
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

April, 2002 IEEE P802.15-02/210r0
IEEE P802.15
Wireless Personal Area

Networks

Project IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Title IEEE P802-15_TG3 NTRU Full Security Text Proposal

Date
Submitted

[April 22, 2002]

Source
[Daniel V. Bailey, Ari Singer, William Whyte]
[NTRU]
[5 Burlington Woods
Burlington, MA 01803 USA]

Voice: [+1 781 418-2522]
Fax: [+1 781 418-2532]
E-mail: [dbailey@ntru.com]

Re: 802.15.3 TG3 Letter Ballot Draft D09, 02074r1P802.15_TG3-Security-CFP.doc, 02130r1P802-
15_TG3-NTRU-Security-Architecture-Proposal.doc

Abstract [This document is offered as NTRU's submission for the letter ballot vote on the mandatory and
optional ECC security suites. The full baseline security text that both the Certicom/Motorola and
NTRU submissions are based on is included.]

Purpose [This document is intended as the NTRU proposal for ECC security suites for the ECC security
suite letter ballot. Background security text for both submissions is included to assist the
balloters.]

Notice This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion
and is not binding on the contributing individual(s) or organization(s). The material in this
document is subject to change in form and content after further study. The contributor(s) reserve(s)
the right to add, amend or withdraw material contained herein.

Release The contributor acknowledges and accepts that this contribution becomes the property of IEEE and
may be made publicly available by P802.15.
1 Submission
Daniel V. Bailey, et. al., NTRU

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

April, 2002 IEEE P802.15-02/210r0
[[The following submission specifies the baseline security text for the 802.15.3 draft standard, incorporating the NTRU
submission text for the security suite ballot vote. The clauses specified are as follows: Security (which includes over-
view, protocols and state machines), Security Suites (which defines the security suites to be used in this standard) and
Informative Text (which gives some security considerations for the general protocols and architectural framework). This
submission specifies the security clauses voted on for inclusion into the 802.15.3 draft standard at the March, 2002
802.15 TG3 meeting in St. Louis, MO. Specifically, this includes the security text approved by the vote to include 02/
130 as the baseline architecture, text supporting the vote to mandate AES, SHA-256 and HMAC, and text supporting the
vote to include an ECC security suite in mode 2, an ECC suite in mode 3 using implicit certificates, an ECC suite in
mode 3 using a patent unencumbered certificate format such as X.509 and an optional NTRUEncrypt suite in mode 2.]]

[[The NTRU submission text for the ECC security suite letter ballot vote is found in clause 2.3 and clause 4. The submis-
sion specific text is pointed out explicitly with notes in this font inside square brackets.]]

1. Security

Wireless networks face unique security challenges and WPANs are no exception. Recognizing the diversity
of WPAN applications and devices, this standard supports four different modes of security, ranging from no
security to the use of strong cryptography. The instantiation of a cryptographic security mode is a security
suite.

1.1 Background Assumptions

All security solutions rely on assumptions about devices and the capabilities of potential attackers to thwart
possible threats.

1.1.1 Physical Assumptions

The assumptions below are made about the physical environment for the WPAN. The physical constraints
help to determine the security architecture.

— Open communications medium – Since the data being transmitted may be received by any device
that is sufficiently close and has a sufficiently good receiver, it is assumed that transmissions may be
received by devices outside of the WPAN.

— Low cost – Like all other components of a WPAN device, security must be provided with careful
attention to cost.

— Dynamic group membership – Devices are expected to be roaming and it is therefore assumed that
the devices may enter or exit the network at any time.

— No access to external networks – Security solutions must be effective without access to external
networks.

— Bandwidth – Since 802.15.3 WPANs provide high data rates, reasonable amounts of bandwidth
overhead due to security are acceptable.

— Computational power – The devices that will be used are assumed to have very little computational
power with only a small portion of that available for cryptographic computations.

— Memory – It is assumed that the low end devices implementing 802.15.3 will have little memory
available for security.

1.1.2 Network Assumptions

The assumptions below are made about the network structure of the WPAN. The network constraints help to
determine the security architecture.
2 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
— Network size – There is a fixed upper bound of 255 devices in a WPAN and it is assumed that the
security solution will scale up to that size if necessary.

— Controller – One device, the PNC, has the role of managing time slots and entry into the piconet. It
is assumed that the PNC has more resources and functionality than an ordinary device.

— Dynamic controller – The PNC is assumed to have the ability to leave the network or hand over the
PNC role to other devices.

— Device relationships – The wide array of use cases describes several models for the pre-existing
relationship of devices in the piconet. It is assumed that devices may have pre-existing security rela-
tionships or they may have never met and that both types of relationship may exist within a single
piconet.

1.1.3 Attack Model Assumptions

In order to make statements about the effectiveness of security measures, it is necessary to describe the capa-
bilities of the attackers and the nature of the attackers.

— Computational capabilities – It is assumed that the attacker has state of the art technologies to per-
form rapid computations.

— Listening capabilities – It is assumed that the attacker is within listening range of the devices in the
WPAN and understands the communication mechanism.

— Broadcast capabilities – It is assumed that the attacker has sophisticated broadcasting equipment
that is able to synchronize with the piconet and transmit data for the devices in the piconet at the
appropriate time.

— Security setup – The security setup for the devices may occur before entry into the piconet or after
the piconet has been established. No assumptions are made about the presence of attackers during
security setup.

1.2 Security Services

Security services are protections offered on communications between the PNC and a DEV or two ordinary
DEVs.

1.2.1 Access Control List

The Access Control List (ACL) indicates from which devices the MLME will accept an authentication
request command. The ACL may consist of a list of authorized Device IDs as well as other device-specific
information depending on the mode and security suite in use. Alternatively, the ACL may simply indicate
that authentication request commands are to be accepted from any peer DEV. The DME is responsible for
maintaining the ACL.

The device stores ACL entries in the MAC PIB as described in table {xref-clause 6.2.2} - MAC PIB ACL
Entry. In an ACL entry for a secure relationship, the ACL contains an indication of the security suite to be
used and verification information for the public key of the device that depends on the security suite.

1.2.2 Mutual Authentication

The mutual authentication protocol, defined in 9.8.1 {xref}, is the initial source of all cryptographic protec-
tion within a piconet. This protocol may be used for either DEV-PNC mutual authentication (for joining the
piconet) or for peer-to-peer mutual authentication for peer-to-peer communications.

Authentication between the DEV and PNC is used to provide evidence to the PNC that the DEV is autho-
rized to join the secure piconet. Authentication between two DEVs is used to provide evidence to each DEV
that the other is authorized to establish a secure peer-to-peer relationship with that DEV.
3 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
When a piconet is operating in Mode 2 or 3, defined in 9.4 {xref}, mutual authentication shall be achieved
by means of public-key cryptography.

1.2.3 Verifying Authenticity of Public Keys

To use a public key to achieve mutual authentication, a DEV must establish that the received public key
belongs to the intended device. This trust shall be indicated by the key’s representation in the ACL in Mode
2 or by the DEV verifying a digital certificate at the time of authentication in Mode 3.

1.2.4 Key Establishment

The mutual authentication protocol, defined in 9.8.1 {xref} shall result in the establishment of a shared key
or keys that may be used for future communications between the devices.

The key(s) that are established shall be used to protect commands between the two devices.

1.2.5 Key Transport

All keys that are transmitted from one DEV to another shall be encrypted as specified in the key request and
distribute key protocols 7.4.1{xref}. For example, key transport is used to provide a copy of the piconet-
wide key to a DEV.

1.2.6 Data encryption

Encryption uses a symmetric cipher to protect data from being read by parties without the cryptographic key.
Data may be encrypted using a key shared by all piconet devices or using a key shared between two peers.

1.2.7 Data integrity

Integrity uses a message authentication code to protect data from being modified by parties without the cryp-
tographic key. It further provides assurance that data came from a party with the cryptographic key. Integrity
may be provided using a key shared by all piconet devices or using a key shared between two peers.

1.2.8 Beacon integrity protection

The beacon may be integrity-protected. This integrity protection provides evidence to all the DEVs in the
piconet that a member of the secure piconet transmitted the beacon.

1.2.9 Freshness protection

To prevent replay of old messages, a strictly-increasing time token is included in the beacon. A DEV may
reject as invalid a received time token less than or equal to the current time token. A DEV may reject as
invalid a frame received with a time token less than the current time token.

All protected beacons, ACKs, commands and data shall include the current time token and integrity protec-
tion.

1.2.10 Command integrity protection

The integrity of commands may be protected just like any other data. PNC-DEV commands shall be pro-
tected using the integrity key agreed on during mutual authentication.
4 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.11 ACK integrity protection

The integrity of ACK frames may be protected just like any other data. The key used to protect the integrity
of the ACK shall be the key used for the command.

1.3 Security Policies

Security policies determine the actions taken to preserve the security of the piconet.

1.3.1 Group membership change rekey

Sound security practice indicates that only devices that are currently members of the piconet should be
allowed to generate, read or modify piconet data. This implies that when a device joins or leaves the piconet,
the currently active group keys need to be changed.

Since group membership is controlled by the PNC, the PNC is responsible for determining when a device
has joined or left the piconet and for changing and distributing the new group keys.

Before the PNC distributes the group piconet keys to a newly authenticated DEV, the PNC shall change the
group piconet keys and issue a distribute key command to each of the authenticated DEVs to distribute the
new key.

When the PNC disassociates a DEV from the piconet, the PNC shall change the group piconet keys and
issue a distribute key command to each of the authenticated DEVs to distribute the new key.

1.3.2 PNC handover

When a PNC chooses to handover the PNC role to another device in the piconet, the authentication relation-
ships with the old PNC do not apply to the new PNC. When the old PNC hands over the piconet information
(using a device information response command), the list of authenticated DEVs is passed to the new PNC.

PNC handover does not affect the group membership, so it does not require a rekey of the group keys. How-
ever, in a piconet with payload protection, the command functions of the PNC that relate to specific devices
cannot be implemented until the new PNC has performed the authentication protocol with each device in the
piconet. When the PNC role has been handed over, the new PNC should set up time slots for each of the
authenticated DEVs to perform the authentication protocol with the new PNC.

The old PNC may send public-key verification information about the new PNC to the other devices in the
piconet and send public-key verification information about all of the authenticated devices in the piconet to
the new PNC when it hands over the role of the PNC using a probe command. If the DME of each devices
chooses to accept this public-key verification information, the authentication process with each DEV can
proceed without any interruption of service.

1.4 Security Modes

1.4.1 Security Mode 0

A piconet with no security enabled is operating in Security Mode 0.

1.4.2 Security Mode 1

A piconet that restricts association based on Device ID alone is operating in Security Mode 1. No cryptogra-
phy is used: the PNC only allows a device to associate if its Device ID is in the PNC’s ACL.
5 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.2.1 Goal of Mode 1

Only authorized devices may join a secure piconet.

1.4.2.2 Security Services Provided in Mode 1

— Access control list, defined in 1.2.1 {xref}.

1.4.3 Security Mode 2

A piconet in Security Mode 2 uses public-key cryptography to verify the authenticity of a device found in its
ACL and to protect piconet data using encryption and integrity.

1.4.3.1 Goals of Mode 2

Only authorized devices may join a secure piconet.

Communication is restricted to authorized devices.

1.4.3.2 Security Services Provided in Mode 2

— Mutual authentication, defined in 1.2.2 {xref}
— Verifying authenticity of public keys, defined in 1.2.3
— Access control list, defined in 1.2.1
— Key establishment, defined in 1.2.4
— Key transport, defined in 1.2.5
— Beacon integrity protection, defined in 1.2.8
— Freshness protection, defined in 1.2.9
— Command integrity protection, defined in 1.2.10
— ACK integrity protection, defined in 1.2.11
— Data integrity protection, defined in 1.2.7
— Data encryption, defined in 1.2.6

1.4.4 Security Mode 3

A piconet in Security Mode 3 uses public-key cryptography to verify the authenticity of a device using a
public-key certificate and to protect piconet data using encryption and integrity.

1.4.4.1 Goals of Mode 3

Only authorized devices may join a secure piconet.

Communication is restricted to authorized devices.

1.4.4.2 Security Services Provided in Mode 3

— Mutual authentication, defined in 1.2.2 {xref}
— Verifying authenticity of public keys, defined in 1.2.3
— Access control list, defined in 1.2.1
— Key establishment, defined in 1.2.4
— Key transport, defined in 1.2.5
— Beacon integrity protection, defined in 1.2.8
— Freshness protection, defined in 1.2.9
— Command integrity protection, defined in 1.2.10
6 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
— ACK integrity protection, defined in 1.2.11
— Data integrity protection, defined in 1.2.7
— Data encryption, defined in 1.2.6

1.5 Security Suites

A security suite defines mechanisms to implement a particular set of security operations. A security sub-
suite, identified by a unique OID, specifies the exact selections of operations within a security suite. A secu-
rity suite in a particular sub-suite shall provide all security services listed above for that particular mode. The
mandatory security suite sub-suite and a list of the accepted optional security suites and sub-suites are spec-
ified in clause 11{xref}.

A security suite shall also specify each of the following:

1.5.1 OID

Each security suite shall have a globally unique OID associated with it that will never change. The OID shall
refer explicitly to a security suite defined for this standard. OIDs shall be built from the 802.15.3 arc, speci-
fied in sub-clause 11.2.1{xref}.

1.5.2 Data Formats

Each security suite shall specify the data elements that are not specified in the frame formats in clause 7. For
each data element, the number of bytes shall be specified that is used in the command, the expected value
(when appropriate) and a description of the meaning and nature of the data element.

1.5.3 Protocol Operations

For each protocol used by the security suite, the security suite shall provide a list of operations that are per-
formed by each participating DEV. These protocol operations will typically include cryptographic opera-
tions, data manipulation and determination of the appropriate action based on the result of the operations.

