation:

• The normal basis type T

• The field polynomial (a trinomial or pentanomial)

Koblitz Curve:

• The coefficient a

• The base point order r

• The base point x coordinate G x

• The base point y coordinate G y

Pseudo-random curve:

• The base point order r
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Pseudo-random curve (Polynomial Basis representation):

• The coefficient b

• The base point x coordinate G x

• The base point y coordinate G y

Pseudo-random curve (Normal Basis representation):

• The 160-bit input seed s to the SHA-1 based algorithm

• The coefficient b (i.e., the output of the SHA-1 based algorithm)

• The base point x coordinate G x

• The base point y coordinate G y

Integers (such as T, m, and r) are given in decimal form; bit strings and

field elements are given in hex.
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Degree 163 Binary Field

    T = 4

p(t) = t 163 +  t 7 +  t 6 +  t 3 +  1 

Curve K-163

   a = 1

    r = 5846006549323611672814741753598448348329118574063

Polynomial Basis:

G x = 2 fe13c053 7bbc11ac aa07d793 de4e6d5e 5c94eee8

G y = 2 89070fb0 5d38ff58 321f2e80 0536d538 ccdaa3d9

Normal Basis:

G x = 0 5679b353 caa46825 fea2d371 3ba450da 0c2a4541

G y = 2 35b7c671 00506899 06bac3d9 dec76a83 5591edb2

Curve B-163

    r = 5846006549323611672814742442876390689256843201587

Polynomial Basis:

   b = 2 0a601907 b8c953ca 1481eb10 512f7874 4a3205fd

G x = 3 f0eba162 86a2d57e a0991168 d4994637 e8343e36

G y = 0 d51fbc6c 71a0094f a2cdd545 b11c5c0c 797324f1

Normal Basis:

    s = 85e25bfe 5c86226c db12016f 7553f9d0 e693a268

   b = 6 645f3cac f1638e13 9c6cd13e f61734fb c9e3d9fb

G x = 0 311103c1 7167564a ce77ccb0 9c681f88 6ba54ee8
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G y = 3 33ac13c6 447f2e67 613bf700 9daf98c8 7bb50c7f
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Degree 233 Binary Field

    T = 2

p(t) =  t 233 +  t 74 +  1

Curve K-233

a = 0

r  =34508731733952818937173779311385127605709409888622521\

         26328087024741343

Polynomial Basis:

G x = 172 32ba853a 7e731af1

29f22ff4 149563a4 19c26bf5 0a4c9d6e efad6126

G y = 1db 537dece8 19b7f70f

555a67c4 27a8cd9b f18aeb9b 56e0c110 56fae6a3

Normal Basis:

G x = 0fd e76d9dcd 26e643ac

26f1aa90 1aa12978 4b71fc07 22b2d056 14d650b3

G y = 064 3e317633 155c9e04

47ba8020 a3c43177 450ee036 d6335014 34cac978
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Curve B-233

    r = 69017463467905637874347558622770255558398127373450135\

          55379383634485463

Polynomial Basis:

b =        066 647ede6c 332c7f8c

0923bb58 213b333b 20e9ce42 81fe115f 7d8f90ad

G x =         0fa c9dfcbac 8313bb21

   39f1bb75 5fef65bc 391f8b36 f8f8eb73 71fd558b

G y =       100 6a08a419 03350678

   e58528be bf8a0bef f867a7ca 36716f7e 01f81052

Normal Basis:

    s = 74d59ff0 7f6b413d 0ea14b34 4b20a2db 049b50c3

    b = 1a0 03e0962d 4f9a8e40

7c904a95 38163adb 82521260 0c7752ad 52233279

G x =        18b 863524b3 cdfefb94

f2784e0b 116faac5 4404bc91 62a363ba b84a14c5

G y =        049 25df77bd 8b8ff1a5

ff519417 822bfedf 2bbd7526 44292c98 c7af6e02 
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Degree 283 Binary Field

    T = 6

p(t) = t 283 +  t 12 +  t 7 + t 5 +  1

Curve K-283

a = 0

   r = 38853377844514581418389238136470378132848117337930613\

24295874997529815829704422603873

Polynomial Basis:

G x = 503213f 78ca4488 3f1a3b81 62f188e5

53cd265f 23c1567a 16876913 b0c2ac24 58492836

G y = 1ccda38 0f1c9e31 8d90f95d 07e5426f

e87e45c0 e8184698 e4596236 4e341161 77dd2259

Normal Basis:

G x = 3ab9593 f8db09fc 188f1d7c 4ac9fcc3

    e57fcd3b db15024b 212c7022 9de5fcd9 2eb0ea60

G y = 2118c47 55e7345c d8f603ef 93b98b10

     6fe8854f feb9a3b3 04634cc8 3a0e759f 0c2686b1
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Curve B-283

r = 77706755689029162836778476272940756265696259243769048\

89109196526770044277787378692871

Polynomial Basis:

b =       27b680a c8b8596d a5a4af8a 19a0303f

ca97fd76 45309fa2 a581485a f6263e31 3b79a2f5

G x =       5f93925 8db7dd90 e1934f8c 70b0dfec

2eed25b8 557eac9c 80e2e198 f8cdbecd 86b12053

G y =      3676854 fe24141c b98fe6d4 b20d02b4

516ff702 350eddb0 826779c8 13f0df45 be8112f4

Normal Basis:

s = 77e2b073 70eb0f83 2a6dd5b6 2dfc88cd 06bb84be

b = 157261b 894739fb 5a13503f 55f0b3f1

0c560116 66331022 01138cc1 80c0206b dafbc951

G x = 749468e 464ee468 634b21f7 f61cb700

701817e6 bc36a236 4cb8906e 940948ea a463c35d

G y =       62968bd 3b489ac5 c9b859da 68475c31 5bafcdc4

ccd0dc90 5b70f624 46f49c05 2f49c08c
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Degree 409 Binary Field
   T = 4

p(t) =  t 409 +  t 87 +  1

Curve K-409
a = 0

r = 33052798439512429947595765401638551991420234148214060\

96423243950228807112892491910506732584577774580140963\

66590617731358671

Polynomial Basis:

G x = 060f05f 658f49c1 ad3ab189

0f718421 0efd0987 e307c84c 27accfb8 f9f67cc2

c460189e b5aaaa62 ee222eb1 b35540cf e9023746

G y = 1e36905 0b7c4e42 acba1dac

bf04299c 3460782f 918ea427 e6325165 e9ea10e3

da5f6c42 e9c55215 aa9ca27a 5863ec48 d8e0286b

Normal Basis:

G x = 1b559c7 cba2422e 3affe133

43e808b5 5e012d72 6ca0b7e6 a63aeafb c1e3a98e

10ca0fcf 98350c3b 7f89a975 4a8e1dc0 713cec4a

G y = 16d8c42 052f07e7 713e7490

eff318ba 1abd6fef 8a5433c8 94b24f5c 817aeb79

852496fb ee803a47 bc8a2038 78ebf1c4 99afd7d6
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Curve B-409

r = 66105596879024859895191530803277103982840468296428121\

92846487983041577748273748052081437237621791109659798\

67288366567526771

Polynomial Basis:

b = 021a5c2 c8ee9feb 5c4b9a75

3b7b476b 7fd6422e f1f3dd67 4761fa99 d6ac27c8

a9a197b2 72822f6c d57a55aa 4f50ae31 7b13545f

G x = 15d4860 d088ddb3 496b0c60

64756260 441cde4a f1771d4d b01ffe5b 34e59703

dc255a86 8a118051 5603aeab 60794e54 bb7996a7

G y = 061b1cf ab6be5f3 2bbfa783

24ed106a 7636b9c5 a7bd198d 0158aa4f 5488d08f

38514f1f df4b4f40 d2181b36 81c364ba 0273c706

Normal Basis:

s = 4099b5a4 57f9d69f 79213d09 4c4bcd4d 4262210b

b =            124d065 1c3d3772 f7f5a1fe

6e715559 e2129bdf a04d52f7 b6ac7c53 2cf0ed06

 f610072d 88ad2fdc c50c6fde 72843670 f8b3742a

G x = 0ceacbc 9f475767 d8e69f3b

5dfab398 13685262 bcacf22b 84c7b6dd 981899e7

318c96f0 761f77c6 02c016ce d7c548de 830d708f

G y = 199d64b a8f089c6 db0e0b61

e80bb959 34afd0ca f2e8be76 d1c5e9af fc7476df
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49142691 ad303902 88aa09bc c59c1573 aa3c009a
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Degree 571 Binary Field

   T = 10

p(t) = t 571 + t 10 + t 5 + t 2 + 1

Curve K-571
a = 0

r = 19322687615086291723476759454659936721494636648532174\

99328617625725759571144780212268133978522706711834706\

71280082535146127367497406661731192968242161709250355\

5733685276673

Polynomial Basis:

G x =  26eb7a8 59923fbc 82189631

f8103fe4 ac9ca297 0012d5d4 60248048 01841ca4

         43709584 93b205e6 47da304d b4ceb08c bbd1ba39

494776fb 988b4717 4dca88c7 e2945283 a01c8972

G y = 349dc80 7f4fbf37 4f4aeade

3bca9531 4dd58cec 9f307a54 ffc61efc 006d8a2c

9d4979c0 ac44aea7 4fbebbb9 f772aedc b620b01a

7ba7af1b 320430c8 591984f6 01cd4c14 3ef1c7a3

Normal Basis:

G x =          04bb2db a418d0db 107adae0

03427e5d 7cc139ac b465e593 4f0bea2a b2f3622b

c29b3d5b 9aa7a1fd fd5d8be6 6057c100 8e71e484

bcd98f22 bf847642 37673674 29ef2ec5 bc3ebcf7
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G y =          44cbb57 de20788d 2c952d7b

56cf39bd 3e89b189 84bd124e 751ceff4 369dd8da

c6a59e6e 745df44d 8220ce22 aa2c852c fcbbef49

ebaa98bd 2483e331 80e04286 feaa2530 50caff60
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Curve B-571

r = 38645375230172583446953518909319873442989273297064349\

98657235251451519142289560424536143999389415773083133\

88112192694448624687246281681307023452828830333241139\

3191105285703

Polynomial Basis:

b = 2f40e7e 2221f295 de297117

    b7f3d62f 5c6a97ff cb8ceff1 cd6ba8ce 4a9a18ad

  84ffabbd 8efa5933 2be7ad67 56a66e29 4afd185a

    78ff12aa 520e4de7 39baca0c 7ffeff7f 2955727a

G x =          303001d 34b85629 6c16c0d4

0d3cd775 0a93d1d2 955fa80a a5f40fc8 db7b2abd

bde53950 f4c0d293 cdd711a3 5b67fb14 99ae6003

8614f139 4abfa3b4 c850d927 e1e7769c 8eec2d19

G y = 37bf273 42da639b 6dccfffe

b73d69d7 8c6c27a6 009cbbca 1980f853 3921e8a6

84423e43 bab08a57 6291af8f 461bb2a8 b3531d2f

0485c19b 16e2f151 6e23dd3c 1a4827af 1b8ac15b

Normal Basis:

s = 2aa058f7 3a0e33ab 486b0f61 0410c53a 7f132310

b =          3762d0d 47116006 179da356

88eeaccf 591a5cde a7500011 8d9608c5 9132d434

26101a1d fb377411 5f586623 f75f0000 1ce61198

3c1275fa 31f5bc9f 4be1a0f4 67f01ca8 85c74777

G x = 0735e03 5def5925 cc33173e
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b2a8ce77 67522b46 6d278b65 0a291612 7dfea9d2

d361089f 0a7a0247 a184e1c7 0d417866 e0fe0feb

0ff8f2f3 f9176418 f97d117e 624e2015 df1662a8

G y = 04a3642 0572616c df7e606f

ccadaecf c3b76dab 0eb1248d d03fbdfc 9cd3242c

4726be57 9855e812 de7ec5c5 00b4576a 24628048

b6a72d88 0062eed0 dd34b109 6d3acbb6 b01a4a97
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APPENDIX 6.1: IMPLEMENTATION OF MODULAR ARITHMETIC

The prime moduli in the above examples are of a special type (called 

generalized Mersenne numbers) for which modular multiplication can be  carried

out more efficiently than in general. This appendix provides the  rules for

implementing this faster arithmetic, for each of the prime moduli  appearing in the

examples.

The usual way to multiply two integers (mod m) is to take the integer 

product and reduce it (mod m). One therefore has the following problem:  given an

integer A less than m 2 , compute

B := A mod m.

In general, one must obtain B as the remainder of an integer division.  If m is

a generalized Mersenne number, however, then B can be expressed as a sum or

difference (mod m) of a small number of terms. To compute this expression, one

can evaluate the integer sum or difference and reduce  the result modulo m. The

latter reduction can be accomplished by adding  or subtracting a few copies of m.

The prime moduli p for each of the five example curves is a generalized

Mersenne number.



50

Curve P-192:

The modulus for this curve is p = 2 192 - 2 64 - 1.  Every integer A less than p2

can be written

A = A5 ⋅ 2
320 + Α4 ⋅  2

256 + Α3 ⋅ 2
192 + Α2 ⋅ 2

128 + Α1 ⋅ 2
64 + Α0,

where each Ai is a 64-bit integer.  The expression for B is

B := T + S1 +  S2 +  S3 mod p;

where the 192-bit terms are given by

T = A2 ⋅ 2
128 + A1 ⋅ 2

64 + A0

S1 =   A3 ⋅ 2
64 + A3

S2 = A4 ⋅ 2
128 + A4 ⋅ 2

64

S3 = A5 ⋅ 2
128 + A5  ⋅ 2

64+ A5.
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Curve P-224:

The modulus for this curve is p = 2 224 − 2 96 + 1.  Every integer A less than

p2  can be written

A = A13 ⋅ 2
416 +  A12 ⋅ 2

384 +  A11 ⋅ 2
352 +  A10 ⋅ 2

320 +  A9 ⋅ 2
288 +  A8 ⋅ 2

256 +  A7 ⋅ 2
224 + 

A6 ⋅ 2
192 +  A5 ⋅ 2

160 +  A4 ⋅ 2
128 +  A3 ⋅ 2

96 +  A2 ⋅ 2
64 +  A1 ⋅ 2

32 +  A0, 

where each Ai is a 32-bit integer. As a concatenation of 32-bit words, this can be

denoted by

A = (A13 || A12 || ⋅ ⋅ ⋅ || A0 ).

The expression for B is

B := T + S 1 +  S 2 - D1 - D2 mod p,

where the 224-bit terms are given by

T  =  (  A6 || A5 ||  A4 ||  A3
 ||  A2

 ||  A1 ||  A0 )

S1 = (  A10 || A9 ||  A8 || A7
 ||  0   ||  0   ||  0   )

S2 = (  0    || A13 || A12 || A11
 ||  0  ||  0   ||  0   )

D1 = (A13  || A12 ||  A11 || A10
 ||  A9

 ||  A8  ||  A7 )

D2 = (   0  ||  0   ||  0    ||  0   || A13  || A12 ||  A11).
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Curve P-256:

The modulus for this curve is p = 2256 - 2224 + 2192 + 296  - 1.  Every integer A

less than p2 can be written

A = A15 ⋅ 2
480 +  A14 ⋅ 2

448 +  A13 ⋅ 2
416 +  A12 ⋅ 2

384 +  A11 ⋅ 2
352 + 

A10 ⋅ 2
320 +  A9 ⋅ 2

288 +  A8 ⋅ 2
256 +  A7 ⋅ 2

224 +  A6 ⋅ 2
192 +  A5 ⋅ 2

160 + 

A4 ⋅ 2
128 +  A3 ⋅ 2

96 +  A2 ⋅ 2
64 +  A1 ⋅ 2

32 +  A0, 

where each A i is a 32-bit integer.  As a concatenation of 32-bit words, this can be

denoted by

A = (A15 || A14 || ⋅ ⋅ ⋅ || A0 ).

