March, 1994
 DOC: IEEE P802.11-94/xxx

October, 2002
 IEEE P802.15-02/442r0-SG3a

IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	Agenda for October 15th CM Conference Call

	Date Submitted
	[14 October, 2002]

	Source
	[Jeff Foerster]
[Intel R&D]
[JF3-206

2111 N.E. 25th Ave.

Hillsboro, OR 97124]
	Voice:
[503-264-6859]
Fax:
[503-264-3483]
E-mail:
[jeffrey.r.foerster@intel.com]

	Re:
	[]

	Abstract
	[]

	Purpose
	[This document defines the agenda for the October 15th conference call to address comments on the current channel modeling draft report, document IEEE P802.15-02/368r2-SG3a.]

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Agenda for Channel Modeling October Conference Call

8am:

Meeting begins

8-8:05

Approve agenda
8:05-8:30
Discuss comments on Section 3.2.1 (Path Loss)

8:30-9:45
Discuss Comments submitted on reflector from Naiel Askar and Steve Schell on

multipath channel model
9:45-10am
List remaining open issues and ask for volunteers to help address

Comments gathered from reflector

Section 3.2.1 Path loss

1. Define noise figure in table (Hiro Yamaguchi proposed 7 dB)
2. Jai Balakrishnan proposed

a. Define a path loss exponent for LOS and NLOS separately in table (proposed 1.7 for LOS and 3.1 for NLOS)

b. Normalize the average power over the ensemble of channel realizations to unity rather than normalize the power of each realization to unity. This will account for shadowing effects.

3. Naiel Askar proposes
a. The parameter C/N (SNR or Eb/NO) in the link budget needs to be clarified whether it assumes AWGN or the multipath channel models in some weighted manner.
b. Also whether it should include implementation losses or are these added as a separate line. I think also itemization of the implementation losses should be encouraged
4. Should we include frequency dependency with path loss in link budget table?

5. Should we include a row with ‘implementation loss’ or other metric in multipath channels separately from AWGN to account for a rake?

6. How to define link margin:

a. Bill Shvodian proposed: M (dB) = Pr(dBm) - kT(dBm/Hz) - Nf (dB) - Rb(dB bits/s) - required Eb/No (dB) - implementation loss (dB)

i. Jeff Foerster proposes inserting the value for kT: M (dB) = Pr(dBm) +174 (dBm/Hz) - Nf (dB) - Rb(dB bits/s) - required Eb/No (dB) - implementation loss (dB)

Comments on 02/368r2 CM subcommittee report from Naiel Askar
Section 3.3

For the channel realizations CM2-CM4, the CIR has some leading zeros which seems counter intuitive, since the excess delay is really defined in terms of the first non-zero component, I suggest they are removed and start with first non-zero component.

Section 3.5.1.1

1. Section 3.5.1.1 mentions the results should be ‘Average PER and BER, averaged over all channels’, but the BER and PER have already been fixed as 1e-5 and 8e-2. We should request the SNR that achieves the required BER and PER.