1.5.3.1 Cryptographic Implementations

For all cryptographic implementations in the security suite, the security suite specification shall provide a
complete and unambiguous description of the cryptographic operations performed. These descriptions may
be provided by reference to external documents.

1.5.4 Security Considerations

Since different security suites employ different security methods, the security suite specification should
include a security considerations section that justifies the security services claimed. This section should also
describe any deficiencies in the security of the security suite.

1.5.5 Additional Information

It may be desirable for each security suite to provide additional information to the implementers and users of
the security suite. This information may include efficiency statistics, methods for efficiently implementing
the protocols or data elements that should be stored in the PAN information base (PIB). For instance, if pub-
lic keys or symmetric keys need to be stored by the PNC or by individual DEVs, the security suite should
mention these requirements.
7 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.6 Protocols and State Machines

The protocols in this clause are defined for implementing a secure piconet. The device states described in
this clause specify the behavior for each DEV and for the PNC for performing the following security proto-
cols:

— Mutual authentication of DEV and security manager (SM)
— Key request
— Key distribution
— Beacon protection
— Data protection

Each of the protocols described in this section may be performed between the PNC and a normal DEV or
between two DEVs in a peer-to-peer relationship. If they are performed in the peer-to-peer setting, the initi-
ating DEV shall act in the role of DEV and the receiving DEV shall act in the role of security manager for
the duration of the security relationship.

The protocols in this clause are algorithm independent and may be used for any security suite that imple-
ments both authentication and payload protection.

1.7 Protocol Selection Criteria

The protocols in this document have been selected based on:

— Time to Market: The protocols make use of currently available technology.
— Selectable Components: The protocol framework must provide flexibility to allow different algo-

rithms to be selected for use in the standard.
— Flexibility: The protocols described in this document are designed to meet a large range of security

requirements. They should support the various security scenarios identified for 802.15.3 piconets.
— Market Suitability: The protocols in this document will be reviewed by 802.15.3 vendors to ensure

that they satisfy their requirements.

1.8 High-level Protocol Descriptions

1.8.1 Authentication and Key Establishment Protocol

At the initial stages of the piconet setup, a controller is selected from among the local devices to perform the
PNC and security manager roles. The security manager acts as the central security point for all devices to
obtain keying material for the piconet. The following diagram shows the authentication protocol between
the PNC and another device. In the peer-to-peer scenario, the diagram would be the same except that both
devices would receive the beacon transmission from the PNC. One device would act as the security manager
while the other would act as normal device, depending on which device initiates the protocol.
8 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 1—Authentication protocol overview

After the completion of mutual authentication, the security manager may use the shared keys to transmit the
payload protection keys for that security relationship. If the security manager is acting as the PNC, these
keys are used to provide confidentiality and integrity protection on all piconet data. If the security manager
is acting as a DEV, these keys are used to provide confidentiality and integrity for peer-to-peer communica-
tions.

1.8.2 Key Distribution Protocol

The security manager may need to update the payload protection keys periodically for security reasons. This
may be due to a change in the group membership or some other reason that is implementation specific.
When this occurs, the security manager may send the new key to each authorized device using the shared
secret key agreed upon in the authentication protocol. The PNC needs to store the symmetric keys shared
with each device in the piconet in order to distribute a new key, but it does not need to store the public keys
of these devices. Each device (other than the PNC) need only store the symmetric keys it shares with the
PNC and with any device with which it has a secure peer-to-peer relationship.

� Requests to join the piconet by sending data
that the security manager can use to verify
the device's authenticity.

Device Security Manager

� Verifies the authenticity of the security
manager's identifying data.

� Performs operations on the challenge.
� Generates a challenge for the security

manager.
� Combines the challenges to generate the

shared key.
� Sends the challenge along with

authentication information using the new
shared key.

� PNC Broadcasts the information necessary to
synchronize the piconet (no security included
in this message).

� Verifies the authenticity of the device's
identifying data and determines whether the
device should be allowed to join the piconet.

� Generates challenge for the device using the
device's public key.

� Sends challenge and data that the device can
use to verify the security manager's
authenticity.

� Performs operations on the challenge.
� Combines the challenges to generate the

shared key.
� Checks that the authentication information

verifies correctly.
This verifies the device's identity.

� Stores the new shared key.
� Sends back a response with authentication

information using the shared key.
� Checks that the authentication information

verifies correctly.
� Stores the new shared key.

This verifies the security manager's
identity.
9 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 2—Key distribution protocol overview

1.8.3 Key Request Protocol

When the security manager updates the piconet protection key, the device may not have received the new
key properly when it wants to start sending or receiving data. When this occurs, the device may request the
current key from the security manager.

Figure 3—Key request protocol overview

1.8.4 Beacon Protection Protocol

The beacon protection protocol provides integrity protection (and source authentication) on the beacon from
the PNC. This protocol is also used on all commands and acknowledgements that are protected. Each bea-
con, command and acknowledgement that is protected has a header that includes an identifier of the key that
is being used, the source and destination addresses, the frame data and a message authentication code using
the integrity key.

� Decrypts the seed and verifies that it is
authentic.

Device Security Manager

� Sends an integrity-protected
acknowledgement indicating that the seed
has been received.

Security manager selects a seed that is used to
generate the new payload protection keys.

� Encrypts the seed with integrity protection
using the keys it shares with the device.

� Sends the encrypted and integrity protected
key.

� Sends an integrity-protected request key
command using the shared integrity key
between the device and the security
manager.

Device Security Manager

� Decrypts the seed and verifies that it is
authentic.

� Checks that the message is authentic.

� Encrypts the seed with integrity protection
using the keys it shares with the device.

� Sends the encrypted and integrity protected
key.
10 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 4—Beacon protection protocol overview

1.8.5 Data Protection Protocol

Data in the piconet is protected by payload protection keys that provide both privacy and integrity (and
source authentication). Each data message that is protected has a header that includes an identifier of the key
that is being used, the source and destination addresses, the data encrypted with the encryption key and a
message authentication code using the integrity key. These keys are derived from the payload protection
seed that is generated by the security manager.

Figure 5—Data protection protocol overview

1.9 Notation

The security protocols defined in this clause were tailored for use in this standard. Each of the objects
defined in the protocols are either specified in clause 7 or by the security suite. The mapping of the objects in
this standard with the protocol notation is shown by the following table.

Table 1: Notation mapping

Protocol Notation Clause 7 Trans-
mission Name

Meaning

ID_D Device Address The 48-bit IEEE MAC address uniquely identifying the
device.

ID_SM Device Address The 48-bit IEEE MAC address uniquely identifying the secu-
rity manager.

� Protects the data with integrity protection
using the integrity key it shares with the
other device.

� Sends the integrity protected data.

Device Receiving Device

� Verifies that the data is authentic.

� Encrypts the data with integrity protection
using the keys it shares with the other
device.

� Sends the encrypted and integrity protected
data.

Device Receiving Device

� Decrypts the data and verifies that it is
authentic.
11 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
PKObj_Da
Public-key object
type, Public-key
object length and
Public-key object

The public key object belonging to the device that is transmit-
ted in the authentication request command specified in clause
7.4.1.1{xref}. This contains information to obtain the public
key of the device and may contain additional information such
as the issuer, issue data, expiry data, the identity of the key
owner and key usage.

Pub_Da Not used The device’s public key that is used in the challenge process.

Pr_Da Not used The device’s private key that is used in the challenge process.

PKObj_SMa Public-key object
type, Public-key
object length and
Public-key object

The public key object belonging to the security manager that is
transmitted in the challenge request command specified in
clause 7.4.1.3{xref}. This contains information to obtain the
public key of the device and may contain additional informa-
tion such as the issuer, issue data, expiry data, the identity of
the key owner and key usage.

Pub_SMa Not used The security manager’s public key that is used in the authenti-
cation process specified in clause 1.10.1.

Pr_SMa Not used The security manager’s private key that is used in the authenti-
cation process specified in clause 1.10.1.

CHAL1a Challenge type,
Challenge length
and Challenge

The challenge generated by the security manager that is trans-
mitted in the challenge request command specified in clause
7.4.1.3{xref}.

CHAL2a Challenge type,
Challenge length
and Challenge

The challenge generated by the device that is transmitted in the
challenge response command specified in clause
7.4.1.4{xref}.

OIDa OID length and
OID

The globally unique object identifier that is specified for the
security suite and sub-suite.

SSID_Da SSID The 8-octet random value chosen by the security manager to
uniquely identify the management keys used to communicate
securely with the device. This SSID is used in the security
header for all frames protected with the management keys and
is explicitly sent in the challenge request command specified
in clause 7.4.1.3{xref}.

SSID_Ga SSID The 8-octet random value chosen by the security manager to
uniquely identify the keys used to protect data payloads
between the members of the group. This SSID is used in the
security header for all frames protected with the payload pro-
tection keys and is explicitly sent in the request key response
command 7.4.1.6{xref}, distribute key request command
7.4.1.7{xref} and the distribute key response command
7.4.1.8{xref}.

Enc_Da Not used Symmetric management encryption key associated with a par-
ticular SSID_D, to be used for key encryption.

Int_Da Not used Symmetric management integrity key associated with a partic-
ular SSID_D, to be used for management integrity protection.

Table 1: Notation mapping
12 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Seed_Da Not used The shared secret seed value agreed on during the authentica-
tion protocol associated with a particular SSID_D used to gen-
erate the encryption key Enc_D and integrity key Int_D.

Seed_Ga

(SymE(Seed_G,
Enc_D))a

Not used
(Encrypted key
type, Encrypted
key length and
Encrypted key)

The random value associated with a particular SSID_G used to
generate the encryption key Enc_G and integrity key Int_G.
This seed is transmitted in encrypted form in the request key
response command 7.4.1.6{xref} and the distribute key
request command 7.4.1.7{xref}.

Enc_Ga Not used Symmetric encryption key associated with a particular
SSID_G, to be used for payload encryption.

Int_Ga Not used Symmetric management integrity key associated with a partic-
ular SSID_G, to be used for payload integrity protection and
group message integrity protection.

seq_num_SM Sequence Counter 4-octet integer in network byte order associated with a particu-
lar SSID_D, used to count commands sent by the security
manager using that key. The sequence number shall begin
counting with 0. This sequence number is used in all com-
mands protected by the management keys sent form the secu-
rity manager as specified in clause 7.2.3 {xref}.

seq_sum_D Sequence Counter 4-octet integer in network byte order associated with a particu-
lar SSID_D, used to count commands sent by the device using
that key. The sequence number shall begin counting with 0.
This sequence number is used in all commands protected by
the management keys sent form the device as specified in
clause 7.2.3 {xref}.

SymE(m, Enc)a

(SymE(data,
Enc_G))

Not used (IV and
Encrypted Data)

The result of symmetric encryption of the message m with the
key Enc. This operation is used for payload encryption in data
frames as defined in clause 7.2.4 {xref} and in the request key
response command 7.4.1.6{xref} and the distribute key
request command 7.4.1.7{xref}.

SymI(m, Int)a Not used The result of calculating a message authentication code on the
message m with the symmetric key Int. If m is “…”, the mes-
sage authentication code is computed over all preceding fields
in the frame.

H(m)a Not used The result of a cryptographic hash on the message m.

m||n Not used The concatenation of two messages m and n.

Key(m)a Not used The transformation of a message m into the form of a symmet-
ric key.

KeyPurposea Key purpose The numerical representation of the use for which the key will
be used. This is explicitly sent in the request key command
7.4.1.5{xref}, request key response command 7.4.1.6{xref},
distribute key request command 7.4.1.7{xref} and the distrib-
ute key response command 7.4.1.8{xref}.

TimeToken TimeToken A strictly increasing fresh value transmitted in each beacon
7.2.1{xref}. This is included in the security header of all
secure frames.

Table 1: Notation mapping
13 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.10 Protocol Details

The following protocol details include all cryptographic components and headers for the frames. The head-
ers should be interpreted as being headers in the MAC frames. In addition, each element should be inter-
preted as including type and length fields as specified in clause 7{xref}. The algorithm choices for each
operation in the protocols are determined by the selected security suites, which are specified in clause
11{xref}.

AReq MAC frame header
and Command type
and Length

The frame header of an authentication request command.

CReq MAC frame header
and Command type
and Length

The frame header of a challenge request command.

CRes MAC frame header
and Command type
and Length

The frame header of a challenge response command.

ARes MAC frame header
and Command type
and Length

The frame header of an authentication response command.

DKReq MAC frame header The frame header of a distribute key request command.

DKRes MAC frame header The frame header of a distribute key response command.

KRReq MAC frame header The frame header of a request key request command.

KRRes MAC frame header The frame header of a request key response command.

SDH MAC frame header The frame header of a secure data frame.

BH MAC frame header The frame header of a secure beacon (or secure ACK or secure
command)

BD Information Ele-
ments or Com-
mand Payload

The contents of a secure beacon as specified in clause
7.2.1{xref}or a secure command as specified in clause
7.2.3{xref}.

finished1a Challenge response
type, Challenge
response length
and Challenge
response

SymI(m, Int) where m is the entire set of data in order in the
preceding protocol up to the point of the message authentica-
tion code and Int is Int_D. This data is transmitted in the chal-
lenge response command specified in clause 7.4.1.4{xref}

finished2a Auth response
type, Auth
response length
and Auth response

SymI(m, Int) where m is the entire set of data in order in the
preceding protocol up to the point of the message authentica-
tion code and Int is Int_D. This data is transmitted in the
authentication response command specified in clause
7.4.1.2{xref}

aThis object is specified by the security suite and sub-suite.

Table 1: Notation mapping
14 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The states described refer to a single relationship, rather than an overall state for the device. Therefore it is
assumed that if both peer-to-peer relationships and piconet-wide relationships are used, devices may either
behave in a multi-threaded fashion or maintain the different states through information stored in the MAC
PIB.

