WiMAX Forum Evaluation Group (WFEG) for IMT-Advanced

Evaluation Progress Update

I-Kang Fu, MediaTek Inc.

IK.Fu@mediatek.com

17 May 2010

Outline

- WFEG Activities since Feb. 2010
- Updated Simulation Results
- Comments on IEEE's RIT Proposal
- Conclusion

WFEG Activities since Feb. 2010

- Invite members to submit updated calibration and simulation results
 - Updated simulation results from LG Electronics, ETRI and ITRI
 - Updated calibration results from NEC
- Xian F2F meeting
 - April 20, 2010 at Xian (西安), China.
 - Review the comments received during Feb. ITU-R WP5D meeting
 - Review the updated calibration and simulation results
 - Discuss the comments on IEEE's RIT proposal
 - Authorize WFEG Chair to draft final report to ITU-R WP5D

Cell/cell-edge user spectral efficiency in the TDD downlink

Test Environment	ITU Requires	nent	Source 1	Source 2	Source 3	Source 5	Average
Indoor (InH)	Cell	3.0	6.75	5.82	: 8	7.10	6.557
	Cell-Edge User	0.10	0.235	0.126		0.286	0.216
	Ť		T	100			
Microcellular (UMi)	Cell	2.6	3.45	3.72	3.30	3.28	3.438
	Cell-Edge User	0.075	0.087	0.108	0.107	0.112	0.104
	*	54 70		2			
Base Coverage Urban (UMa)	Cell	2.2	2.62	2.78	2.53	2.41	2.585
	Cell-Edge User	0.06	0.071	0.074	0.081	0.069	0.074
		200	198	100			
						.53	
High Speed (RMa)	Cell	1.1	3.58	2.81		2.88	3.09

Cell/cell-edge user spectral efficiency in the TDD uplink

Test Environment	ITU Requires	nent	Source 1	Source 2	Source 3	Source 5	Average
Indoor (InH)	Cell	2.25	5.20	5.59		6.79	5.860
	Cell-Edge User	0.07	0.361	0.203		0.491	0.352
Microcellular (UMi)	Cell	1.8	2.6	2.98	2.53	2.62	2.683
	Cell-Edge User	0.05	0.137	0.096	0.091	0.106	0.108
Base Coverage Urban (UMa)	Cell	1.4	2.38	2.51	2.49	2.86	2.560
	Cell-Edge User	0.03	0.113	0.097	0.091	0.123	0.106
High Speed (RMa)	Cell	0.7	2.45	2.10		2.87	2.473
	Cell-Edge User	0.015	0.125	0.061		0.114	0.100

Cell/cell-edge user spectral efficiency in the FDD downlink

Test Environment	ITU Requirer	nent	Source 1	Source 2	Source 3	Source 5	Average
Indoor (InH)	Cell	3.0	6.85	5.81		6.89	6.517
3	Cell-Edge User	0.10	0.239	0.118		0.266	0.208
Microcellular (UMi)	Cell	2.6	3.57	3.56	3.41	3.14	3.420
	Cell-Edge User	0.075	0.090	0.103	0.109	0.108	0.103
Base Coverage Urban (UMa)	Cell	2.2	2.63	2.63	2.61	2.30	2.543
	Cell-Edge User	0.06	0.069	0.069	0.091	0.063	0.073
	35			-			
High Speed (RMa)	Cell	1.1	3.58	2.72		2.72	3.007
	Cell-Edge User	0.04	0.095	0.076		0.087	0.086

Cell/cell-edge user spectral efficiency in the FDD uplink

Test Environment	ITU Requires	nent	Source 1	Source 2	Source 3	Source 5	Average
Indoor (InH)	Cell	2.25	5.40	5.49	35	7.05	5.980
	Cell-Edge User	0.07	0.377	0.184		0.511	0.357
Microcellular (UMi)	Cell	1.8	2.66	2.97	2.75	2.73	2.778
	Cell-Edge User	0.05	0.141	0.110	0.107	0.110	0.117
Base Coverage Urban (UMa)	Cell	1.4	2.38	2.35	2.66	2.86	2.563
	Cell-Edge User	0.03	0.113	0.096	0.097	0.123	0.107
High Speed (RMa)	Cell	0.7	2.45	2.05		2.99	2.497
mgn speed (rawa)	Cell-Edge User	0.015	0.130	0.063		0.118	0.104

VoIP capacity results for TDD

Test Environ	nment	Source 1	Source 3	Source 5	Average
Indoor (InH)	UL	154		176	165
	DL	146		135	
	Min of UL and DL	146		135	140
	ITU Requirement	50	50	50	50
			į.	- 2	
Microcellular (UMi)	UL	99		110	104
	DL	84	86	77	82
	Min of UL and DL	84	86	77	82
	ITU Requirement	40	40	40	40
	26 24	20.0	25	. 26	
Base Coverage	UL	93		98	95
Urban (UMa)	DL	78	78	68	74
	Min of UL and DL	78	78	68	74
	ITU Requirement	40	40	40	40
	365 55.0	\$5.0	9	(98)	
High Speed	UL	101		106	103
	DL	99	ľ	80	89
	Min of UL and DL	99		80	89
	ITU Requirement	30	30	30	30