2. Also, are the results averaged over the 4 channel types or are separate results given for the four channel types.

Comments on 02/368r2 CM subcommittee report from Steve Schell
Section 3.3.7.1: “Mean number of paths within 10 dB of peak path = 43.8”, replace 43.8 with 14.9 from Table 2. Also, “Mean number of paths that capture 85% of channel energy = 115.5”, replace 115.5 with 23.4 from Table 2.
Section 3.5.1.1: “In order to achieve a desired PER < 8e-2 and BER < 1e-5, it is suggested that at least 200, 1024 byte packets be simulated for each channel realization (100 in total).” Suggest improved wording: “In order to achieve a desired PER < 8e-2 and BER < 1e-5, the following procedure is suggested for each of the channels CM1 through CM4. For each of the 100 realizations of the channel, simulate 200 packets of 1024 bytes (octets?) each.”
Section 3.4 and 3.5.1: Regarding time variance of the channel, suggest adding in an explanation based on the results from David Cheung’s (Intel) report: “A series of channel measurements was taken to investigate water occultation as a proxy for human occultation [insert appropriate reference to the document here]. Measurements were taken at a series of positions occupied by the water in a path perpendicular to the LOS path. It was observed that measurements taken for water positions 2 inches apart were substantially similar. For reference a pedestrian walking at 3 km/hr (33 inches per second) would move 2 inches in about 60 milliseconds. In comparison, the transmission time for 200 consecutive packets having a bit rate at the PHY-SAP interface of 110 Mbps requires 15 milliseconds, considerably less than the pedestrian’s transit time. Thus, the assumption that the channel is invariant during the 200-packet measurement of PER is reasonable and remains so even if the pedestrian runs rather than walks. The assumption of channel-invariance during the 200 packets is increasingly more accurate as the rate at the PHY-SAP interface increases if the packets contain a constant number of bits.”
Section 2: Last sentence “This channel model assumes that the channel is static over the entire packet and is generated independently for each packet.” This statement appears to contradict the methodology of 3.5.1.1 for measuring PER and BER, and conflicts with empirically motivated discussion (see above) on time-invariance of the channel.
Time-sampling in Matlab code and supplied channel model realizations: An alternative to fixed 167-ps sampling and its potential aliasing problems is offered. It would be easy simply to align the Matlab code with the continuous time model in 02/368, namely by outputting the NON-time-sampled (i.e., time is continuously valued) stream of (time,value) pairs. These are what the code generates in the first place and then (artificially) quantizes the time to the nearest integer multiple of ts. That is, I am suggesting simply to skip the quantization step (and as a small implementation detail to add in a final step in the matlab code to sort the (time,value) pairs in ascending time order since they are presently not guaranteed to be generated this way due to overlapping clusters). The times would most naturally be in units of nanoseconds and could be supplied to sub-picosecond resolutions if desired without creating super-long channel impulse responses.
This method provides realizations of the continuous-time channel model per the math in 02/368. The user would then undertake the straightforward process of discrete-time sampling to whatever time resolution is desired (and optionally sub-band extraction for complex baseband simulation). The result ought to be free of non-physical artifacts, and easily customized to each user's simulation needs. This helps to modularize somewhat the channel modeling and the PHY-simulator's use of the model.
Two methods for obtaining a discrete-time model at any desired resolution are given here. The second one is preferred for implementation reasons.
A. Convolution and discrete-time sampling might best be performed in the frequency domain by (i) computing the FFT bins of the bandlimited and discrete-time-sampled channel from the continuous-time model (since its idealized continuous-time Fourier transform exists, we can make a closed-form expression for the Fourier transform of the bandlimited channel which we sample in frequency to get the desired FFT bins), then (ii) multiplying by FFT of the transmit pulse shape or other bandpass filter, and (iii) IFFTing to get the discrete-time impulse response. Obviously, attention to FFT length & frequency resolution, avoiding cyclic wrap-around, etc is implied.
B. A short-cut is used: first just quantize time in the continuous-time model's (time,value) pairs to ts/N where ts is the desired resolution and N is a suitably large integer. If multiple (time,value) pairs get quantized into the same time bin, their values should be added. Next in normal discrete-time processing, do low-pass or band-pass or transmit-pulse filtering as appropriate (including complex frequency downconversion if desired) and decimate down by N. A suggested rule for choosing N is to ensure that N*fs=N/ts is at least 100 GHz and that N≥1. Thus, N=max(1, ceil(ts * 100 GHz)). This should be considerably more efficient than approach A.
Matlab code implementing the continuous-time model and the recommended time-sampling approach B is attached. If the code is used with ts = 0.167 and N is forced to be N=1, then this code should return the same results as the code in 02/368r2. When used with N following the rule above, the model parameters will need to be adjusted again to match the characteristics of the measured data (I started to do this but found that I was not very adept at it, so I appeal to Jeff and his colleagues to adapt the model parameters).
This code below is my best shot at enabling apples-to-apples comparison of PHY proposals that use different sampling rates. If someone can do better, or the value of this approach is outweighed by its higher coding complexity, that's OK with me. If the SG3a consensus is that the proposed stuff is not worth the bother, I would be fine with that, so long as another means of producing channel realizations at other sampling rates is evaluated (i.e., actually run and model characteristics measured) and deemed to be acceptable by the group.
%%%%%%%%%%%%%%%%% uwb_sv_eval_ct.m
% S-V channel model evaluation
clear;

ts = 0.167; % sampling time (nsec)
num_channels = 100; % number of channel impulse responses to generate

randn('state',12); % initialize state of function for repeatability
rand('state',12); % initialize state of function for repeatability

cm_num = 2; % channel model number
% get channel model params based on this channel model number
[Lam,lambda,Gam,gamma,std_ln_1,std_ln_2,nlos] = uwb_sv_params(cm_num);
fprintf(1,['Model Parameters\n' ...
 'Lam = %.4f, lambda = %.4f, Gam = %.4f, gamma = %.4f\n' ...
 'std_ln_1 = %.4f, std_ln_2 = %.4f, NLOS flag = %d\n'], ...
 Lam, lambda, Gam, gamma, std_ln_1, std_ln_2, nlos);