1.10.1 Authentication and Key Establishment

This sub-clause specifies the authentication and key establishment protocol that is used for mutual device
authentication. In this protocol, the device and the security manager each authenticate each other, agree on a
secret (symmetric) key between the two of them and the device obtains the group payload protection keys.

Table 2—Setup for authentication and key establishment

Symbol Initial Owner

Device Security
Manager

PKObj_D � –

Pr_D � –

ID_D � –

Verification information for Pub_SM
and ID_SM

� –

PKObj_SM
– �

Pr_SM
– �

ID_SM
– �

Verification information for Pub_D
and ID_D

– �

OID
– �
15 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The cryptographic functionality required to implement this protocol is:

The following figure shows the authentication protocol.

Figure 6—Authentication Protocol

Table 3—Capabilities for authentication protocol

Functionality Required

Device Security
Manager

Public-key verification � �

Public-key challenge generation � �

Public-key challenge response � �

Symmetric message authentication
code

� �

� Device sends the following to the Security
Manager: AReq, ID_D, PKObj_D.

Device Security Manager

� Verifies PKObj_SM and obtains Pub_SM.
� Generates random challenge CHAL2 with

Pub_SM (and possibly other inputs).
� Performs operations on challenges to

obtain shared seed Seed_D.
� Generates Enc_D and Int_D using the

formulas:
Enc_D = Key(H(Seed_D|0x00))
Int_D = Key(H(Seed_D||0x01)

� Security Manager verifies PKObj_D and
obtains Pub_D.

� Selects a unique SSID_D.
� Generates random challenge CHAL1 with

Pub_D (and possibly other inputs)

� Performs operations on challenges to obtain
shared seed Seed_D.

� Generates Enc_D and Int_D using the
formulas:
Enc_D = Key(H(Seed_D||0x00))
Int_D = Key(H(Seed_D||0x01))

� Checks message authentication code using
Int_D.

� Generates message authentication code on
entire protocol up to the current heading
using Int_D.

� Sets seq_num_SM = 0;
Sets seq_num_D = 0.

� Checks message authentication code .
� Sets seq_num_SM = 0;

Sets seq_num_D = 0.

AReq, ID_D, PKObj_D

CReq, OID, SSID_D,
ID_SM, PKObj_SM,

CHAL1

� Generates message authentication code
on entire protocol up to this point using
Int_D.

CRes, CHAL2,
SymI(AReq||ID_D||PKObj_
D||CReq||OID||SSID_D||ID_
SM||PKObj_SM||CHAL1||C

Res||CHAL2, Int_D) =
finished1

ARes,
SymI(AReq||ID_D||PKObj_
D||CReq||OID||SSID_D||ID_
SM||PKObj_SM||CHAL1||C
Res||CHAL2||finished1||AR

es, Int_D) = finished2
16 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.10.1.1 Device States

This figure shows the states and state transitions that apply to the device during the authentication and key
exchange protocol.

Figure 7—Authentication state diagram - device perspective

Unauthenticated
State D0.0

Waiting for
Challenge
State D0.1

D0.2

Checking
Challenge
State D0.2

D
0.4

D
0.6

Waiting for
Authentication

Response
State D0.3

Checking
Authentication

Response
State D0.4

D
0.8

D0.3

D0.5

D0.7

Send
Authentication

Request

Timeout and Failure
Sent or Failure

Message Received

Challenge
Received

ID/Public-key
Rejected or Failed

Decryption and
Failure SentChallenge

Accepted and
Response Sent

Timeout and Failure Sent
or Failure Message

Received

Authentication
Failed and Failure

SentAuthentication
Response
Received

D0.9

Any State

D
0.1

Valid
Disassociation

Request Sent or
Received
17 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 7 shows the states and the state transitions for the device role in the authentication protocol. The fol-
lowing table describes the device states during the authentication protocol.

Table 4—Device authentication states

State Name Description Action

D0.0 Unauthenticated Default state for the device;
this is also the state
returned to if a failure
occurs during the authenti-
cation protocol or upon dis-
association.

Device ignores all security-related commands except
the following:
• disassociate
• PNC handover
• distribute info
The only state a device can transition to is the "Wait-
ing for Challenge" state.

D0.1 Waiting for Chal-
lenge

Device waits for challenge
from security manager.

Device ignores all security-related commands except
the following:
• authentication error
• challenge request
• disassociate
• PNC handover
• distribute info

D0.2 Checking Chal-
lenge

Device processes the chal-
lenge sent by security man-
ager.

Device verifies that the public key and ID hash to the
stored value and decrypts the challenge.
If both succeed, the device generates own challenge
and proof and sends a challenge response command to
security manager.
If either, or both, do not succeed, the device aborts the
authentication process and returns the appropriate
error message.
This is a transient and processing-only state wherein
the device ignores all commands.

D0.3 Waiting for
Authentication
Response

Device waits for an authen-
tication response from
security manager.

Device ignores all security-related commands except
the following:
• authentication error
• authentication response
• disassociate
• PNC handover
• distribute info

D0.4 Checking Authen-
tication Response

Device processes authenti-
cation response from secu-
rity manager.

Device verifies message authentication code calcu-
lated on the authentication protocol.
If this passes, the device enters secure mode.
If this does not pass, the device aborts the authentica-
tion process and returns the appropriate error message.
18 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.10.1.2 Device State Transitions

Figure 7 shows the states and the state transitions for the device role in the authentication protocol. This sec-
tion describes the processes and causes of the state transitions.

Table 5—Device authentication state transitions

State Transition Description

D0.1 Any State to Unau-
thenticated

At any time during the relationship, the device may choose to disassociate or
the security manager may send a disassociate message. If the device has the
current key for the relationship, the disassociate message shall be protected.
When the disassociation message is sent or received, the relationship key is
securely deleted and the device returns to the unauthenticated state.

D0.2 Unauthenticated to
Waiting for Chal-
lenge

When a device is in the unauthenticated state, it may decide to attempt to
authenticate in a piconet or with a peer. For instance, this can occur after the
device has associated or directly after a PNC handover.
The device generates and sends an authentication request to the current secu-
rity manager and starts a counter to determine how long it will wait for the
challenge command. When this message has been sent and the counter
started, the device performs this transition to the waiting for challenge state.

D0.3 Waiting for Chal-
lenge to Unauthen-
ticated

When a device is in the waiting for challenge state and receives an authenti-
cation error message or has not received a challenge before the timeout, it
sends an appropriate authentication error message (if applicable) and per-
forms this transition to the unauthenticated state.
Note that the authentication error is not protected by any key.

D0.4 Waiting for Chal-
lenge to Checking
Challenge

When a device is in the waiting for challenge state and receives a challenge
from the security manager, it determines if the message is formatted cor-
rectly and comes from the correct device. If the challenge is formatted cor-
rectly, it performs this transition to the checking challenge state.
Note that the challenge request is not protected by any key.

D0.5 Checking Chal-
lenge to Unauthen-
ticated

When a device is in the checking challenge state and determines that the
received challenge should be rejected, it sends an appropriate authentication
error message and performs this transition to the unauthenticated state.

D0.6 Checking Chal-
lenge to Waiting
for Authentication

When a device is in the checking challenge state and determines that the
challenge passes the checks, it generates and sends a challenge response for
the security manager. In addition, it starts a counter to determine how long it
will wait for the authentication response command and performs this transi-
tion to the waiting for authentication state.

D0.7 Waiting for
Authentication to
Unauthenticated

When a device is in the waiting for authentication state and receives an
authentication error or has not received an authentication response before the
timeout, it sends an appropriate authentication error message (if applicable)
and performs this transition to the unauthenticated state.
Note that the authentication error is not protected by any key.
19 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.10.1.3 Security Manager States

The security manager maintains a separate authentication state for each of the devices it is willing to authen-
ticate with. While the security manager is authenticating a specific device, it may perform other operations
unrelated to the authentication protocol. In particular, the PNC may authenticate multiple devices in separate
threads at the same time. Figure 8 shows the states and the state transitions for the security manager role in
the authentication protocol. The following table describes the security manager states during the authentica-
tion protocol. The intermediate steps are marked as a critical section to indicate that the PNC may need to
perform other functions while waiting for the completion of an authentication protocol.

D0.8 Waiting for
Authentication to
Checking Authen-
tication Response

When a device is in the waiting for authentication state and receives an
authentication response from the security manager, it determines if the mes-
sage is formatted correctly and comes from the correct device. If the chal-
lenge is formatted correctly, it performs this transition to the checking
authentication response state.
Note that the authentication response is not protected by any key.

D0.9 Checking Authen-
tication Response
to Unauthenticated

When a device is in the checking authentication response state and deter-
mines that the authentication response should be rejected, it sends an appro-
priate authentication error message and performs this transition to the
unauthenticated state.

Table 5—Device authentication state transitions

Startup Mode
State SM0.0 or
Secure Mode
State SM1.1

Checking
Authentication

Request
State SM0.1

SM0.1
Waiting for
Challenge
Response

State SM0.2

S
M

0.3

Checking
Challenge
Response

State SM0.3

S
M

0.5

SM0.7

SM0.2

SM0.4

SM0.6

Authentication
Request Received

ID/Public Key
Rejected

Authentication
Request Accepted

and Challenge Sent

Timeout or Failure
Message ReceivedChallenge

Response
Received

Decryption or
Authentication

Failed and Failure
Response Sent

Authentication
Accepted and

Response Sent

Critical
Section
20 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 8—Authentication state diagram – security manager perspective

Figure 8 shows the states and the state transitions for the security manager role in the authentication proto-
col. The following table describes the security manager states during the authentication protocol.

Table 6—Security manager authentication states

State Name Description Action

SM0.0 Startup Mode Initial state for the security manager when it
starts any group.
The security manager has not yet sent keys
to any other device in the group.
• If the relationship is peer-to-peer, this state
shall be transitioned out of immediately fol-
lowing successful authentication.
• If the security manager is acting as the
first PNC of the secure piconet, the security
manager can choose to authenticate several
devices before distributing the group keys
or it may choose to transition out of this
state after the first successful authentica-
tion.
• If the security manager has just completed
PNC handover, the device should attempt to
authenticate each device on the list of (pre-
viously) authenticated devices before tran-
sitioning out of this state in order to prevent
interruption of service.

Security manager ignores all security-
related commands from the device
except the following:
• disassociate
• authentication request
• distribute info commands
The only state, not in a critical sec-
tion, the security manager can transi-
tion to is the "Pending Key" state.

SM0.1 Checking Authen-
tication Request

A processing-only state in which the device
is processing an authentication request.
This state is in the critical section and
should be considered independent of any
non-critical states.

Security manager ignores all com-
mands from the device.
Security manager checks that the pub-
lic key and ID hash to the correct
value.
• If so, the security manager shall
send a challenge request command to
the device.
• If not, the security manager shall
return the appropriate authentication
error message.
21 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.10.1.4 Security Manager State Transitions

Figure 8 shows the states and the state transitions for the security manager role in the authentication proto-
col. The following table describes the security manager states during the authentication protocol. Table 6
shows the security manager states during the authentication and key exchange protocol. This section
describes the processes and causes of the state transitions.

SM0.2 Waiting for Chal-
lenge Response

Security manager has sent a challenge to the
device and is waiting for a challenge
response command.
This state is in the critical section and
should be considered independent of any
non-critical states.

Security manager ignores all security-
related commands from the device
except the following:
• challenge response
• authentication error
• authentication response
• disassociate
• distribute info

SM0.3 Checking Chal-
lenge Response

A processing-only state in which the secu-
rity manager is processing a challenge
response command.

Security manager decrypts the chal-
lenge and checks the device authenti-
cation.
• If these checks succeed, the security
manager sends an authentication
response to the device.
• If not, the security manager returns
the appropriate error message and
aborts the authentication protocol.
Security manager ignores all com-
mands from the device.

Table 7—Security manager authentication state transitions

State Transition Description

SM0.1 Startup Mode or
Secure Mode to
Checking Authen-
tication Request

When a security manager is in the startup mode or secure mode state, it may
receive an authentication request from a device.
If this request is properly formatted and the security manager is willing to
authenticate devices, it accepts the command and performs this transition to
the checking authentication request state.

SM0.2 Checking Authen-
tication Request to
Startup Mode or
Secure Mode

When a security manager is in the checking authentication request state and
determines that the authentication request should be rejected, it sends an
authentication failure message to the device and performs this transition to
return the device to the state it entered the protocol from.
If the security manager is performing multi-threading, then this transition
may be thought of simply as aborting the authentication thread with this
device.

SM0.3 Checking Authen-
tication Request to
Waiting for Chal-
lenge Response

When a security manager is in the checking authentication request state and
determines that the device is authorized to attempt to authenticate to the
piconet, it sends a challenge request to the device and starts a counter to
determine how long it will wait for the challenge response command.
When this message has been sent and the counter started, the device per-
forms this transition to the waiting for challenge response state.

Table 6—Security manager authentication states
22 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.10.1.5 Combined Authentication States

The following figure shows the states of both entities during the authentication protocol and the transitions
between states.

SM0.4 Waiting for Chal-
lenge Response to
Startup Mode or
Secure Mode

When a security manager is in the waiting for challenge response state and
receives an authentication error message or has not received a challenge
response before the timeout, it sends an authentication error message (if
applicable) and performs this transition to the state it entered the protocol
from.
Note that the authentication error message is not protected by any key.

SM0.5 Waiting for Chal-
lenge Response to
Checking Chal-
lenge Response

When a security manager is in the waiting for challenge response state and
receives a properly formatted challenge response command, the security
manager accepts the command for processing and performs this transition to
the checking challenge response state.

SM0.6 Checking Chal-
lenge Response to
Startup Mode or
Secure Mode (1)

When a security manager is in the checking challenge response state and
determines that the challenge response should be rejected, it sends an
authentication failure message to the device and performs this transition to
return the device to the state it entered the protocol from.
If the security manager is performing multi-threading, then this transition
may be thought of simply as aborting the authentication thread with this
device.