VoIP capacity results for FDD

Test Enviror	ment	Source 1	Source 3	Source 5	Average
Indoor (InH)	UL	156		176	166
	DL	144		134	139
	Min of UL and DL	144	ř	134	139
	ITU Require ment	50	50	50	50
Microcellular (UMi)	UL	100		104	102
	DL	80	84	68	77
	Min of UL and DL	80	84	68	77
	ITU Requirement	40	40	40	40
Base Coverage	UL	94	Î	96	95
Urban (UMa)	DL	74	80	64	72
	Min of UL and DL	74	80	64	72
	ITU Requirement	40	40	40	40
	4: 6: 4: 6:	\$00		40	
High Speed	UL	102		100	101
	DL	96		84	90
	Min of UL and DL	96		84	90
	ITU Requirement	30	30	30	30

Evaluating the mobility requirement for TDD

Test E	nvironment	Source 1	Source 2	Source 3	Source 5	Average
Indoor (InH)	LOS	3.51	4.02		4.00	3.843
	NLOS	3.41	3.67			3.540
	ITU Requirement	1.0	1.0	1.0	1.0	1.0
Microcellular	LOS	1.64	1.80		1.98	1.807
(UMi)	NLOS	1.33	1.55	1.66		1.513
	ITU Requirement	0.75	0.75	0.75	0.75	0.75
	81 10 1					
Base	LOS	1.58	1.59		1.85	1.673
Coverage Urban (UMa)	NLOS	1.26	1.28	1.33		1.290
Orodar (O Mid)	ITU Requirement	0.55	0.55	0.55	0.55	0.55
High Speed	LOS	1.54	1.74		1.85	1.71
	NLOS	1.23	1.58			1.405
	ITU Requirement	0.25	0.25	0.25	0.25	0.25

Evaluating the mobility requirement for FDD

Test Er	vironment	Source 1	Source 2	Source 3	Source 5	Average
Indoor (InH)	LOS	3.64	4.16	8	4.08	3.960
	NLOS	3.56	3.65			3.605
	ITU Requirement	1.0	1.0	1.0	1.0	1.0
Microcellular	LOS	1.70	1.79		1.74	1.743
(UMi)	NLOS	1.41	1.55	1.60		1.520
	ITU Requirement	0.75	0.75	0.75	0.75	0.75
Base	LOS	1.66	1.60	X	1.60	1.62
Coverage Urban (UMa)	NLOS	1.30	1.24	1.38	***	1.307
oroan (o ma)	ITU Requirement	0.55	0.55	0.55	0.55	0.55
				-		No.
High Speed	LOS	1.61	1.71		1.60	1.640
(RMa)	NLOS	1.27	1.55	/3		1.410
	ITU Requirement	0.25	0.25	0.25	0.25	0.25

Comments on LBT

Comments:

 No differentiation between the bandwidth of UL control channel and UL data channel

Observation:

- According to IEEE's RIT proposal, the UL control channel (i.e. Ranging channel) will only occupy a portion of the bandwidth.
- The parameter in LBT does not reflect this characteristic, which will result in incorrect UL LBT calculation and worse UL coverage.

Recommendation:

 Agree with IEEE's self-evaluation results. Suggest to further update the UL LBT to differentiate the channel bandwidth of UL control and UL data channel.

Bandwidth of UL control channel in P802.16m/D5

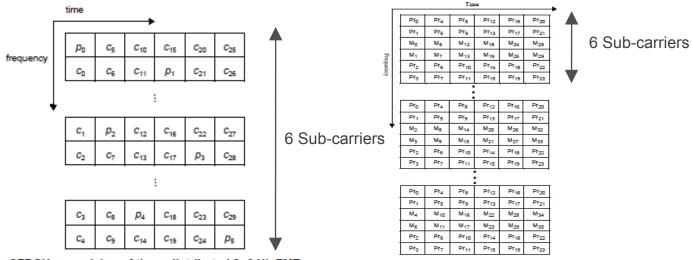


Figure 557—SFBCH comprising of three distributed 2x6 UL FMTs

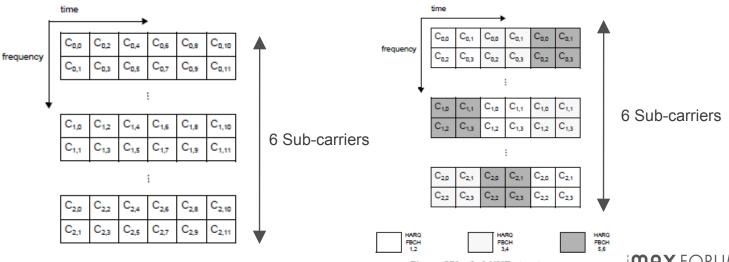


Figure 555—PFBCH comprised of three distributed 2x6 UL FMTs

Figure 558-2x2 HMT structure

igure 560-6x6 BR Tile Structure in the Advance Air Interface

Comments on DL peak spectral efficiency

Comments:

 The overhead due to mid-amble was not included in the calculation of the DL peak spectral efficiency

Observation:

 According to IEEE self-evaluation result, overhead from MIMO mid-amble seems not considered in DL peak spectral efficiency calculation, which will result in slightly difference on the calculation result.