% get a bunch of realizations (impulse responses)
[h_ct,t_ct,t0,np] = uwb_sv_model_ct(Lam, lambda, Gam, gamma, std_ln_1, std_ln_2, nlos, ...
 num_channels);
% now reduce continuous-time result to a discrete-time result
[hN,N] = uwb_sv_cnvrt_ct(h_ct, t_ct, np, num_channels, ts);
% if we wanted complex baseband model or to impose some filtering function,
% this would be a good place to do it, although beware of unit-power-normalization below
if N > 1,
 h = resample(hN, 1, N); % decimate the columns of hN by factor N
else
 h = hN;
end
for k = 1:num_channels % normalize to unit power
 h(:,k) = h(:,k) / sqrt(real(h(:,k)' * h(:,k)));
end

h_len = size(h,1);
t = [0:(h_len-1)]' * ts; % for use in computing excess & RMS delays

for k=1:num_channels
 % determine excess delay and RMS delay
 sq_h = h(:,k).^2;
 t_norm=t-t0(k);
 excess_delay(k) = (t_norm)' * sq_h;
 RMS_delay(k) = sqrt((t_norm.^2)'*sq_h - excess_delay(k)^2);

 % determine number of significant paths (paths within 10 dB from peak)
 threshold_dB = -10; % dB
 temp_h = abs(h(:,k));
 temp_thresh = 10^(threshold_dB/20) * max(temp_h);
 num_sig_paths(k) = sum(temp_h > temp_thresh);

 % determine number of sig. paths (captures x % of energy in channel)
 x = 0.85;
 temp_sort = sort(temp_h.^2); % sorted in ascending order of energy
 cum_energy = cumsum(temp_sort(end:-1:1)); % cumulative energy
 index_e = min(find(cum_energy >= x * cum_energy(end)));
 num_sig_e_paths(k) = index_e;
end

mean_excess_delay = mean(excess_delay);
mean_RMS_delay = mean(RMS_delay);
mean_sig_paths = mean(num_sig_paths);
mean_sig_e_paths = mean(num_sig_e_paths);

fprintf(1,'Model Characteristics\n');
fprintf(1,'Mean delays: excess (tau_m) = %.1f ns, RMS (tau_rms) = %1.f\n', ...
 mean_excess_delay, mean_RMS_delay);
fprintf(1,['# paths: within 10 dB of peak (NP_10dB) = %.1f, ' ...
 '85%% capture (NP_85%%) = %.1f\n'], ...
 mean_sig_paths, mean_sig_e_paths);

figure(1); clf; plot(t,h); grid on
title('Impulse response realizations')
xlabel('Time (nS)')

figure(2); clf; plot(excess_delay); grid on
title('Excess delay (nS)')
xlabel('Channel number')

figure(3); clf; plot(RMS_delay); grid on
title('RMS delay (nS)')
xlabel('Channel number')

figure(4); clf; plot(num_sig_paths); grid on
title('Number of significant paths within 10 dB of peak')
xlabel('Channel number')

figure(5); clf; plot(num_sig_e_paths); grid on
title('Number of significant paths capturing > 85% energy')
xlabel('Channel number')

temp_average_power=sum(h'.*(h)')/num_channels;
temp_average_power=temp_average_power/max(temp_average_power);
average_decay_profile_dB=10*log10(temp_average_power);
figure(6)
plot(t,average_decay_profile_dB)
grid on
title('Average Power Decay Profile')
% axis([0 20 -20 0])
xlabel('Delay (nsec)')
ylabel('Average power (dB)')

%%% save data to files
[r_out,c_out]=size(h_ct);
h_out=zeros(r_out,c_out+1);
h_out(:,1)=t_ct;
h_out(:,2:(c_out+1))=h_ct;
save cm1_imr.mat h_out;
save cm1_imr.out h_out -ASCII;

%%%%%%%%%%%%%%% uwb_sv_params – no change to code structure, same as before

%%%%%%%%%%%%%%% uwb_sv_model_ct
function [h,t,t0,np] = uwb_sv_model_ct(Lam, lambda, Gam, gamma, std_ln_1, std_ln_2, nlos, ...
 num_channels)
% IEEE 802.15.3a UWB channel model for PHY proposal evaluation
% continuous-time realization of modified S-V channel model
% Input parameters:
% Lam Cluster arrival rate in GHz (avg # of clusters per nsec)
% lambda Ray arrival rate in GHz (avg # of rays per nsec)
% Gam Cluster decay factor (time constant, nsec)
% gamma Ray decay factor (time constant, nsec)
% std_ln_1 Standard deviation of log-normal variable for cluster fading
% std_ln_2 Standard deviation of log-normal variable for ray fading
% nlos Flag to specify generation of Non Line Of Sight channels
% num_channels number of random realizations to generate
% Outputs
% h is returned as a matrix with num_channels columns, each column
% holding a random realization of the channel model (an impulse response)
% t is organized as h, but holds the time instances (in nsec) of the paths whose
% signed amplitudes are stored in h
% t0 is the arrival time of the first cluster for each realization
% np is the number of paths for each realization.
% Thus, the k'th realization of the channel impulse response is the sequence
% of (time,value) pairs given by (t(1:np(k),k), h(1:np(k),k))