SM0.7 Checking Chal-
lenge Response to
Startup Mode or
Secure Mode (2)

When a security manager is in the checking challenge response state and
determines that the challenge response is valid, it sends an authentication
response command, stores the agreed on key in its table and performs this
transition to the state it entered the protocol from.

Table 7—Security manager authentication state transitions
23 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 9—Successful authentication protocol run

1.10.2 Beacon Protection

In a secure WPAN, the security manager shall use the current group data integrity key to provide integrity
protection on the beacon. In addition, each beacon shall include a strictly increasing time token counter that
is used by the devices to guarantee freshness. This time token is used in all of the following protocols except

Unauthenticated
State D0.0

Waiting for
Challenge
State D0.1

Checking
Challenge
State D0.2

Waiting for
Authentication

Response
State D0.3

Checking
Authentication

Response
State D0.4

Authentication
Request Command

Challenge Request
Command

Challenge
Accepted and

Response Sent

Authentication
Response
Received

Checking
Authentication

Request
State SM0.1

Waiting for
Challenge
Response

State SM0.2

Checking
Challenge
Response

State SM0.3

Authentication
Request Accepted
and Challenge Sent

Startup Mode
State SM0.0 or
Secure Mode
State SM1.1

Challenge Response
Command

DEVICE SECURITY MANAGER

Authentication
Request Sent

Challenge
Received

Challenge
Response
Received

Authentication
Request Accepted
and Challenge Sent

Startup Mode
State SM0.0 or
Secure Mode
State SM1.1

Authentication
Accepted and

Response Sent

Authentication Response
Command

Secure Group
Membership
State D1.0

Authentication
Response
Accepted
24 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
for the authentication and key establishment protocol. The beacon protection protocol described here is also
used for command protection and ACK protection.

The cryptographic functionality required to implement this protocol is:

The security manager should initiate this protocol each time it transmits a beacon.

Figure 10—Beacon Protection Protocol

Table 8—Setup for beacon protection

Symbol Initial Owner

Device Security
Manager

Int_G � �

SSID_G � �

TimeToken
– �

Table 9—Capabilities for beacon protection

Functionality Required

Device Security
Manager

Public-key verification
– –

Public-key encryption
– –

Public-key decryption
– –

Symmetric message authentication
code

� �

� Checks time token.
� Checks message authentication code using

Int_G.
� Sets current time token to received value.

Device Security Manager

� Generates or retrieves the current integrity
key Int_G.

� Generates message authentication code on
beacon using Int_G.

BH, SSID_G,
TimeToken, BD

SymI(BH||SSID_G||
TimeToken||BD,

Int_D)
25 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.10.3 Distribute Key Protocol

The cryptographic functionality required to implement this protocol is:

The security manager should initiate this protocol with each device with their respective shared keys when-
ever the key is updated.

Table 10—Setup for key distribution

Symbol Initial Owner

Device Security
Manager

Enc_D � �

Int_D � �

SSID_D � �

TimeToken � �

seq_num_D � �

seq_num_SM � �

seed_G (for current key)
– �

Table 11—Capabilities for key distribution

Functionality Required

Device Security
Manager

Symmetric decryption � –

Symmetric encryption
– �

Symmetric message authentication
code

� �
26 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 11—Distribute Key Protocol

Device Security Manager

� Checks time token.
� Decrypts seed_G using Enc_D.
� Checks message authentication code

using Int_D.
� Checks that received sec_num_SM is

greater than stored sec_num_SM and
replaces seq_num_SM with received
value.

� Optionally computes Enc_G and Int_G
using the formulas:
Enc_G = Key(H(seed_G||0))
Int_G = Key(H(seed_G||1))

� Increments seq_num_D.
� Generates a message authentication code

on the response using Int_D .

� Generates or retrieves the new seed_G.
� Selects a device that is authenticated.
� Increments seq_num_SM.
� Encrypts group seed using Enc_D.
� Generates message authentication code on

message using Int_D.

� Checks time token.
� Checks that seq_num_D is greater than

stored seq_num_D and replaces
seq_num_D with received value.

� Checks the message authentication code
on the message.

DKReq, SSID_D,
TimeToken,

seq_num_SM,
KeyPurpose, SSID_G,

SymE(seed_G, Enc_D),
SymI(DKReq||SSID_D||
TimeToken||KeyPurpos
e||seq_num_SM||SSID_

G|| SymE(seed_G,
Enc_D),
Int_D)

DKRes, SSID_D,
TimeToken, seq_num_D,

KeyPurpose, SSID_G,
SymI(DKRes||SSID_D||Tim

eToken||KeyPurpose||
seq_num_D||SSID_G,

Int_D)
27 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.10.4 Key Request Protocol

The cryptographic functionality required to implement this protocol is:

The device should initiate this protocol with the security manager if it is already authenticated, but does not
have the current payload protection key.

Table 12—Setup for Key Request

Symbol Initial Owner

Device Security
Manager

Enc_D � �

Int_D � �

SSID_D � �

TimeToken � �

seq_num_D � �

seq_num_SM � �

seed_G (for current key)
– �

Table 13—Capabilities for Key Request

Functionality Required

Device Security
Manager

Symmetric decryption � –

Symmetric encryption
– �

Symmetric message authentication
code

� �
28 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 12—Key Request Protocol
1.10.4.1 Device States

The following figure shows the states and state transitions that apply to the device during the distribute key
and key request protocols.

Device Security Manager

� Checks the time token.
� Checks the message authentication code

using Int_D.
� Checks that seq_num_SM is greater than

stored seq_num_SM and replaces
seq_num_SM with new value.

� Decrypts seed_G using Enc_D.
� Optionally computes Enc_G and Int_G

using the formulas:
Enc_G = Key(H(seed_G||0))
Int_G = Key(H(seed_G||1))

� Checks the time token.
� Checks the message authentication code

using Int_D.
� Checks that seq_num_D is greater than

stored seq_num_D and replaces
seq_num_D with new value.

� Increments seq_num1.
� Retrieves the seed_G.
� Generates encrypted group seed.
� SymE(seed_G, Enc_D).
� Generates message authentication code on

response using Int_D.

KRReq, SSID_D,
TimeToken,
seq_num_D,
KeyPurpose,

SymI(KRReq||SSID_D||
TimeToken||seq_num_
D||KeyPurpose, Int_D)

KRRes, SSID_D,
TimeToken, seq_num_SM,

KeyPurpose, SSID_G,
SymE(seed_G, Enc_D),

SymI(KRRes||SSID_D||Tim
eToken||seq_num_SM||Key
Purpose||SSID_G||SymE(s

eed_G, Enc_D), Int_D

� Increments seq_num_D.
� Generates message authentication code

on request using Int_D.
29 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 13—Key management state diagram – device perspective

Figure 13 shows the states and the state transitions for the device role for key management. The following
table describes the key management device states.

Table 14—Device key management states

State Name Description Action

D1.0 Secure Group
Membership

State in which the device is authenti-
cated and may actively participate in the
secure piconet.

Device may accept secure data communi-
cations, secure disassociate commands,
distribute info commands, PNC handover
commands and distribute key requests.

D1.1 Waiting for Key
Response

Device is waiting to receive a key and is
unable to verify the validity of the bea-
con.

Device ignores all commands except the
following:
• distribute key
• distribute info commands
• key response
• disassociate

D2.0 Waiting for Device
Info

Device has been selected as the next
PNC and is waiting to receive informa-
tion from the old PNC about the authen-
ticated devices in the piconet before the
transition to PNC.

Device ignores all commands except a
secure device information response com-
mand.

Unuthenticated
State D0.0

Checking
Authentication

Response
State D0.5

D1.
1

D1.3

Waiting for Key
Response
State D1.1

D
1.

4

D1.2

Authentication
Response
Accepted

Disassociate Command Sent
or Received or New PNC

D1.6

Unknown SSID in
Beacon Received
and Key Request

Sent
Disassociate

Command Sent or
Received

Valid Key Update
Received and

Acknowledgement
Sent

D1.5
Valid Key

Response or Valid
Beacon Received

or Timeout

Valid Key Update
Received and

Acknowledgement
Sent

D1.7

Secure Group
Membership
State D1.0

D2.1

Waiting for Device
Info

State D2.0

PNC Handover Command
Received and Device Info

Request Sent

D2.2
Startup Mode
State SM0.0Timeout or Device

Info Response
Received
30 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.10.4.2 Device State Transitions

Figure 13 shows the states and the state transitions for the device role for key management functions.
Table 14 shows the key management related device states. This section describes the processes and causes of
the state transitions.

Table 15—Device key management state transitions

State Transition Description

D1.1 Checking Authen-
tication Response
to Secure Group
Membership

When a device is in the checking authentication response state and deter-
mines that the authentication response should be accepted, it sends an
authentication acknowledgement to the security manager and performs this
transition to the secure group membership state.

D1.2 Secure Group
Membership to
Unauthenticated

When a device is in the secure group membership state and receives a disas-
sociate command from the PNC or the DME or receives a new PNC com-
mand, the device securely deletes the shared keys with the security manager
and performs this transition to the unauthenticated state.

D1.3 Secure Group
Membership to
Waiting for Key
Response

When a device is in the secure group membership state and receives a bea-
con with a security session ID that is unfamiliar to it, it sends a key request
command to the security manager, starts a counter to determine how long it
will wait for the key response command and performs this transition to the
waiting for key response state.

D1.4 Waiting for Key
Response to Unau-
thenticated

When a device is in the waiting for key response state and receives a disasso-
ciate command from the security manager or the DME, the device sends the
disassociate command (if applicable), securely deletes its shared keys with
the security manager and performs this transition to the unauthenticated
state.

D1.5 Waiting for Key
Response to
Secure Group
Membership (1)

When a device is in the waiting for key response state and times out, receives
a valid key response command or receives a beacon with a recognizable
security session ID, the device updates its current key (if applicable) and per-
forms this transition to the secure group membership state.

D1.6 Waiting for Key
Response to
Secure Group
Membership (2)

When a device is in the waiting for key response state and receives a valid
distribute key command from the security manager, the device updates its
current key and performs this transition to the secure group membership
state.

D1.7 Secure Group
Membership to
Secure Group
Membership

When a device is in the secure group membership state and receives a valid
distribute key command, the device shall update the key, send a distribute
key response command and remain in the secure group membership state.
31 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.10.4.3 Security Manager States

The following figure shows the states and state transitions that apply to the security manager during the dis-
tribute key and key request protocols.

Figure 14—Key management state diagram – security manager perspective

D2.1 Secure Group
Membership to
Waiting for Device
Info

When a device that is an alternate PNC is in secure group membership mode
and receives a secure PNC handover command, it sends a device information
request command for the whole piconet to the PNC (security manager), sets
the timeout to be the appropriate value and performs this transition to the
waiting for device info state.

D2.2 Waiting for Device
Info to Startup
Mode

When a device is in the waiting for device info state and receives a device
information response command or times out, the device shall update its
device information table (if applicable) and performs this transition to the
startup mode, which is a security manager state.
At this point, the device takes on the role of security manager and PNC.

Table 15—Device key management state transitions

Secure Mode
State SM1.1

SM1.2Pending Key
State SM1.0

Valid Key Request
Received and Key

Response Sent

SM1.3

Secure Mode
State SM1.1

Key Updates Sent
and Key Activated

SM1.4

Valid Disassociation
Sent or Received,

Authentication
Completed or Key

Expired

Startup Mode
State SM0.0

S
M

1.
1

Startup Mode
Completed

S
M

2.1

SM2.3
Unauthenticated

State D0.0

PNC Handover
Initiated

Timeout

Device Information
Request Received

and Device
Information

Response Sent

SM2.2

PNC Handover
Pending

State SM2.0
32 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 14 shows the states and the state transitions for the security manager role for key management. The
following table describes the key management security manager states during.

1.10.4.4 Security Manager State Transitions

Table 16 shows the security manager states relating to key management and PNC handover. This section
describes the processes and causes of the state transitions.

Table 16—Security manager key management state diagrams

State Name Description Action

SM1.0 Pending Key Security manager generates new group keys
and sends distribute key commands to each
of the authenticated devices in the piconet.
When all of the distribute key commands
have been sent (which should occur very rap-
idly), the security manager will transition to
the secure mode state.

Security manager shall accept all
valid commands.

SM1.1 Secure Mode Default state for the security manager in a
secure piconet.

Security manager shall accept all
valid commands.

SM2.0 PNC Handover
Pending

PNC has already sent a PNC handover com-
mand and is waiting for the timeout to com-
plete the PNC handover.
After the timeout, the security manager will
transition to the unauthenticated state, which
is a device state.

Security manager shall only

accept device information

request commands from the

next PNC.

Table 17—Security manager key management state transitions

State Transition Description

SM1.1 Startup Mode to
Pending Key (1)

When a security manager is in startup mode and completes all of the authen-
tication protocols for the startup process, the security manager performs this
transition to the pending key state.

SM1.2 Pending Key to
Secure Mode

When a security manager is in pending key state, has generated a new group
key for the security relationship and has sent distribute key commands to
each of the authenticated devices in the group, the security manager shall
change the beacon to include the security session key of the new key (if it is
the PNC) and perform this transition to the secure mode state.

SM1.3 Secure Mode to
Pending Key

When a security manager is in secure mode and a device is disassociated, a
new device is authenticated or upon instruction by the DME, the security
manager shall prepare to update the key and perform this transition to the
pending key state.

SM1.4 Secure Mode to
Secure Mode

When the security manager is in secure mode and receives a valid key
request command from an authenticated device, the security manager shall
send a key response command to the device and remain in the secure mode
state.
33 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.10.4.5 Combined Key Request States

The following figure shows the states of both entities during the key request protocol and the transitions
between states.

Figure 15—Successful key request protocol run

SM2.1 Secure Mode to
PNC Handover
Pending

When the PNC is in secure mode and receives a command from the DME to
perform PNC handover, the PNC sends a PNC handover command to an
appropriate device and performs this transition to the PNC handover pending
state.