Recommendation:

Agree with IEEE's self-evaluation results. Suggest to further update the DL peak spectral efficiency values in section 7.2.4 and section 8.2 of IEEE's RIT proposal with inclusion of MIMO mid-amble overhead

• Possible update on L1/L2 Overhead for DL peak spectral efficiency

Assumption	Overhead	Minimum Fraction of Radio Frame Resources	Maximum Fraction of Radio Frame Resources
10 MHz Bandwidth	L1 Overhead	0.3104	0.3104
CP = 1/8 DL 2×2 Antenna Configuration	Total Overhead (L1/L2)	0.3532	0.4380
20 MHz Bandwidth	L1 overhead	0.2824	0.2824
CP = 1/16 DL 4×2 Antenna Configuration	Total overhead (L1/L2)	0.3029	0.3441

Comments on control plane latency

Comments:

 The assumption on super frame header (SFH) sub-packet (SP) #1 and #2 transmission periodicity should be reduced

Observation:

- In the updated IEEE 802.16m draft standard received from IEEE, the value of the SFH SP1 and SP2 transmission frequency seems to be different than the original value in IEEE's RIT proposal
- The updated value is 40ms, where the original value is 50ms.

Recommendation:

 Agree with IEEE's self-evaluation results. Suggest to further correct the control plane latency calculation to reflect a lower value in updated IEEE 802.16m draft standard

Possible update on control plane latency calculation

0	AMS wakeup time	Implementation dependent	Implementation dependent		
	, me nate ap mile	40 ms < 50 ms	40 ms <-50 ms		
1	DL scanning and synchronization + Acquisition of the broadcast channel (system configuration information) for network re-entry initial system entry	Assuming that S-SFH SP12 that contains network re-entry information is transmitted every 50 40 ms. This could further reduce if SP2 is transmitted more frequently	Assuming that S-SFH SP12 that contains network re-entry information is transmitted every 50-40 ms. This could further reduce if SP2 is transmitted more frequently		
2	Random access procedure (UL CDMA Code + ABS Processing + DL CDMA_ALLOC_IE)	5 ms	5 ms		
3	Initial ranging (RNG-REQ + ABS processing + RNG-RSP) + HARQ retransmission of one message at 10% or 30%, only first-order estimation	HARQ case: 1 frame * 0.9*0.9 + 2 frame * 2*0.1*0.9 + 3 frame * 0.1*0.1 = 1.2 frame = 6 ms The assumption is the message will either succeed in #1 transmission with probability=0.9 or succeed in #2 transmission with probability=0.1	1.6 frame = 8 ms The assumption is the message will		
4	Capability negotiation (SBC-REQ + ABS processing + SBC-RSP) + HARQ retransmission	<5 ms (0.1 *5 ms for HARQ ReTX)	<5 ms (0.3 * 5 ms for HARQ ReTX)		
5	Authorization and authentication/key exchange (PKM-REQ + ABS processing + PKM-RSP +) +HARQ retransmission	<5 ms (0.1 * 5 ms for HARQ ReTX)	<5 ms (0.3 * 5 ms for HARQ ReTX)		
6	Registration (REG-REQ + ABS/ASN- GW processing + REG-RSP) + HARQ retransmission	<5 ms (0.1 * 5 ms for HARQ ReTX)	<5 ms (0.3*5 ms for HARQ ReTX)		
7	RRC connection establishment (DSA- REQ + ABS processing + DSA-RSP + DSA-ACK) + HARQ retransmission	<5 ms (0.1 *5 ms for HARQ ReTX)	< 5 ms (0.3 * 5 ms for HARQ ReTX)		
	Total C-plane connection establishment delay	< 31 ms	< 33 ms		
	Total IDLE_STATE -> ACTIVE_ACTIVE delay	< 71 84 ms	< 73 83 ms		

Conclusion

- WFEG will submit final report to ITU-R WP5D Meeting in June 2010
 - Base on the preliminary report to ITU-R WP5D submitted in Feb. 2010
 - Including the updated simulation results on IEEE's RIT proposal from WFEG members
 - Quantitative assessment shows that IEEE's RIT proposal satisfies all the requirements per ITU-R M.2133 Section 4.2.4
 - Several comments on IEEE's self-evaluation results are identified
 - Regarding to link budget, peak spectral efficiency and control plan latency
 - WFEG has not received the evaluation results on 3GPP's RIT proposal from WFEG members