The expression for B is

B := T + 2S1 + 2S2 + S3 + S4 - D1 - D2 - D3 - D4 mod p,

where the 256-bit terms are given by

T  =  (  A7  || A6   ||  A5  ||  A4  ||  A3 
 ||  A2 

 ||  A1  ||  A0  )

S1 = (  A15 || A14 ||  A13 || A12
 ||  A11 ||  0   ||  0    ||  0   )

S2 = (    0   || A15 || A14 ||  A13 || A12
 ||  0   ||  0    ||  0   )

S3 = (  A15 || A14 ||  0    ||   0   ||   0   || A10 ||  A9  ||  A8  )

S4 = (  A8   || A13 ||  A15 || A14 ||  A13 ||  A11|| A10  ||  A9 )

D1 = ( A10  ||  A8  ||   0   ||   0   ||   0   ||  A13
 || A12

 ||  A11 )

D2 = ( A11 ||  A9   ||   0   ||  0    || A15 ||  A14 || A13 || A12  )

D3 = ( A12 ||   0  ||  A10 ||  A9   ||  A8  || A15 || A14 ||  A13 )

D4 = ( A13 ||   0  || A11  ||  A10
 ||  A9  ||   0   || A15 ||  A14 ).
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Curve P-384:

The modulus for this curve is p = 2 384 - 2 128 - 2 96 + 2 32  - 1.  Every integer A

less than p2 can be written

A = A23 ⋅ 2
736 +  A22 ⋅ 2

704 +  A21 ⋅ 2
672 +  A20 ⋅ 2

640 +  A19 ⋅ 2
608 +

A18 ⋅ 2
576 +  A17 ⋅ 2

544 +  A16 ⋅ 2
512 +  A15 ⋅ 2

480 +  A14 ⋅ 2
448 +  A13 ⋅ 2

416 +  A12

⋅ 2384 +  A11 ⋅ 2
352 +  A10 ⋅ 2

320 +  A9 ⋅ 2
288 +  A8 ⋅ 2

256 +  A7 ⋅ 2
224 +

A6 ⋅ 2
192 +  A5 ⋅ 2

160 +  A4 ⋅ 2
128 +  A3 ⋅ 2

96 +  A2 ⋅ 2
64 +  A1 ⋅ 2

32 +  A0,  

where each A i is a 32-bit integer.  As a concatenation of 32-bit words, this can be

denoted by

A = (A23 || A22 || ⋅ ⋅ ⋅ || A0 ).

The expression for B is

B := T + 2S1 + S2 + S3 + S4 + S5 + S6 - D1 - D2 - D3 mod p,

where the 384-bit terms are given by

T  =  (A11 || A10  || A9 ||  A8   ||  A7  ||  A6  ||  A5  || A4  || A3 
 || A2  ||  A1  ||  A0 )

S1 = (  0  ||   0   ||  0  ||  0    ||   0   ||  A23 ||  A22|| A21 || 0  ||  0   ||  0   ||  0 )

S2 = (A23 || A22  || A21 || A20 || A19  || A18  || A17|| A16 || A15|| A14
 || A13  ||  A12)

S3 = (A20 || A19  || A18 || A17 || A16 || A15 ||  A14 || A13 || A12 || A23|| A22|| A21)

S4 = ( A19 || A18 || A17 || A16 || A15 || A14 || A13  ||   A12 || A20 ||  0 ||  A23 || 0  )

S5 = (  0  ||  0   ||  0   ||   0   || A23 || A22  ||  A21 ||  A20  ||  0 ||   0 ||    0  || 0 )

S6 = (  0  ||  0   ||  0   ||    0  ||   0  ||  0   ||  A23  || A22  || A21 ||  0  ||  0 ||  A20)

D1 = (A22 || A21 || A20 || A19 || A18 || A17 || A16  || A15 || A14
 || A13 || A12|| A23)

D2 = ( 0   ||  0   ||  0   ||  0   ||   0  ||  0   ||  0    ||  A23 || A22 || A2 ||  A20  ||  0)

D3 = (  0 ||   0   ||  0   ||   0  ||   0  ||  0   ||  0    || A23   || A23 ||  0 ||   0   ||  0 ).
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Curve P-521:

The modulus for this curve is p = 2 521 - 1.  Every integer A less than p2 can

be written

A = A1 ⋅ 2
521 +  A0,

The expression for B is

B := A0 + A1 mod p
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APPENDIX 6.2: NORMAL BASES

The elements of GF(2m) are expressed in terms of the type T normal

basis 2 B for GF(2m), for some T.  Each element has a unique representation

as a bit string

( a0 a1 . . .  am-1 )

The arithmetic operations are performed as follows.

Addition : addition of two elements is implemented by bitwise addition modulo 2. 

Thus, for example,

(1100111) + (1010010) = (0110101).

Squaring: if 

α = ( a0 a1 . . .  am-1 )

then

α2 = (am-1 a0 a1 . . .  am-2 )

Multiplication: to perform multiplication, one first constructs a function F(u,v) on

inputs

u = ( u0 u1 . . .  um-1 ) and v = ( v0 v1 . . .  vm-1 )

as follows.

1. Set p ← Tm + 1

2. Let u be an integer having order T modulo p

                                                
2 It is assumed in this section that m is odd and T is even, since this is the only case considered in this standard.
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3. Compute the sequence F (1); F (2),…,F (p-1) as follows:

3.1 Set w← 1

3.2 For j from 0 to T-1 do

Set n ← w

For i from 0 to m-1 do

Set F(n) ← i

Set  n ← 2n mod p

Set w ← uw mod  p

4. Output the formula

  p-2

F(u, v) := Σ uF(k+1) vF(p-k).

  k=1

This computation need only be performed once per basis.