SM2.2 PNC Handover
Pending to PNC
Handover Pending

When the PNC is in PNC handover pending mode and receives a valid
device information request from the next PNC, the security manager shall
send a device information response and remain in the PNC handover pend-
ing state.

SM2.3 PNC Handover
Pending to Unau-
thenticated

When the PNC is in PNC handover pending mode and the specified time for
PNC handover completion has occurred, the PNC ceases sending beacons
and performs the transition to the unauthenticated state, which is a device
state.

Table 17—Security manager key management state transitions

Waiting for Key
Response
State D2.0

Secure Group
Membership
State D1.0

Key Response
Command Secure Mode

State SM1.1

Secure Mode
State SM1.1

SECURITY MANAGER

Key Response
Accepted

DEVICE

Key Request
Accepted (No State

Change)

Secure Group
Membership
State D1.0

Unknown SSID
in Beacon

Key Request
Command
34 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.10.4.6 Combined Key Distribution States

The following figure shows the states of both entities during the key distribution protocol and the transitions
between states.

Figure 16—Successful key distribution protocol run
1.10.4.7 Combined PNC Handover States

The following figure shows the states of both entities during the PNC handover protocol and the transitions
between states. Other devices transition to the unauthenticated state after the device ID in the beacon is mod-
ified to indicate the new PNC.

SecureGroup
Membership
StateD1.0

SecureGroup
Membership
StateD1.0

KeyUpdate
Command KeyPending

StateSM1.0

SecureMode
StateSM1.1

StartupMode
Completed

SecureMode
StateSM1.1

KeyUpdate
Acknowledgement

SECURITYMANAGER

KeyUpdate
Accepted (No
StateChange)

KeyActivated

DEVICE

StartupMode
StateSM0.0

KeyChange
Pending
35 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 17—Successful PNC handover

Secure Group
Membership
State D1.0

Waiting for Device
Information
Response
State D3.0

Device Information
Request Command PNC Handover

Pending
State SM2.0

Secure Mode
State SM1.1

SECURITY MANAGER
(CURRENT PNC)

Device
Information

Request Sent

DEVICE (NEXT PNC)

PNC Handover
Initiated

Secure Group
Membership
State D1.0

Prepare Device
Information

Request (No
State Change)

PNC Handover
Command

PNC Handover
Pending

State SM2.0

Device Information
Request Accepted
(No State Change)

Device Information
Response

Device
Information
Received

Startup Mode
State SM0.0

Timeout

Unauthenticated
State D0.0
36 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.10.5 Data Protection Protocol

The cryptographic functionality required to implement this protocol is:

The sending device may be acting as a normal device or a security manager for the particular key. In either
case, the key is mutually shared between all members of the group.

Table 18—Setup for data protection protocol

Symbol Initial Owner

Sending
Device

Receiving
Device

data � –

seed_G
- OR -
Enc_G AND
Int_G, SSID_G, TimeToken

� �

Table 19—Capabilities for data protection protocol

Functionality Required

Sending
Device

Receiving
Device

Symmetric decryption
– �

Symmetric encryption � –

Symmetric message authentication
code

� �
37 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 18—Data protection protocol
1.10.5.1 Device States

Figure 19 shows the states and state transitions that apply to the device when it receives secure data packets.

Figure 19—Secure data reception state diagram – device perspective

The following table describes the device states when receiving secure data frames.

Table 20—Device secure data reception states

State Name Description Action

DR0.0 Checking Message A processing-only state in which the device
processes the data message to determine what
to do with it.
The device checks that a valid time token is in
the data and that the MAC verifies with a
valid key.
• If any of these checks fail, the data is dis-
carded and the device returns to the previous
state.
• If all of the checks pass, the data is accepted
as secure data and the device returns to the
previous state.

Device rejects all commands.

Device Security Manager

� Retrieve or calculate Enc_G and Int_G as:
Enc_G = Key(H(seed_G||0))
Int_G = Key(H(seed_G||1))

� Checks the time token.
� Decrypt data using Enc_G.
� Check message authentication code using

Int_G.

SDH, SSID_G,
TimeToken,

SymE(data, Enc_G),
SymI(SDH||SSID_G||

TimeToken||SymE(data
, Enc_G), Int_G)

� Retrieve or calculate Enc_G and Int_G as:
Enc_G = Key(H(seed_G||0))
Int_G = Key(H(seed_G||1))

� Encrypts data using Enc_G.
� Computes message authentication code

on message using Int_G.

Any State
Checking
Message

State DR0.0 DR0.2

DR0.3

DR0.1

Secure Data
Message Received

Unknown or Invalid Key or
Failed Integrity Check and

Data Rejected

Integrity Check
Successful and Data

Accepted
38 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.10.5.2 Device State Transitions

Figure 19 shows the device states and transitions relating to secure data reception. The following table
describes the device state transitions while receiving secure data frames.

1.10.5.3 Security Manager States

Secure data reception state diagram – security manager perspective shows the states and state transitions that
apply to the security manager when it receives secure data packets:

Figure 20—Secure data reception state diagram – security manager perspective

Figure 20 shows the states and the state transitions for the security manager role while receiving secure data
frames. The following table describes the security manager states while receiving secure data frames.

Table 21—Device secure data reception state transitions

State Transition Description

DR0.1 Any State to
Checking Message

At any time while a device is associated with a security manager and pos-
sesses payload protection keys, the device may receive a secure data mes-
sage.
If the message is properly formatted and contains a valid time token and a
known key, the device begins processing of the data and performs the transi-
tion to the checking message state.

DR0.2 Checking Message
to Any State (1)

When a device in the checking message state determines that the message
authentication code on the data is not valid, the data is rejected by the device
and the device transitions back to the previous state.

DR0.3 Checking Message
to Any State (2)

When a device in the checking message state determines that the message
authentication code on the data is valid, the data is decrypted and accepted
by the device and the device transitions back to the previous state.

Any State
Checking
Message

State SR0.0

SR0.3

SR0.2

SR0.1

Secure Data
Message Received

Invalid Key or Failed Integrity
Check and Data Rejected

Integrity Check
Successful.

Accept Data and
Return to Previous

State
39 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.10.5.4 Security Manager State Transitions

Figure 20 shows the security manager states and transitions relating to secure data reception. This section
describes the processes and causes of the state transitions.

2. Security Suite Specifications

This clause specifies the security suites that may be used when security is implemented in the piconet. A
security suite defines the algorithms and operations that shall be performed when that security suite is
selected by the security manager in a security relationship. Within a piconet, the PNC shall choose a security
suite that shall be used by all devices for authentication and payload protection for the piconet. Devices that
engage in peer-to-peer security relationships may use a different security suite than that being used for pico-
net protection.

Table 22—Security manager secure data reception states

State Name Description Action

SR0.0 Checking Message A processing-only state in which the security
manager processes the data message to deter-
mine what to do with it.
The device checks that the correct time token
is in the data and that the MAC verifies with
the current key.
• If any of these checks fail, the data is dis-
carded and the security manager returns to the
previous state.
• If all of the checks pass, the data is accepted
as secure data and the device returns to the
previous state.

Security manager rejects all com-
mands.

Table 23—Security manager secure data reception state transitions

State Transition Description

SR0.1 Any State to
Checking Message

At any time when there are active payload protection keys, the security man-
ager may receive a secure data message.
If the message is properly formatted and contains the correct time token and
the current key, the security manager begins processing of the data and per-
forms the transition to the checking message state.

SR0.2 Checking Message
to Any State (1)

When the security manager is in the checking message state and determines
that the message authentication code on the data is not valid, the data is
rejected by the security manager and the security manager transitions back to
the previous state.

SR0.3 Checking Message
to Any State (2)

When a security manager in the checking message state determines that the
message authentication code on the data is valid, the data is decrypted and
accepted by the security manager and the security manager transitions back
to the previous state.
40 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.1 Modes for security suites

When a security suite is selected, devices may perform secure operations in one of two modes: mode 2 or
mode 3. These modes are defined in sub-clause 9.4{xref}. For any given mode, there may be sub-suites
defined that complete the specification of the security operations for the authentication protocol. For exam-
ple, a security suite in Mode 3 may support different certificate formats. The remaining processes are the
same regardless of the mode or sub-suite that the devices are operating in. Security suites are not defined for
modes 0 and 1.

2.1.1 Determining the suite and mode

The security manager in any security relationship selects an OID that corresponds to the security suite, mode
and sub-suite that it will use. In the associate response command or in a subsequent probe command, the
security manager may send the desired OID for the security suite, mode and sub-suite to a device to assist
that device in selecting a public key for the authentication process. If the device sends a PublicKeyObject in
an authentication request that does not correspond to the OID selected by the security manager, the security
manager shall reject the authentication request and return a failed authentication response command indicat-
ing that the public key was not accepted. If the PublicKeyObject is of the correct form, the security manager
explicitly specifies the OID for the security relationship in the challenge response command.

2.1.2 Public-key Verification in Mode 2

In Mode 2, a transmitted PublicKeyObject shall be a raw public key, as defined by the security suite. While
in this mode, the DME is responsible for determining if the key is to be trusted and if subsequent authentica-
tion requests are to proceed. The DME indicates acceptance of a public key by inserting a hash of the Device
ID and public key into the MAC PIB. When a DEV receives an MLME-Authenticate.Request, it proceeds
only if the MAC PIB indicates the DME has accepted the Device ID and public key. The method used by the
MLME to verify the validity of a public key and device address are specified by the security suite. The
mechanism that the DME uses to determine the authorization rights of the devices is out of scope.

2.1.3 Public-key Verification in Mode 3

In Mode 3, a transmitted PublicKeyObject shall be a public-key certificate, as defined by the security suite,
mode, and sub-suite. The public-key certificate contains information that binds the public key to the desired
identity using the public key of a certificate authority. For any given security suite there may be more than
one type of certificate that can be used in mode 3. The certificate type is uniquely identified by selection of a
sub-suite. For each sub-suite, an OID is selected to define the sub-suite and the security suite shall define the
operations that shall be performed on the certificate within the MLME.

2.2 Security suite selections

2.2.1 OID selections

This clause specifies a list of approved security suites that may be used by compliant implementations. Each
security suite is identified by a globally unique OID. All of the OIDs in this document are built off of the fol-
lowing arc:

id-802-15-3-security-suites OBJECT IDENTIFIER ::= {
iso(1) std(0) iso8802(8802) ieee802dot15(15)
ieee802dot15dot3 (3) securitysuites(1)}
41 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
[[The following 2 tables represent what the tables would look like if the ECIES security suite text as proposed in this
document is selected. If a different security suite is selected, these tables should be changed to reflect the new security
suite.]]

The following table specifies the OID for each of the security suites specified in this clause

The following table specifies the OID for each sub-suite defined for the security suites.

The value of the OID field for any command is the DER encoding of the OID.

2.2.2 Mode 2 mandatory to implement

[[The cipher suite name in this paragraph reflects the choice of ECIES Raw 1 as the mandatory to implement for mode
2.]]

In order to ensure that all compliant devices are able to interoperate when using security, all devices shall
implement the ECIES 256-prime-1 security suite with the ECIES Raw 1 sub-suite. The security suite and
mode are defined in clause 2.3. All other defined security suites and their respective sub-suite definitions
may be implemented by a compliant device.

Table 24—Security suites

Security Suite Name OID Name OID Number DER Encoding

ECIES 256-prime-1 ecies-sec-suite-1 id-802-15-3-security-suites 1 0x060728C4620F030101

NTRUEncrypt 251-1 ntruencrypt-sec-suite-1 id-802-15-3-security-suites 3 0x060728C4620F030102

Table 25—OIDs for sub-suites

Sub-suite Name OID Name OID Number DER Encoding

ECIES Raw 1 ecies-raw-1 ecies-sec-suite-1 1 0x060828C4620F03010101

ECIES X509 1 ecies-x509-1 ecies-sec-suite-1 2 0x060828C4620F03010102

ECIES Implicit 1 ecies-implicit-1 ecies-sec-suite-1 3 0x060828C4620F03010103

NTRUEncrypt Raw 1 ntruencrypt-raw-1 ntruencrypt-sec-suite-1 1 0x060828C4620F03010201
42 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.2.3 Security services

All of the currently defined sub-suites for the security suites provide the full range of security functionality
defined in sub-clause 9.2{xref}. The following table summarizes the security services provided by these
sub-suites.

2.2.4 Symmetric cryptography building blocks

The following cryptographic primitives and data elements are defined for use in all security suites specified
in this standard.

2.2.4.1 XOR and XOR encryption

The XOR operation used in this security suite is the bitwise exclusive-or of two bit strings of equal length.
When one of the bit strings is a shared secret, this operation is defined as XOR encryption.

2.2.4.2 Bit ordering

In this clause a bit is defined to be an element of the set {0, 1}. A bit string is defined to be an ordered array
of bits. A byte (also called an octet) is defined to be a bit string of length 8. A byte string (also called an
octet string) is an ordered array of bytes. The terms first and last, leftmost and rightmost, and most signifi-
cant and least significant are used to distinguish the ends of these sequences (first, leftmost and most signif-
icant are equivalent; last, rightmost and least significant are equivalent). Within a byte, we additionally refer
to the high-order and low-order bits, where high-order is equivalent to first and low-order is equivalent to
last.

Table 26—Supported security services

Security Services Provided

Mutual Authentication �

Access Control List �

Verification of Public-Key �

Key Establishment �

Key Transport �

Beacon Integrity Protection �

Freshness Protection �

Command Integrity Protection �

ACK Integrity Protection �

Data Integrity Protection �

Data Encryption �
43 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Note that when a string is represented as a sequence, it may be indexed from left to right or from right to left,
starting with any index. For example, consider the octet string of two octets: 2a 1b. This corresponds to the
bit string 0010 1010 0001 1011. No matter what indexing system is used, the first octet is still 2a, the first bit
is still 0, the last octet is still 1b, and the last bit is still 1. The high-order bit of the second octet is 0; the low-
order bit of the second octet is 1.