% initialize and precompute some things
std_L = 1/sqrt(2*Lam); % std dev (nsec) of cluster arrival spacing
std_lam = 1/sqrt(2*lambda); % std dev (nsec) of ray arrival spacing
mu_const = (std_ln_1^2+std_ln_2^2)*log(10)/20; % pre-compute for later
h_len = 1000; % there must be a better estimate of # of paths than this
ngrow = 1000; % amount to grow data structure if more paths are needed
h = zeros(h_len,num_channels);
t = zeros(h_len,num_channels);
t0 = zeros(1,num_channels);
np = zeros(1,num_channels);

for k = 1:num_channels % loop over number of channels
 tmp_h = zeros(size(h,1),1);
 tmp_t = zeros(size(h,1),1);
 if nlos,
 Tc = (std_L*randn)^2 + (std_L*randn)^2; % First cluster random arrival
 else
 Tc = 0; % First cluster arrival occurs at time 0
 end
 t0(k) = Tc;
 ln_xi = std_ln_1*randn; % set cluster fading
 path_ix = 0;
 while (Tc < 10*Gam)
 % Determine Ray arrivals for each cluster
 Tr = 0; % first ray arrival defined to be time 0 relative to cluster
 while (Tr < 10*gamma)
 t_val = (Tc+Tr); % time of arrival of this ray
 mu = (-10*Tc/Gam-10*Tr/gamma)/log(10) - mu_const;
 ln_beta = mu + std_ln_2*randn;
 pk = 2*round(rand)-1;
 h_val = pk * 10^((ln_xi+ln_beta)/20); % signed amplitude of this ray
 path_ix = path_ix + 1; % row index of this ray
 if path_ix > h_len,
 % grow the output structures to handle more paths as needed
% fprintf(1,'Growing CIR length from %d paths to %d\n', length(tmp_h)+[0 ngrow]);
 tmp_h = [tmp_h; zeros(ngrow,1)];
 tmp_t = [tmp_t; zeros(ngrow,1)];
 h = [h; zeros(ngrow,num_channels)];
 t = [t; zeros(ngrow,num_channels)];
 h_len = h_len + ngrow;
 end
 tmp_h(path_ix) = h_val;
 tmp_t(path_ix) = t_val;
 Tr = Tr + (std_lam*randn)^2 + (std_lam*randn)^2;
 end
 Tc = Tc + (std_L*randn)^2 + (std_L*randn)^2;
 end
 np(k) = path_ix; % number of rays (or paths) for this realization
 tmp_h(1:np(k)) = tmp_h(1:np(k)) / sqrt(tmp_h(1:np(k))'*tmp_h(1:np(k))); % normalize
 [sort_tmp_t,sort_ix] = sort(tmp_t(1:np(k))); % sort in ascending time order
 t(1:np(k),k) = sort_tmp_t;
 h(1:np(k),k) = tmp_h(sort_ix(1:np(k)));
end
return

%%%%%%%%%%%%%%%%%%% uwb_sv_cnvrt_ct
function [hN,N] = uwb_sv_cnvrt_ct(h_ct, t, np, num_channels, ts)
% convert continuous-time channel model h_ct to N-times oversampled discrete-time samples
% h_ct, t, np, and num_channels are as specified in uwb_sv_model
% ts is the desired time resolution
%
% hN will be produced with time resolution ts / N.
% It is up to the user to then apply any filtering and/or complex downconvertsion and then
% decimate by N to finally obtain an impulse response at time resolution ts.

min_Nfs = 100; % GHz
N = max(1, ceil(min_Nfs*ts)); % N*fs = N/ts is the intermediate sampling frequency before decimation
N = 2^nextpow2(N); % make N a power of 2 to facilitate efficient multi-stage decimation
% NOTE: if we force N = 1 and ts = 0.167, the resulting channel hN will be identical to
% the results from earlier versions that did not use continuous-time.
Nfs = N / ts;
t_max = max(t(:)); % maximum time value across all channels
h_len = 1 + floor(t_max * Nfs); % number of time samples at resolution ts / N
hN = zeros(h_len,num_channels);
for k = 1:num_channels
 np_k = np(k); % number of paths in this channel
 t_Nfs = 1 + floor(t(1:np_k,k) * Nfs); % vector of quantized time indices for this channel
 for n = 1:np_k
 hN(t_Nfs(n),k) = hN(t_Nfs(n),k) + h_ct(n,k);
 end
end

Submission
Page

D. Kawaguchi, Symbol Technologies
Submission
Page

Jeff Foerster, Intel R&D