Given the function F for B, one computes the product

( c0 c1 . . .  cm-1 ) = ( a0 a1 . . .  am-1 ) × ( b0 b1 . . .  bm-1 )

as follows.

1. Set ( u0 u1 . . .  um-1 ) ← ( a0 a1 . . .  am-1 )

2. Set ( v0 v1 . . .  vm-1 ) ← ( b0 b1 . . .  bm-1 )

3. For k from 0 to m - 1 do

3.1 Compute

ck := F(u, v)

3.2 Set u ← LeftShift (u) and v ← LeftShift (v), where LeftShift

denotes the circular left shift operation.

4. Output c := ( c0 c1 . . .  cm-1 )
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EXAMPLE.  For the type 4 normal basis for GF(27), one has p = 29 and

u = 12 or 17. Thus the values of F are given by

F (1) = 0 F (8) = 3 F (15) = 6 F (22) = 5

F (2) = 1 F (9) = 3 F (16) = 4 F (23) = 6

F (3) = 5 F (10) = 2 F (17) = 0 F (24) = 1

F (4) = 2 F (11) = 4 F (18) = 4 F (25) = 2

F (5) = 1 F (12) = 0 F (19) = 2 F (26) = 5

F (6) = 6 F (13) = 4 F (20) = 3 F (27) = 1

F (7) = 5 F (14) = 6 F (21) = 3 F (28) = 0

Therefore

F (u; v) =  u0 v1 +  u1 (v0 +  v2 +  v5 +  v6 ) +  u2 (v1 + v3 +  v4 +  v5 )

   +  u3 (v2 +  v5 ) +  u4 (v2 + v6 ) +  u5 (v1 +  v2 +  v3 +  v6 )

   + u6 (v1 +  v4 +  v5 + v6 ).

Thus, if

a = (1 0 1 0 1 1 1) and b = (1 1 0 0 0 0 1),

then

c0 = F ( (1 0 1 0 1 1 1), (1 1 0 0 0 0 1) ) = 1,

c1 = F ( (0 1 0 1 1 1 1), (1 0 0 0 0 1 1) ) = 0,

M

c6 = F ( (1 1 0 1 0 1 1); (1 1 1 0 0 0 0) ) = 1,

so that c = ab = (1 0 1 1 0 0 1).
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APPENDIX 6.3: SCALAR MULTIPLICATION ON KOBLITZ CURVES

This appendix describes a particularly efficient method of computing the

scalar multiple nP on the Koblitz curve Ea over GF(2m).

The operation τ is defined by

τ (x, y) = (x2, y2)

When the normal basis representation is used, then the operation τ is

implemented by performing right circular shifts on the bit strings representing x and

y.

Given m and a, define the following parameters:

• C is some integer greater than 5.

• µ  := (-1)1-a

• For i = 0 and i = 1, define the sequence si(m) by

si(0) =  0, si(1) =  1 - i,

si(m) =  µ •  si(m - 1) - 2 si(m - 2) +  (-1)i

• Define the sequence V(m)

V(0) =  2, V(1) =  µ

V(m) =  µ • v(m -1) - 2V(m - 2).
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For the example curves, the quantities si(m)  and V(m) are as follows.

Curve K-163:

s0(163) = 2579386439110731650419537

s1(163) = -755360064476226375461594

V(163) = -4845466632539410776804317

Curve K-233:

s0(233) = -27859711741434429761757834964435883

s1(233) = -44192136247082304936052160908934886

V(233) = -137381546011108235394987299651366779

Curve K-283:

s0(283) = -665981532109049041108795536001591469280025

s1(283) = 1155860054909136775192281072591609913945968

V(283) = 7777244870872830999287791970962823977569917

Curve K-409:

s0(409) = -1830751045600238213781031719875646137859054248755686\

9338419259

s1(409) = -8893048526138304097196653241844212679626566100996606\

444816790

V(409)=1045728873731562592744768538704832073763879695768757\

5791173829

Curve K-571:
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s0(571) = -373731944687646369242938589247611556714729396459613\

1024123406420235241916729983261305

s1(571) = -3191857706446416099583814595948959674131968912148564\

65861056511758982848515832612248752

V(571)=-148380926981691413899619140297051490364542574180493\

936232912339534208516828973111459843

The following algorithm computes the scalar multiple nP on the Koblitz

curve Ea over GF(2m).  The average number of elliptic additions and subtractions is

at most ∼ 1 + (m/3), and is at most ∼ m/3 with probability at least 1 - 25-C.