2.2.4.3 Bitwise truncation

The bitwise truncation to n-bits operation used in this security suite shall be performed as taking the n left-
most bits of the bit string as described in the FIPS publication #HMAC [{xref}HMAC].

2.2.4.4 SHA-256 cryptographic hash

The SHA-256 cryptographic hash algorithm used in this security suite shall be performed as specified in the
FIPS 180-2 draft standard [{xref}FIP180].

2.2.4.5 HMAC keyed hashing for message authentication

The keyed hash message authentication code (HMAC) used in this security suite shall be performed as spec-
ified in the FIPS publication #HMAC [{xref}HMAC]. This message authentication code algorithm is
parameterized by a 128-bit key, the SHA-256 hash function as specified in clause 2.2.4.4 and is truncated to
128 bits as specified in clause 2.2.4.3.

2.2.4.6 CBC encryption mode

The cipher-block chaining (CBC) encryption mode for block ciphers used in this security suite shall be pre-
ceded by a random IV and performed as specified in NIST Special Publication 800-38A [{xref}MODES].

2.2.4.7 AES encryption and decryption

The advanced encryption standard (AES) encryption algorithm used in this security suite shall be performed
as specified in the FIPS 197 standard [{xref}FIP197]. This encryption algorithm is parameterized by the use
of 128-bit keys, 128-bit block size and the CBC encryption mode as specified in clause 2.2.4.6.

2.2.5 Symmetric cryptography implementation

All of the sub-suites defined for ECIES 256-prime-1 perform all symmetric operations in the same manner.

2.2.5.1 Symmetric cryptography data formats

The following table specifies the length and meaning of the symmetric cryptography related security suite
specific data elements from clause 7{xref}. The operations performed to obtain the variable data values are
specified in a separate sub-clause.

Table 27—Symmetric cryptography frame object formats

Notation Length Value Description

AuthResponseType 2 See
7.4.1.2{xref}

The auth response type specifies the result of an HMAC
computation as specified in sub-clause 2.2.4.5. The value
is the entry for HMAC-SHA-256 in 7.4.1.2{xref}.
44 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.2.5.2 Symmetric cryptographic operations

The following table specifies the symmetric cryptography related operations on all secure frames defined in
clause 7{xref}.

AuthResponseLength 2 16 The length of an HMAC computation as specified in sub-
clause 2.2.4.5.

AuthResponse 16 Variable The result of an HMAC computation as specified in sub-
clause 2.2.4.5.

ChallengeResponseType 2 See
7.4.1.4{xref}

The challenge response type specifies the result of an
HMAC computation as specified in sub-clause
2.2.4.5.The value is the entry for HMAC-SHA-256 in
7.4.1.4{xref}.

ChallengeResponseLength 2 16 The length of an HMAC computation as specified in sub-
clause 2.2.4.5.

ChallengeResponse 16 Variable The result of an HMAC computation as specified in sub-
clause 2.2.4.5.

KeyPurpose 1 See
7.4.1.5{xref}

The type of key requested in key request protocols. Only
seeds are transmitted in this security suite. The value is the
entry for Seed in 2.2.4.7.

EncryptedKeyType 2 See
7.4.1.6{xref}

The encrypted key type specifies the result of an AES
encryption as specified in sub-clause 2.2.4.7. The value is
the entry for AES-128 in 7.4.1.6{xref}.

EncryptedKeyLength 2 32 The length of an encrypted 128-bit seed encrypted using
AES encryption as specified in sub-clause 2.2.4.7.

EncryptedKey 32 Variable The result of the encryption of the 128-bit seed using AES
encryption as specified in sub-clause 2.2.4.7.

Table 28—Symmetric cryptographic operations

Operation Specification

Integrity Key Derivation Integrity keys are generated from a seed by first calculating the SHA-256
hash as specified in clause 2.2.4.4 on the seed concatenated with the byte
0x00 and then setting the key to be the truncation of the result to 128 bits
as specified in clause 2.2.4.3.

Encryption Key Derivation Encryption keys are generated from a seed by first calculating the SHA-
256 hash as specified in clause 2.2.4.4 on the seed concatenated with the
byte 0x01 and then setting the key to be the truncation of the result to 128
bits as specified in clause 2.2.4.3.

Challenge response generation The challenge response is generated by computing the HMAC message
authentication code as specified in clause 2.2.4.5 on the entire authentica-
tion protocol up to that point using the management integrity key.

Table 27—Symmetric cryptography frame object formats
45 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3 ECIES 256-prime-1 security suite

[[All of the text in sub-clause 2.3 describing ECIES 256-prime-1 is the NTRU submission text for the ECC security
suite.]]

The following sub-clauses define the security operations that are performed for the security suite ECIES
256-prime-1. The symmetric operations performed in this security suite are those specified in sub-clause
2.2.5. The public key and authentication operations are specified in the following sub-clause 2.3.1.

2.3.1 Public-key and authentication building blocks

The following cryptographic primitives and data elements are defined for use in all sub-suites of ECIES
256-prime-1.

2.3.1.1 Elliptic curve point representation

All transmitted elliptic curve points shall be transmitted in uncompressed form according to the definition of
uncompressed in ANSI X9.63 [{xref}X963]. Additionally, when elliptic curve points are used as inputs into
key derivation functions or any other function that utilizes a particular point representation, the points shall
be represented in uncompressed form.

Authentication response generation The authentication response is generated by computing the HMAC mes-
sage authentication code as specified in clause 2.2.4.5 on the entire authen-
tication protocol up to that point using the management integrity key.

Beacon message authentication code
generation

The message authentication code included in the beacon is computed as
the HMAC message authentication code as specified in clause 2.2.4.5 on
the entire beacon up to the integrity code information element using the
piconet integrity key.

Command message authentication
code generation

The message authentication code included in command frames is com-
puted as the HMAC message authentication code as specified in clause
2.2.4.5 on the entire command up to the message authentication code using
the selected integrity key.

ACK message authentication code
generation

The message authentication code included in ACK frames is computed as
the HMAC message authentication code as specified in clause 2.2.4.5 on
the entire ACK up to the message authentication code using the selected
integrity key.

Data message authentication code
generation

The message authentication code included in data frames is computed as
the HMAC message authentication code as specified in clause 2.2.4.5 on
the entire data frame up to the message authentication code after encryp-
tion has been performed using the payload integrity key.

Seed encryption operation The seed for key transport is encrypted using AES as specified in clause
2.2.4.7 using the management key encryption key.

Data encryption generation Data in a data frame is encrypted using AES as specified in clause 2.2.4.7
using the payload encryption key.

Table 28—Symmetric cryptographic operations
46 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.1.2 Elliptic curve ansip256r1

All elliptic curve points and operations used in this security suite shall be on the curve ansip256r1 as speci-
fied in ANSI X9.63 [{xref}X963].

2.3.1.3 Elliptic curve key pair

An elliptic curve key pair consists of the private key, which is an integer that is smaller than the order of the
base point and the public key, which is a point on the elliptic curve as specified in ANSI X9.63
[{xref}X963]. All elliptic curve public keys shall be on the elliptic curve specified in sub-clause 2.3.1.2.
Key validation is optional during all public-key operations.

2.3.1.4 ECIES encryption and decryption

The elliptic curve integrated encryption scheme (ECIES) encryption algorithm used in this security suite
shall be performed as specified in ANSI X9.63 [{xref}X963] with the key validation procedures and check-
ing for the identity left as optional. This encryption algorithm is parameterized by the XOR encryption algo-
rithm as specified in clause 2.2.4.1, the standard Diffie-Hellman primitive as specified in ANSI X9.63
[{xref}X963], SHA-256 as specified in sub-clause 2.2.4.4, HMAC as specified in sub-clause 2.2.4.5 and
point representation as specified in clause 2.3.1.1. The string SharedData1 that is used as input into the
ECIES primitive shall be set to be the ephemeral public key generated by the encryptor, encoded as an octet
string according to the conversion primitive in section 4.3.6 of ANSI X9.63 [{xref}X963]. The string
SharedData2 shall be the empty string.

2.3.1.5 ECC X.509 certificate

The X.509 digital certificate format and verification used in this security suite shall be as specified by the
PKIX RFC 2459 [{xref}PKIX]. These certificates shall contain an ECC public key as specified in clause
2.3.1.3. These certificates shall be signed using the ECDSA algorithm as specified in clause 2.3.1.6. The
ASN.1 encoding for the public key and signature shall be as specified in SEC 1 [{xref}SEC1]. The subject
field of the X.509 certificate shall be NULL and the subjectAltName shall consist of the PrintableString
encoding of the hexadecimal representation of the 48-bit IEEE MAC address of the device.

2.3.1.6 ECDSA digital signatures and verification

The ECDSA digital signature algorithm used in this security suite shall be performed as specified in ANSI
X9.62 [{xref}X962]. The ECDSA signature algorithm operations shall be performed on the elliptic curve
specified in clause 2.3.1.2. Public-key validation and checking the point at infinity shall be left as optional
operations.

2.3.1.7 ECC Implicit certificate

The ECC implicit certificate format and verification used in this security suite shall be as specified in clause
4. This certificate shall be associated with an ECC public key as specified in clause 2.3.1.3. This is parame-
terized by the following choices.

1) Each entity shall be a DEV;
2) Each entity's identifier shall be its 48-bit IEEE MAC address {xref}; the parameter entlen shall

have the integer value 48;
3) Each entity shall use the cryptographic hash function as specified in Clause 2.2.4.4;
4) The format of the implicit certificate ImplCert shall be specified as follows: ImplCert=(Publi-

cReconstrKey || Subject || Issuer), where
a ImplCert shall be the representation of the string ICU as specified in the implicit certifi-

cate generation protocol;
47 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
b PublicReconstrKey shall be the representation of the public-key reconstruction data BEU
as specified in the implicit certificate generation protocol, which is an elliptic curve point
as specified in clause 2.3.1.3;

c Subject shall be the identifier of the entity U that is bound to the public-key reconstruction
data BEU during the execution of the implicit certificate generation protocol;

d Issuer shall be the identifier of the entity CA that creates the implicit certificate during the
execution of the implicit certificate generation protocol (the so-called Certificate Author-
ity).

5) The format of the string IU as specified in Step 6 of the actions of the CA in the implicit certif-
icate generation protocol is specified as follows: IU=(Subject || Issuer), where Subject and
Issuer are as specified above.

2.3.2 ECIES Raw 1 sub-suite

ECIES Raw 1 is a Mode 2 sub-suite of the ECIES 256-prime-1 security suite. The cryptographic building
blocks for ECIES Raw 1 are the same as for the ECIES 256-prime-1 security suite. The OID for this sub-
suite is specified in Table 25. The following sub-clauses specify the public-key and authentication related
objects for this sub-suite.

2.3.2.1 Public-key and authentication data formats

The following table specifies the length and meaning of the public-key cryptography and authentication
related security suite specific data elements from clause 7{xref}. The operations performed to obtain the
variable data values are specified in a separate sub-clause.

Table 29—Public-key frame object formats

Notation Length Value Description

PublicKeyObjectType 2 See
7.4.1.2{x
ref}

An ECC public key as specified in clause 2.3.1.3. The
value is the entry for ECC Raw 256 in table 7.4.1.2{xref}.

PublicKeyObjectLength 2 65 The length of an ECC public key as specified in clause
2.3.1.3.

PublicKeyObject 65 Variable The particular instance of the ECC public key.

OIDLength 1 10 The length of the DER encoding of the OID ecies-raw-1
as specified in Table 25.

OID 10 OID
Value

The DER encoding of the OID ecies-raw-1 as specified in
Table 25.

ChallengeType 2 See table
7.4.1.3{x
ref}

The challenge type is an ECIES encryption of a 16-octet
challenge as specified in clause 2.3.1.4. The value is the
entry for ECIES 256 encryption in 7.4.1.3{xref}.

ChallengeLength 2 65 + 16 +
16 = 97

The length of an ECIES encryption of a 16-octet challenge
as specified in clause 2.3.1.4.

Challenge 97 Variable The result of the ECIES encryption of the 16-octet chal-
lenge as specified in clause 2.3.1.4.
48 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.2.2 Public-key and authentication cryptographic operations

The following table specifies the public key cryptography and authentication related operations for the
authentication protocol frames defined in clause 7{xref}.:

2.3.3 ECIES X509 1 sub-suite

ECIES X509 1 is a mode 3 sub-suite of the ECIES 256-prime-1 security suite. The cryptographic building
blocks for ECIES X509 1 sub-suite are selected from the public-key cryptographic building blocks defined
for the ECIES 256-prime 1 security suite. The OID for this sub-suite is specified in Table 25. The following
sub-clauses specify the public-key and authentication related objects for this sub-suite.

2.3.3.1 Public-key and authentication data formats

The following table specifies the length and meaning of the public-key cryptography and authentication
related security suite specific data elements from clause 7{xref}. The operations performed to obtain the
variable data values are specified in a separate sub-clause.

Table 30—Authentication related operations

Use Operation

Verification of Public-Key The ID and public key received during the authentication protocol is veri-
fied by generating the SHA-256 hash of the device address concatenated
with the public key of the device and comparing it to the hash of the ID
and public key stored in the MAC PIB. If the hash is not in the PIB, the
public key is passed to the DME to establish trust by other means.

Challenge generation The challenges generated during the authentication protocol are computed
by performing an ECIES encryption as specified in sub-clause 2.3.1.4 on a
fresh, randomly generated 16-byte challenge using the other device’s pub-
lic key.

Challenge decryption The challenge decryption operation is performed using ECIES decryption
as specified in sub-clause 2.3.1.4 on the received challenge. The decryptor
shall verify that the length of the output is 16-bytes and, if not, reject the
challenge.