For i = 0 to 1 do

n′ ←   n / 2a-C + (m-9) / 2

g′ ← si(m) · n′

h′ ←   g′ / 2m 

j′ ← V(m) · h′

l′ ← Round((g′ + j′) / 2(m+5) / 2)

λi ← l′ / 2C

fi ← Round(λi)

ηi ← λi - fi

hi ← 0

η ← 2 η0 +  µ η1

If η ≥ 1

then
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if ηo - 3 µη1 < -1

then set h1 ← µ

else set h0 ← 1

else

if η0 +  4 µ η1 ≥ 2

then set h1 ← µ

If η < -1

then

if η0 - 3 µ η1 ≥  1

then set h1 ← - µ

else set h0 ← -1

else

if η0 +  4 µ η1 <  -2

then set h1 ← - µ

q0  ← f0  + h0

q1  ← f1  + h1

r0 ← n - (s0  + µ s1) q0 - 2s1 q1

r1 ← s1 q0 - s0 q1

Set Q ← O

P0 ← P

While r0 ≠ 0 or r1 ≠ 0

If r0  odd then

set u ← 2 - (r0  - 2 r1 mod 4)

set r0 ← r0  - u
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if u = 1 then set Q ← Q + P0

if u = -1 then set Q ← Q - P0

Set P0 ← τP0

Set (r0 , r1) ← (r1 +  µr0 /2, - r0 /2)

Endwhile

Output Q
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APPENDIX 6.4: GENERATION OF
PSEUDO-RANDOM CURVES (PRIME CASE)

Let l be the bit length of p, and define

v  =  ( l - 1) /160

w  = l - 160v - 1

1.  Choose an arbitrary 160-bit string s.

2.  Compute h:= SHA-1(s).

3.  Let h0 be the bit string obtained by taking the w rightmost bits of h.

4.  Let z be the integer whose binary expansion is given by the 160-bit string s.

5.  For i from 1 to v do:

5.1  Define the 160-bit string si to be binary expansion of the integer

       (z + i) mod (2 160 ).

5.2  Compute hi :=SHA-1(si).

6.  Let h be the bit string obtained by the concatenation of h0 , h1, . . . , hv as follows:

h = h0  || h1 || . . . || hv

7. Let c be the integer whose binary expansion is given by the bit string h.

8. If c = 0 or 4c + 27 ≡ 0 (mod p), then go to Step 1.

9. Choose integers a, b ∈GF(p) such that

c b2 ≡ a3 (mod p).

(The simplest choice is a = c and b = c. However, one may want to choose

differently for performance reasons.)

10. Check that the elliptic curve E over GF(p) given by y 2 = x3 + ax + b has

suitable order. If not, go to Step 1.
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APPENDIX 6.5: VERIFICATION OF CURVE
PSEUDO-RANDOMNESS (PRIME CASE)

Given the 160-bit seed value s, one can verify that the coefficient b was

obtained from s via the cryptographic hash function SHA-1 as follows.

Let l be the bit length of p, and define

v  =  ( l - 1) /160

w  = l - 160v - 1

1.  Compute h := SHA-1(s).

2.  Let h0 be the bit string obtained by taking the w rightmost bits of h.

3.  Let z be the integer whose binary expansion is given by the 160-bit string s.

4.  For i from 1 to v do

4.1  Define the 160-bit string si to be binary expansion of the integer

       (z + i) mod (2160 ).

4.2  Compute hi :=SHA-1(si).

5.  Let h be the bit string obtained by the concatenation of h0 , h1, . . . , hv as follows:

h = h0  || h1 || . . . || hv.

6. Let c be the integer whose binary expansion is given by the bit string h.

7. Verify that b2 c ≡ -27 (mod p).
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APPENDIX 6.6: GENERATION OF
PSEUDO-RANDOM CURVES (BINARY CASE)

Let:

v =  (m - 1) /B

w = m - Bv

1.  Choose an arbitrary 160-bit string s.

2,  Compute h := SHA-1(s)

3.  Let h0 be the bit string obtained by taking the w rightmost bits of h.

4.  Let z be the integer whose binary expansion is given by the 160-bit string s.

5. For i from 1 to v do:

5.1  Define the 160-bit string si to be binary expansion of the integer

       (z + i) mod (2160 ).

5.2  Compute hi  :=SHA-1(si).

6.  Let h be the bit string obtained by the concatenation of h0 , h1, . . . , hv as follows:

h = h0  || h1 || . . . || hv.

7. Let b be the element of GF(2m) which binary expansion is given by the bit string

h.

8. Choose an element a of GF(2m).

9. Check that the elliptic curve E over GF(2m) given by y2 + xy = 

x3 + ax2 + b has suitable order. If not, go to Step 1.
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APPENDIX 6.7: VERIFICATION OF CURVE
PSEUDO-RANDOMNESS (BINARY CASE)

Given the 160-bit seed value s, one can verify that the coefficient b was

obtained from s via the cryptographic hash function SHA-1 as follows.

Define

v =  (m - 1) /160

w= m - 160v

1. Compute h := SHA-1(s)

2.  Let h0 be the bit string obtained by taking the w rightmost bits of h.

3.  Let z be the integer whose binary expansion is given by the 160-bit string

s.

4.  For i from 1 to v do

4.1  Define the 160-bit string si to be binary expansion of the integer (z

+ i) mod (2160 )

4.2  Compute hi :=SHA-1(si ).

5.  Let h be the bit string obtained by the concatenation of h0 , h1, . . . , hv as

follows:

h = h0  || h1 || . . . || hv.

6. Let c be the element of GF(2m ) which is represented by the bit string h.

7. Verify that c = b.
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APPENDIX 6.8: POLYNOMIAL BASIS TO NORMAL BASIS CONVERSION

Suppose that α an element of the field GF(2m). Denote by p the bit string

representing α with respect to a given polynomial basis. It is desired to compute n,

the bit string representing α with respect to a given normal basis. This is done via

the matrix computation

p Γ = n

Where Γ is an m-by-m matrix with entries in GF(2).  The matrix Γ, which depends

only on the bases, can be computed easily given its second-to-last row.  The

second-to-last row for each conversion is given in the table below.