Seed generation (for authentication
protocol)

The 32-byte seed for the authentication protocol consists of the decrypted
challenge from the security manager, concatenated with the decrypted
challenge of the DEV.

Table 31—Public-key frame object formats

Notation Length Value Description

PublicKeyObjectType 2 See
7.4.1.2{x
ref}

An ECC X.509 certificate as specified in clause 2.3.1.5.
The value is the entry for ECC X.509 256 in table
7.4.1.2{xref}.

PublicKeyObjectLength 2 Variable The length of the particular instance of the X.509 certifi-
cate.
49 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.3.2 Public key and authentication cryptographic operations

The following table specifies the public key cryptography and authentication related operations for the
authentication protocol frames defined in clause 7{xref}.:

PublicKeyObject Variable Variable The particular instance of the X.509 certificate.

OIDLength 1 10 The length of the DER encoding of the OID ecies-x509-1
as specified in Table 25.

OID 10 OID
Value

The DER encoding of the OID ecies-x509-1 as specified
in Table 25.

ChallengeType 2 See table
7.4.1.3{x
ref}

The challenge type is an ECIES encryption of a 16-octet
challenge as specified in clause 2.3.1.4. The value is the
entry for ECIES 256 encrypted seed in 7.4.1.3{xref}.

ChallengeLength 2 65 + 16 +
16 = 97

The length of an ECIES encryption of a 16-octet challenge
as specified in clause 2.3.1.4.

Challenge 97 Variable The result of the ECIES encryption of the 16-octet chal-
lenge as specified in clause 2.3.1.4.

Table 32—Authentication related operations

Use Operation

Verification of Public-Key The X.509 certificate received during the authentication protocol is veri-
fied by retrieving the appropriate CA key and verifying the ECDSA signa-
ture as specified in clause 2.3.1.6 on the certificate. The device shall verify
that the MAC address in the subjectAltName of the certificate matches the
MAC address that the certificate was received from. The device shall
extract the public key for use in the authentication protocol. There are sev-
eral other checks that should be performed by the device if possible to
ensure the security properties of the certificate including a CRL check,
validity period verification and the key use field check. In addition, the
device shall check that the device in the certificate is included in the ACL.

Challenge generation The challenges generated during the authentication protocol are computed
by performing an ECIES encryption as specified in sub-clause 2.3.1.4 on a
fresh, randomly generated 16-byte challenge using the other device’s pub-
lic key.

Challenge decryption The challenge decryption operation is performed using ECIES decryption
as specified in sub-clause 2.3.1.4 on the received challenge. In addition,
the decryptor shall verify that the length of the output is 16-bytes and, if
not, reject the challenge.

Seed generation (for authentication
protocol)

The 32-byte seed for the authentication protocol consists of the decrypted
challenge from the security manager, concatenated with the decrypted
challenge of the DEV.

Table 31—Public-key frame object formats
50 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.4 ECIES Implicit 1 sub-suite

ECIES Implicit 1 is a mode 3 sub-suite of the ECIES 256-prime-1 security suite. The cryptographic building
blocks for ECIES Implicit 1 sub-suite are selected from the public-key cryptographic building blocks
defined for the ECIES 256-prime 1 security suite. The OID for this sub-suite is specified in table 25. The fol-
lowing sub-clauses specify the public-key and authentication related objects for this sub-suite.

2.3.4.1 Public-key and authentication data formats

The following table specifies the length and meaning of the public-key cryptography and authentication
related security suite specific data elements from clause 7{xref}. The operations performed to obtain the
variable data values are specified in a separate sub-clause.

Table 33—Public-key frame object formats

Notation Length Value Description

PublicKeyObjectType 2 See
7.4.1.2{x
ref}

An ECC implicit certificate as specified in clause 2.3.1.7.
The value is the entry for ECC Implicit 256 in table
7.4.1.2{xref}.

PublicKeyObjectLength 2 65+6+6=
77

The length of the implicit certificate.

PublicKeyObject 77 Variable The particular instance of the implicit certificate.

OIDLength 1 10 The length of the DER encoding of the OID ecies-
implicit-1 as specified in table 2{xref}.

OID 10 OID
Value

The DER encoding of the OID ecies-implicit-1 as speci-
fied in table 2{xref}.

ChallengeType 2 See table
7.4.1.3{x
ref}

The challenge type is an ECIES encryption of a 16-octet
challenge as specified in clause 2.3.1.4. The value is the
entry for ECIES 256 encrypted seed in 7.4.1.3{xref}.

ChallengeLength 2 65 + 16 +
16 = 97

The length of an ECIES encryption of a 16-octet challenge
as specified in clause 2.3.1.4.

Challenge 97 Variable The result of the ECIES encryption of the 16-octet chal-
lenge as specified in clause 2.3.1.4.
51 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.4.2 Public key and authentication cryptographic operations

The following table specifies the public key cryptography and authentication related operations for the
authentication protocol frames defined in clause 7{xref}.:

2.4 NTRUEncrypt 251-1

The following sub-clauses define the security operations that are performed for the security suite NTRUEn-
crypt 251-1. The symmetric operations performed in this security suite are those specified in sub-clause
2.2.5. The public key and authentication operations are specified in the following sub-clause 2.4.1

2.4.1 Public-key and authentication building blocks

The following cryptographic primitives and data elements are defined for use in all sub-suites of NTRUEn-
crypt 251-1.

2.4.1.1 NTRUEncrypt Parameter Set ees251ep1

All NTRUEncrypt objects and cryptographic operations used in this security suite shall use the parameter set
ees251ep1 as specified in EESS #1 [{xref}EESS#1]. All transmitted NTRUEncrypt polynomials shall be
sent in uncompressed form as specified in EESS #1 [{xref}EESS#1].

2.4.1.2 NTRUEncrypt key pair

An NTRUEncrypt key pair consists of the private key, which is a small polynomial and the public key,
which is a large polynomial as specified in EESS #1[{xref}EESS#1]. All NTRUEncrypt public keys shall
use the parameter set specified in sub-clause 2.4.1.1.

Table 34—Authentication related operations

Use Operation

Verification of Public-Key The public key in the received implicit certificate is implicitly verified by
retrieving the appropriate CA key, generating the public key by performing
computations using the implicit certificate, identifying information and
CA key, and verifying that the authentication protocol succeeds as speci-
fied in clause 2.3.1.7. The device shall also verify that the expected MAC
address of the device matches the MAC address in the certificate. There
are several other checks that should be performed by the device to ensure
the security properties of the certificate including a CRL check and valid-
ity period verification. In addition, the device shall check that the device in
the certificate is included in the ACL.

Challenge generation The challenges generated during the authentication protocol are computed
by performing an ECIES encryption as specified in sub-clause
11.3.1.4{xref} on a fresh, randomly generated 16-byte challenge using the
other device’s public key.

Challenge decryption The challenge decryption operation is performed using ECIES decryption
as specified in sub-clause 11.3.1.4{xref}on the received challenge.

Seed generation (for authentication
protocol)

The 32-byte seed for the authentication protocol consists of the decrypted
challenge from the security manager, concatenated with the decrypted
challenge of the DEV.
52 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.4.1.3 NTRUEncrypt encryption and decryption

The NTRUEncrypt encryption algorithm used in this security suite shall be performed as specified in EESS
#1[{xref}EESS#1]. All encryption and decryption operations shall use the parameter set specified in 2.4.1.1.

2.4.2 NTRUEncrypt Raw 1 sub-suite

NTRUEncrypt Raw 1 is a mode 2 sub-suite of the NTRUEncrypt 251-1 security suite. The cryptographic
building blocks for the NTRUEncrypt Raw 1 sub-suite are selected from the public-key cryptographic build-
ing blocks defined for the NTRUEncrypt 251-1 security suite. The OID for this sub-suite is specified in
Table 25. The following sub-clauses specify the public-key and authentication related objects for this sub-
suite.

2.4.2.1 Public-key and authentication data formats

The following table specifies the length and meaning of the public-key cryptography and authentication
related security suite specific data elements from clause 7{xref}. The operations performed to obtain the
variable data values are specified in a separate sub-clause.

Table 35—Public-key frame object formats

Notation Length Value Description

PublicKeyObjectType 2 See
7.4.1.1{x
ref}

An NTRUEncrypt public key as specified in clause
2.4.1.2. The value is the entry for NTRUEncrypt Raw 251
in table 7.4.1.1{xref}.

PublicKeyObjectLength 2 251 The length of the particular instance of the NTRUEncrypt
public key.

PublicKeyObject 251 Variable The particular instance of the NTRUEncrypt public key.

OIDLength 1 10 The length of the DER encoding of the OID ntruencrypt-
raw-1 as specified in Table 25.

OID 10 OID
Value

The DER encoding of the OID ecies-raw-1 as specified in
Table 25.

ChallengeType 2 See table
7.4.1.3{x
ref}

The challenge type is an NTRUEncrypt encryption of a
21-octet challenge as specified in clause 2.4.1.3. The
value is the entry for NTRUEncrypt 251 encrypted seed in
7.4.1.3{xref}.

ChallengeLength 2 251 The length of an NTRUEncrypt encryption of a 21-octet
challenge as specified in clause 2.4.1.3.

Challenge 251 Variable The result of the NTRUEncrypt encryption of the 21-octet
challenge as specified in clause 2.4.1.3.
53 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.4.2.2 Public key and authentication cryptographic operations

The following table specifies the public key cryptography and authentication related operations for the
authentication protocol frames defined in clause 7{xref}.:

3. Security Considerations

3.1 Claimed Security Services

Each of the protocols defined in clause 9{xref} is designed to offer specific security services, detailed in the
following sub-clauses.

3.1.1 Authentication and Key Establishment Protocol

The following table specifies the security services provided by the authentication and key establishment pro-
tocol specified in clause 10.4.1{xref} along with a description of the method employed to provide the secu-
rity service:

Table 36—Authentication related operations

Use Operation

Verification of Public-Key The ID and public-key received during the authentication protocol is veri-
fied by generating the SHA-256 hash of the device address concatenated
with the public key of the device and comparing it to the hash of the ID
and public key stored in the MAC PIB. If the hash is not in the PIB, the
public key is passed to the DME to establish trust by other means.

Challenge generation The challenges generated during the authentication protocol are computed
by performing an NTRUEncrypt encryption as specified in sub-clause
2.4.1.3 on a fresh, randomly generated 21-byte challenge using the other
device’s public key.

Challenge decryption The challenge decryption operation is performed using NTRUEncrypt
decryption as specified in sub-clause 2.4.1.3 on the received challenge.

Seed generation (for authentication
protocol)

The 42-byte seed for the authentication protocol consists of the decrypted
challenge from the security manager, concatenated with the decrypted
challenge of the DEV.

Security Service Method Provided

Verification by the security manager that
the authenticating device possesses its pri-
vate key

The ownership of the private key is demonstrated by
the device through the proper generation of the integ-
rity key and the computation and transmission of the
integrity code on the challenge response command.
54 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.1.2 Beacon Protection Protocol

The following table specifies the security services provided by the beacon protection protocol specified in
clause 10.4.2{xref} along with a description of the method employed to provide the security service:

Verification by the authenticating device
that the security manager possesses its pri-
vate key

The ownership of the private key is demonstrated by
the security manager through the proper generation of
the integrity key and the computation and transmission
of the integrity code on the authentication response
command.

Verification by the security manager of the
linkage of the following items to the cur-
rent run of the protocol:

— current session ID
— current security suite
— public key of each participating

entity
— identity of each participating entity
— challenge by each participating

entity

The linkage of the items to the current run of the proto-
col is demonstrated by the device by the correctly
formed integrity code computed on the items.

Verification by the device of the linkage of
the following items to the current run of the
protocol:

— current session ID
— current security suite
— public key of each participating

entity
— identity of each participating entity
— challenge by each participating

entity
— device's proof of ownership of pri-

vate key
— current group payload protection

seed

The linkage of the items to the current run of the proto-
col is demonstrated by the security manager with the
correctly formed integrity code that is computed on the
items.

The device obtains two-party management
keys for transfer of protected commands
between the security manager and the
authenticating device

The successful operations performed on the challenge
from the security manager and the combination of that
challenge with the challenge from the device estab-
lishes the two-party management keys.

The security manager obtains two-party
management keys for transfer of protected
commands between the security manager
and the authenticating device

The successful operations performed on the challenge
from the device and the combination of that challenge
with the challenge from the security manager estab-
lishes the two-party management keys.

Both devices initialize freshness informa-
tion for messages sent using new keys by
security manager and by device

At the conclusion of the protocol, each device stores
the initialized sequence numbers for the security man-
ager and device.
55 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.1.3 Distribute Key Protocol

The following table specifies the security services provided by the distribute key protocol specified in clause
10.4.3{xref} along with a description of the method employed to provide the security service:

3.1.4 Key Request Protocol

The following table specifies the security services provided by the key request protocol specified in clause
10.4.4{xref} along with a description of the method employed to provide the security service:

3.1.5 Data Transport Protocol

The following table specifies the security services provided by the data transport protocol specified in clause
10.4.5{xref} along with a description of the method employed to provide the security service:

Security Service Method Provided

Communication of current time token to the
devices in the piconet

The PNC increments the time token for each superframe and
protects it using the current group key. The integrity protec-
tion on the beacon and the storage of the previous time token
allows each device to determine that the time token is fresh.

Indication of the identity of the PNC to the
devices in the piconet

If PNC handover has not occurred, the device address of the
current PNC appears in the beacon. If PNC handover has
occurred, the device address of the new PNC appears in the
beacon. The integrity protection on the beacon and the fresh-
ness from the time token allow each device to determine the
identity of the current PNC.

Security Service Method Provided

Privacy protection on distributed key The encryption of the key with the shared key encryption key
ensures that the key remains private

Integrity protection on distributed key The receiving device verifies that the integrity code verifies
properly and that the freshness checks succeed.