Degree 163:

3 e173bfaf 3a86434d 883a2918 a489ddbd 69fe84e1

Degree 233:

0be 19b89595 28bbc490

038f4bc4 da8bdfc1 ca36bb05 853fd0ed 0ae200ce

Degree 283:

3347f17 521fdabc 62ec1551 acf156fb

0bceb855 f174d4c1 7807511c 9f745382 add53bc3

Degree 409: 

0eb00f2 ea95fd6c 64024e7f

0b68b81f 5ff8a467 acc2b4c3 b9372843 6265c7ff
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a06d896c ae3a7e31 e295ec30 3eb9f769 de78bef5

Degree 571:

7940ffa ef996513 4d59dcbf

e5bf239b e4fe4b41 05959c5d 4d942ffd 46ea35f3

 e3cdb0e1 04a2aa01 cef30a3a 49478011 196bfb43

c55091b6 1174d7c0 8d0cdd61 3bf6748a bad972a4

Given the second-to-last row r of Γ, the rest of the matrix is computed as

follows.  Let β be the element of GF(2m) whose representation with respect to the

normal basis is r. Then the rows of Γ, from top to bottom, are the bit strings

representing the elements

β m-1, β m-2, . . ., β 2, β, 1

with respect to the normal basis.  (Note that the element 1 is represented by the all-1

bit string.)

Alternatively, the matrix is the inverse of the matrix described in Appendix

6.9.

More details of these computations can be found in Annex A.7 of the IEEE

P1363 standard.
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APPENDIX 6.9: NORMAL BASIS TO POLYNOMIAL BASIS CONVERSION

Suppose that α an element of the field GF(2m). Denote by n the bit string

representing α with respect to a given normal basis.  It is desired to compute p, the

bit string representing α with respect to a given polynomial basis. This is done via

the matrix computation

n Γ = p

where Γ is an m-by-m matrix with entries in GF(2).  The matrix Γ, which depends

only on the bases, can be computed easily given its top row.  The top row for each

conversion is given in the table below.

Degree 163:

         7 15169c10 9c612e39 0d347c74 8342bcd3 b02a0bef

Degree 233:

      149 9e398ac5 d79e3685

59b35ca4 9bb7305d a6c0390b cf9e2300 253203c9

Degree 283: 

     31e0ed7 91c3282d c5624a72 0818049d

053e8c7a b8663792 bc1d792e ba9867fc 7b317a99

Degree 409: 

 0dfa06b e206aa97 b7a41fff

b9b0c55f 8f048062 fbe8381b 4248adf9 2912ccc8

e3f91a24 e1cfb395 0532b988 971c2304 2e85708d
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Degree 571:

452186b bf5840a0 bcf8c9f0

2a54efa0 4e813b43 c3d41496 06c4d27b 487bf107

393c8907 f79d9778 beb35ee8 7467d328 8274caeb

 da6ce05a eb4ca5cf 3c3044bd 4372232f 2c1a27c4

Given the top row r of Γ, the rest of the matrix is computed as follows.  Let β

be the element of GF(2 m) whose representation with respect to the polynomial

basis is r. Then the rows of Γ, from top to bottom, are the bit strings representing

the elements

β, β 2, β 2
2
, …, β 2

m-1

with respect to the polynomial basis.

Alternatively, the matrix is the inverse of the matrix described in Appendix

6.8.

More details of these computations can be found in Annex A.7 of the IEEE

P1363 standard.
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FIPS 186-2, DIGITAL SIGNATURE STANDARD
CHANGE NOTICE 1

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
Gaithersburg, MD 20899

DATE OF CHANGE: 2001 October 5

Federal Information Processing Standard (FIPS) 186-2, Digital Signature Standard, specifies the
Digital Signature Algorithm (DSA) that may be used in the generation and verification of digital
signatures for sensitive, unclassified applications. FIPS 186-2 also allows the use of the digital
signature techniques specified in American National Standards Institute (ANSI) X9.31 (Digital
Signatures Using Reversible Public Key Cryptography for the Financial Services Industry
(rDSA)) and ANSI X9.62 (Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA)). The standard also specifies a transition
period for the use of existing (legacy) digital signature systems. Reversible public key
algorithms, such as the RSA or Rabin-Williams algorithms, are often used in these legacy
systems.

FIPS 186-2 is used in conjunction with the hash function specified in FIPS 180-1, Secure Hash
Standard (SHS), and includes specifications for the size of the prime modulus p, and algorithms
for the generation of a user’s private key, x, and a user’s per message secret number, k.

This change notice provides changes for the continued use of DSA as specified in FIPS 186-2
about the size of the prime modulus p, modifications for the random number generation
techniques specified in Appendix 3 of FIPS 186-2, and provides instructions for the use of these
techniques when used in contexts other than the generation of DSA keys. This change notice also
provides guidance for the use of the reversible public key algorithms within legacy systems.

Questions regarding this change notice may be directed to FIPS186@nist.gov or to Elaine Barker
(ebarker@nist.gov, 301-975-2911).

The Size of the Prime Modulus

Section 4 of FIPS 186-2 specifies that the prime modulus p of DSA is defined for the range of
prime integers 2L-1 < p < 2L , where 512 ≤ L ≤ 1024 and L is a multiple of 64. This change notice
specifies that L should assume only the value 1024 for DSA as specified in FIPS 186-2, i.e., the
prime modulus p should be defined in the range 21023  < p < 21024.

The RSA and Rabin-Williams algorithms used within legacy systems are defined with a modulus
n and prime factors p and q of n. This change notice specifies that n should be at least 1024 bits
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in length, and p and q should be approximately half the size of n in bits.

Random Number Generation

FIPS 186-2 includes algorithms for the generation of a user’s private key, x, and a user’s per
message secret number, k. These values must be generated randomly or pseudorandomly and
must have values between 0 and the 160-bit prime q (as specified in the standard). Techniques
for generating x and k are provided in Appendix 3 of the standard.

Recently, an unpublished attack on DSA3 was found that relies on the non-uniformity of the
pseudorandom number generators (PRNGs) specified in Appendix 3 of the standard. The attack
has a workfactor of 264 and requires 222 known signatures. This attack can be defended against by
either limiting the number of signatures created using a specific key pair to no more than 2
million signatures while using the PRNGs specified in FIPS 186-2, or by modifying the PRNGs.

If the PRNGs currently defined in FIPS 186-2 are used, the user should be provided with clear
guidance about the limitation to the number of signatures that should be created.

Alternatively, the following modifications of the PRNGs may be used in lieu of those PRNGs
specified in FIPS 186-2.  These modifications reduce the non-uniformity of the PRNGs and do
not affect interoperability.

The two algorithms described below use a one-way function G(t,c), where t is 160 bits, c is b bits
and G(t,c) is 160 bits. Two methods for constructing G are defined in FIPS 186-2: using SHA-1
as defined in FIPS 180-1, and using the Data Encryption Standard (DES) as defined in FIPS 46-
3. If G is constructed using SHA-1, b is between 160 and 512 bits (160 ≤ b ≤ 512); if G is
constructed using DES, b is equal to 160 bits.

1. Revised Algorithm for Computing m values of x (Appendix 3.1 of FIPS 186-2)

Let x be the signer's private key.  The following may be used to generate m values of x:

Step 1. Choose a new, secret value for the seed-key, XKEY .

Step 2. In hexadecimal notation let

t = 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0.

This is the initial value for H0 || H1 || H2 || H3 || H4 in the SHS [FIPS 180-1].

                                                
3 The attack was discovered by Dr. Daniel Bliechenbacher of Lucent Technologies, Bell Labs, Murray Hill, NJ. See
a February 25, 2001 press article at http://www.lucent.com/press/0201/010205.bla.html.
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Step 3. For j = 0 to m - 1 do
3.1  XSEED j = optional user input

3.2 For i = 0 to 1 do

a. XVAL  = (XKEY  + XSEED j) mod 2b

b. wi = G(t, XVAL ).

c. XKEY  = (1 + XKEY  + wi) mod 2b.

3.3 xj = (w0 || w1) mod q

2. Revised Algorithm for Precomputing one or More k and r Values (Appendix 3.2
of FIPS 186-2)

This algorithm can be used to precompute k, k-1, and r for m messages at a time.  Note that
implementation of the DSA with precomputation may be covered by U.S. and foreign patents.

Step 1. Choose a secret initial value for the seed-key, KKEY .

Step 2. In hexadecimal notation let

t = EFCDAB89 98BADCFE 10325476 C3D2E1F0 67452301.

This is a cyclic shift of the initial value for H0 || H1 || H2 || H3 || H4 in the SHS.

Step 3. For j = 0 to m - 1 do

3.1 For i = 0 to 1 do

a. wi = G(t, KKEY )

b. KKEY  = (1 + KKEY  + wi) mod 2b

3.2 k = (w0 || w1) mod q
                

3.3 Compute kj
-1 = k-1 mod q

 
3.4 Compute rj = (gk mod p) mod q
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Step 4. Suppose M0 , ... , Mm-1 are the next m messages. For j = 0 to m - 1 do

a. Let h = SHA-1(Mj).

b. Let sj = (kj
-1(h + xr j)) mod q

c. The signature for Mj is (rj, sj).
        

Step 5. Let t = h
    

Step 6. Go to step 3.

Step 3 permits pre-computation of the quantities needed to sign the next m messages.  Step 4 can
begin whenever the first of these m messages is ready.  The execution of step 4 can be suspended
whenever the next of the m messages is not ready.  As soon as steps 4 and 5 have completed, step
3 can be executed, and the results saved until the first member of the next group of m messages is
ready.

In addition to space for KKEY , two arrays of length m are needed to store r0 , ... rm-1 and k0
-1, ... , km-1

-

1 when they are computed in step 3.  Storage for s0 , ... , sm-1 is only needed if the signatures for a
group of messages are stored; otherwise sj in step 4 can be replaced by s, and a single space
allocated.

General Purpose Random Number Generation

Several of the FIPS require the use of an Approved (i.e., FIPS-approved or NIST recommended)
random number generator (RNG). The RNG specified as algorithm 1 above or the algorithm
specified in Appendix 3.1 of FIPS 186-2 may be used in addition to any other Approved RNG.
However, when the RNG is used for the generation of random numbers other than for DSA keys,
the “mod q” term should be omitted. This will result in the following changes to the
specification:

FIPS 186-2, Appendix 3.1, Step 3 c:
Change “xj = G(t, XVAL ) mod q” to “xj = G(t, XVAL )”.

Algorithm 1 of this change notice, Step 3, substep 3.2:
Change “xj = (w0 || w1) mod q” to “xj = (w0 || w1)”.