Verification by the security manager that the
device received the key

The security manager verifies that the integrity code verifies
properly and that the freshness checks succeed.

Security Service Method Provided

Privacy protection on requested key The encryption of the key with the shared key encryption key
ensures that the key remains private

Integrity protection on the requested key The receiving device verifies that the integrity code verifies
properly and that the freshness checks succeed.
56 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.2 Public Key and Identity Binding Method

The DME bears the responsibility for establishing a binding between a public key and a device’s identity.

As part of the authentication process, a device provides its public key and device ID. The security manager
checks if the public key and ID are represented in its access control list (ACL). If so, the protocol continues.
If not, the security manager passes the public key and ID pair to its DME and returns a failure message to the
device, indicating the cause of failure.

The DME may use any method to decide if the public key and ID pair is to be trusted. This method is out of
scope, but may include:

— A digital certificate.
— An analog certificate. A device manufacturer may print the device ID and a hash of the public key

on the bottom of the device for the user to verify.
— Low-power transmission. Two devices may be brought into close physical proximity so they can

“whisper” public keys over their radios.
— Range. The user confirms the distance between the two devices.
— Open enrollment. While located in a secure environment like a free-standing house, devices may

simply trust public keys they receive over the air.
— Pre-loading. A device manufacturer selling matched devices, like the components of a home-enter-

tainment system, may pre-load the ACLs with the IDs and public keys the system needs.
— User action. The user could push a button on both devices simultaneously.

This range of options is allowed to enable cost-effective and user-friendly applications.

3.3 Protocol Security Analysis

3.3.1 Comparison with TLS

The following describes some of the differences between the TLS protocol and the protocols defined in
clause 10. We first describe the differences between the TLS protocol and our design, and then the differ-
ences between the proposed security suites and ciphersuites supported in TLS.

• TLS provides integrity with HMAC and PRF using SHA-1 and MD5. These protocols instead
allow other HMAC algorithms, hash algorithms or block cipher message authentication codes
using symmetric algorithms.

The security suite specification in this document specifies the use of HMAC with SHA-256.

• TLS requires certificates. This protocol does not.

Security Service Method Provided

Privacy protection on data The encryption of the data with the shared encryption
key ensures that the key remains private

Integrity protection on data The receiving device verifies that the integrity code
verifies properly and that the freshness checks succeed.
57 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
In TLS, the typical use case is that a user’s browser communicates to an e-commerce site and
requires assurance that the site belongs to a legitimate business. Certificates are highly suitable
for this situation. In 802.15.3, a DEV is obtaining a connection to an ad-hoc network. In this situ-
ation, certificates may or may not be used depending on the needs of the environment and the
trust model for the public keys.

• TLS typically authenticates the server with an encrypted challenge-response, while client authen-
tication is done by means of a signed challenge from the server. This protocol instead allows for
the use of two-way encrypted challenge-response and other two-party mutual authentication
mechanisms.

This change is desirable for several reasons:

• If both parties use similar challenge mechanisms, both parties can contribute to the fresh-
ness of the key that is established, preventing reuse of old shared secrets.

• In cost-sensitive devices such as an 802.15.3 DEV, gates and cost can be saved if devices
do not have to implement signing as well as key establishment techniques.

• TLS has cipher suite agreement in line. This protocol does not.

For a group networking protocol such as this one, all devices must use the same cipher suite. A
device that wants to join the network should not be able to compel all other devices to change
cipher suite. Therefore, there is no requirement for cipher suite negotiation when a device is join-
ing the group.

• In TLS, the client (device) commits to a public random value in step 1. In this protocol, there are
no public random values.

TLS requires the use of public random values to ensure that its Diffie-Hellman-based ciphersuites
produce a different seed every time. The techniques specified in the algorithm suites ensure that a
unique seed is produced every time.

• In TLS, the server (security manager) commits to a public random value in step 2. In this proto-
col, there are no public random values.

See the previous comment.

• TLS offers optional compression. This protocol does not.

TLS is an application-layer protocol. The data it produces is passed down through the protocol
stack. However, because it is encrypted, it appears random, which means that it cannot be com-
pressed by any process running further down the stack than TLS. TLS therefore has to offer com-
pression. In contrast, 802.15.3 is a networking protocol. If data is to be compressed, it will be
done at a higher level than the MAC layer.

• In TLS, the sequence number used for payload protection is not explicitly sent (it is stored inter-
nally and incremented). This protocol transmits the sequence number, cryptographically pro-
tected, in the messages.

TLS uses a reliable communications channel between two applications, and can assume that
packets arrive in order and that both parties are still involved in the communication. 802.15.3 is a
standard for ad hoc networking and can make no such assumptions. In order to ensure all devices
are able to decrypt and check integrity on the data, it is necessary to explicitly include the
sequence number in the messages.

• TLS does not require additional key transport messages after the handshake (authentication) is
complete.
58 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
In TLS, once a shared key is established between the two entities, no further exchange of crypto-
graphic material is necessary. In this protocol, once the shared key has been established, the join-
ing device must have the group key securely transmitted to it before it can participate in the group
communications. For this reason, the current protocols require the additional key transport mes-
sage.

• Key derivation from the seed is different in TLS from this protocol.

TLS requires the use of two different hash functions, MD5 and SHA-1, to derive the key from the
seed. This protocol relies on the security of a single hash function.

4. Implicit Certificate Specification

[[All of the text in clause 4 describing implicit certification is part of the NTRU submission text for the ECC security
suite.]]

4.1 Implicit Certificate Scheme

This section specifies the ECQV implicit certificate scheme based on ECC supported in this standard.

Implicit certificate schemes are designed to be used by three entities - a Certification Authority CA, a certif-
icate requester U, and a certificate processor V, where U wants to obtain an implicit certificate from CA in
order to convey U's public key to V.

Here implicit certificate schemes are described in terms of a certificate generation protocol, a certificate pro-
cessing operation, and associated setup and CA key deployment procedures. CA, U, and V shall use the
schemes as follows, when they wish to communicate.

CA, U, and V should use the setup procedure to establish which options to use the scheme with. CA should
use the key deployment procedure to select a key pair and U and V should obtain CA's public key - CA will
use the key pair during the certificate generation protocol, U will use the public key during the certificate
generation protocol, and V will use the public key during the certificate processing operation. When U wants
to obtain an implicit certificate, U and CA should perform the certificate generation protocol to obtain a key
pair known to U and an implicit certificate IC. Finally, when V wants to obtain U's public key, U should con-
vey IC to V and V should apply the certificate processing to IC under CA's public key to obtain U's public
key. V concludes that the public key is genuine, provided U provides evidence that it possesses the corre-
sponding private key.

The specification of ECQV in this document relies heavily on the mathematical foundations and crypto-
graphic components specified in Sections 2 and 3 of [SEC1].

The setup procedure for ECQV is specified in Section 8.1, the key deployment procedure is specified in Sec-
tion 8.2, the certificate generation protocol is specified in Section 8.3, and the certificate processing opera-
tion is specified in Section 8.4.

4.1.1 Scheme Setup

CA, U, and V shall perform the following setup procedure to prepare for the use of ECQV.

1. An infrastructure shall have been established for the operation of the scheme - including a certifi-
cate format, certificate processing rules, and unique identifiers. An example of such an infrastructure is
described by PKIX [PKIX-X509].
59 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2. Each entity has an authentic copy of the system's elliptic curve domain parameters D=(p,a,b,G,n,h)
or D=(m,f(x),a,b,G,n,h). These parameters shall have been generated using the parameter generation primi-
tive in Sections 3.1.1.1 or the primitive specified in Section 3.1.2.1, both of [SEC1]. Furthermore, the
parameters shall have been validated using the parameter validation primitives in Sections 3.1.1.2 or Section
3.1.2.2 of [SEC1].

3. The CA shall have decided which cryptographic hash function to use when generating implicit cer-
tificates. Let Hash denote the hash function chosen, and let hashlen denote the length in bits of the output
value of this hash function. Each entity shall have an authentic copy of this hash function.

4. Each entity shall be bound to a unique identifier (e.g. distinguished names). All identifiers shall be
bit strings of the same length entlen bits. Entity U's identifier will be denoted by the bit string U. Entity V's
identifier will be denoted by the bit string V. Entity CA's identifier will be denoted by the bit string CA.

5. The CA shall be bound to a static public key pair associated with the system's elliptic curve domain
parameters D. The binding process shall include the validation of the static public key as specified in Section
3.2.2 of [SEC1]. The key binding shall include the unique identifier CA for the entity involved.

6. Each entity shall have decided how to represent elliptic curve points as octet strings (i.e., com-
pressed form, uncompressed form, or hybrid form).

4.1.2 Key Deployment

CA, U, and V shall use the following key deployment procedure to prepare for the use of ECQV.

1. CA shall establish a static elliptic curve key pair (WCA, wCA) associated with D to use with the
certificate generation and processing protocols. The key pair shall be generated using the primitive specified
in Section 3.2.1 of SEC 1.

2. U and V shall obtain in an authentic manner the elliptic curve public key WCA selected by CA.

4.1.3 Implicit Certificate Generation Protocol

This section specifies the protocol for generating implicit certificates (self-certified public keys).

Figure 12 illustrates the messaging involved in the use of the certificate generation protocol.

CA and U shall generate an implicit certificate for U using the keys and parameters established during the
setup procedure and the key deployment procedure as follows:

Input: None.

Output for CA: An octet string ICU, which is U's implicit certificate, and an elliptic curve public key WU
corresponding to the elliptic curve domain parameters D, which is U's public key.

Output for U: An octet string ICU, which is U's implicit certificate, and an elliptic curve key pair (WU, wU)
corresponding to the elliptic curve domain parameters D, which is U's public key pair.

Actions: U proceeds as follows:

1. Select a random ephemeral elliptic curve key pair (QU, qU) associated with the elliptic curve
domain parameters D. The key pair shall be generated using the primitive specified in Section 3.2.1 of SEC
1. (qU is referred to as U's private request value; QU as U's public request value.)
60 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2. Convert QU to an octet string QEU as specified in Section 2.3.5 in SEC 1, and send it to CA.

3. Obtain the values ICU and se from CA. Compute the hash value H = Hash(ICU) using the estab-
lished hash function. Derive an integer e from H following the conversion routine of Step 5 in Section 4.1.3
of [SEC1].

4. Verify the content of ICU according to the established infrastructure. This includes verifying the
contents of the certificate, e.g., the subject's name and the validity period.

5. Derive BEU and IU from ICU according to the procedures of the established infrastructure.

6. Derive WCA from IU, according to the certificate format specified during the setup procedure.

7. Convert BEU to an elliptic curve point BU as specified in Section 2.3.4 of SEC 1 and convert se to
an integer s as specified in Section 2.3.8 of SEC 1.

8. Compute the secret key wU := s + qU . e (mod n) and the public key WU := wU G.

9. Reconstruct the public key WU' = e BU + WCA.

10. If WU' = WU, accept the certificate and output the computed key pair (WU, wU) and the implicit
certificate ICU; otherwise output reject.

Actions: CA proceeds as follows:

1. Verify the authenticity of the request received from U according to the procedures of the estab-
lished infrastructure. The checks performed shall include, as a minimum, checking that U is indeed the ori-
gin of the request, and checking that U is authorized to obtain a certificate.

2. Receive QEU from U and convert it to an elliptic curve point QU as specified in Section 2.3.4 in
SEC 1.

3. Select an ephemeral elliptic curve key pair (QCA, qCA) associated with the elliptic curve domain
parameters D. The key pair shall be generated using the primitive specified in Section 3.2.1 of [SEC1].

4. Compute the elliptic curve point BU:= QU + QCA.

5. Convert the elliptic curve point BU to an octet string BEU as specified in Section 2.3.3 in SEC 1.

6. Construct the 'to-be-signed-certificate' data, which is an octet string IU. IU shall contain identifica-
tion information according to the procedures of the established infrastructure and may also contain other
information, such as the intended use of the public key, the serial number of the implicit certificate, and the
validity period of the implicit certificate. The exact form of IU depends on the certificate format being used.

7. Construct according to the procedures of the established infrastructure U's implicit certificate,
which is an octet string ICU. ICU should contain IU and BEU. The exact form of ICU depends on the certif-
icate format being used.

8. Compute the hash value H = Hash(ICU) using the established hash function. Derive an integer e
from H following the conversion routine of Step 5 in Section 4.1.3 of [SEC1].
61 Submission
Daniel V. Bailey, et. al., NTRU

April, 2002 IEEE P802.15-02/210r0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
9. Compute the integer s = qCA e+wCA (mod n). (s is referred to as the private-key reconstruction
data.)

10. Convert s to an octet string se as specified in Section 2.3.7 of SEC 1, and send ICU and se to U.

11. Compute WU = e BU + WCA. Output the implicit certificate ICU and the elliptic curve public key
WU.

4.1.4 Implicit Certificate Processing Operation

V shall process U's implicit certificate using the keys and parameters established during the setup procedure
and the key deployment procedure as follows:

Input: U's purported implicit certificate ICU.

Output: U's purported public key WU.

Actions: V proceeds as follows:

1. Verify the content of ICU according to the established infrastructure. This includes verifying the
contents of the certificate, such as the subject's name and the validity period.

2. Derive BEU and IU from ICU, according to the certificate format specified during the setup proce-
dure.

3. Derive WCA from IU, according to the certificate format specified during the setup procedure.

4. Convert the octet string BEU to an elliptic curve point BU as specified in Section 2.3.4 of SEC 1.

5. Compute the hash value H = Hash(ICU) using the established hash function. Derive an integer e
from H following the conversion routine of Step 5 in Section 4.1.3 of [SEC1].

6. Compute the public key WU = e BU + WCA.

After performing the certificate processing operation, V can conclude that WU is genuine, provided U evi-
dences knowledge of the corresponding private key wU.
62 Submission
Daniel V. Bailey, et. al., NTRU

