
IEEE C802.16p-11/0146

	Project
	IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16>

	Title
	Proposal for a Minimum Access Window

	Date Submitted
	2011-07-10

	Source(s)
	Erik Colban, Bin Chen, George Calcev, Ronald Mao
Huawei Technologies Co., Ltd.

	E-mail: ecolban@huawei.com
*<http://standards.ieee.org/faqs/affiliationFAQ.html>

	Re:
	Call for Comments on the 802.16p Amendment Working Document <IEEE 802.16p-10/0018r2>

	Abstract
	This contribution proposes the use of a minimum access window to avoid large number of devices accessing the network in a short time interval.

	Purpose
	Discuss and adopt

	Notice
	This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the “Source(s)” field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein.

	Copyright Policy
	The contributor is familiar with the IEEE-SA Copyright Policy <http://standards.ieee.org/IPR/copyrightpolicy.html>.

	Patent Policy
	The contributor is familiar with the IEEE-SA Patent Policy and Procedures:

<http://standards.ieee.org/guides/bylaws/sect6-7.html#6> and <http://standards.ieee.org/guides/opman/sect6.html#6.3>.

Further information is located at <http://standards.ieee.org/board/pat/pat-material.html> and <http://standards.ieee.org/board/pat>.

Proposal for a Minimum Access Window
Erik Colban, George Calcev, Bin Chen et al.
Huawei
Abstract
This contribution proposes the use of a minimum access window to avoid large number of devices accessing the network in a short time interval.
Background
One of the most important features of M2M communication is that it needs to handle a large number of devices (there may be as many as 30,000 devices in a cell). Call models used for dimensioning of networks used for human communications may not apply to M2M communications. Unlike communications that are initiated by humans, M2M communications are typically triggered by events. Catastrophic events such as earthquakes, flooding, fire, power outages are examples of such events. Other examples are events that are not catastrophic by nature, but that, by the laws of their statistical distribution in time or by the way that the devices have been programmed to react to them, occasionally cause a number of devices larger than normal to access the network at the same time. Without measures in place to handle such bursts of network access, the network could become congested, which has detrimental consequences.

The procedure that the device must initiate to obtain an allocation depends on the state of the device. If the subscriber station is in idle state—and it is expected that M2M devices will spend most time in idle state—the procedure starts with initial ranging. If there are thousands of subscriber stations ranging within a short time interval, the probability of collisions is very high. With thousands of M2M devices sending ranging codes over a very short time interval, the BS may not be able to decode correctly more than a very few of the transmitted codes or, even worse, none at all.

The backoff mechanism specified in the standard has the effect of spreading the ranging from the different subscriber stations over a larger interval of time, thus reducing the probability of collisions. However, if the number of devices attempting ranging is higher than the capacity of the BS over a longer period of time, the backoff mechanism results in an increase in the number of overall ranging attempts since the subscriber stations will continue ranging until they are either successful or they have exhausted the number of permitted attempts. This effect is illustrated by simulations.
In order to avoid congestion from large number of devices accessing the network in a short interval of time, we suggest that the M2M devices apply a minimum access window. Upon events that may require a large number of devices to access the network, an M2M device shall wait a random time before accessing the network. Examples of such events are recovery from power outage, system wide error reporting, group paging of large groups of devices, etc. The waiting time is uniformly distributed within the minimum access window. The minimum access window size is a new system parameter. Note that this proposal is different from simply increasing the initial backoff window size. We illustrate the benefits of this proposal through simulations.
Simulation

We used simulation assumptions described in IEEE C802.16p-11/0126 “Evaluation Guideline for Comparison of Network Entry Solutions”, produced by the 802.16 WG, M2M TG, Network Entry ad-hoc group. In particular,
· Number of devices = 12000

· Reporting period = 1 through 5 minutes in increments of 15 seconds
· 1 ranging opportunity per frame

· Initial backoff window size = 2

· Max backoff window size = 65536

· Max number of retries = 8
· T3 timer set to 60 ms

· 0% misdetection and false alarm probability

The results of two independent runs are shown in Figure 1.

[image: image1.png]M Seriesl
M Series2

1.2
0.8
0.6
0.4
0.2

Shv
[l 04
STv
00:v
Speg
0€:€
ST-€
00:€
Sve
0€:C
STC
00:C
SPT
0T
STT
00T

Figure 1: Success rate for 12000 devices accessing the network in a given interval of time.

We note that when the access is distributes over 3 minutes or more, the success rate is high. The few devices that possibly fail to access the network (because they have exhausted the number of ranging retries) may restart the procedure. However, if the M2M devices were to report every 1 minute – which is one of the scenarios in IEEE 802.16p-10/0005 “Machine to Machine (M2M) Communications Technical Report”, which C802.16p-11/0126 references –, then the success rate would be very low, unless the number of ranging opportunities were increased (3 or 4 ranging opportunities per frame would be sufficient, according to our simulations).
For the scenario “Unsynchronized Alarm Reporting or Network Access”, where 12000 devices access the network in 10 seconds, increasing the number of ranging opportunities is not a solution, as it would require continuously reserving resources for events that occur seldom.

We tried several solutions to address the “Unsynchronized Alarm Reporting or Network Access” scenario. One of the solutions that we tried, which achieved an adequate success rate, was to increase the number of retries from 8 to 16. The results from a couple of simulation runs are shown below:
NUM_MOBILE_STATIONS = 12000

REPORTING_PERIOD = 2000

NUM_RNG_CHANNELS = 1

INITIAL_BACKOFF_WINDOW_SIZE = 2
MAX_NUM_RETRIES = 16

Last frame = 136424

Success = 11986
Failure = 14
Tries = 174097

Avg number of tries per device = 174097 / 12000 = 14.5

NUM_MOBILE_STATIONS = 12000

REPORTING_PERIOD = 2000

NUM_RNG_CHANNELS = 1

INITIAL_BACKOFF_WINDOW_SIZE = 65536
MAX_NUM_RETRIES = 16

Last frame = 157353

Success = 12000

Failure = 0
Tries = 14449
Avg number of tries per device = 14449 / 12000 = 1.2

Although the success rate is high, the time used to complete the procedure for all devices is more than 11 minutes, which is more than 3 times the time needed to achieve a comparable success rate by distributing the access over a 3 minute interval. Therefore, we propose that M2M devices, when accessing the network, first randomly select an access time within a minimum access window, and then proceed with the normal network access procedure by selecting a ranging opportunity within the initial backoff window, etc. For example, in a network represented by the simulation parameters above, the size of the minimum access window would be 3 minutes (or 36000 frames).
Proposed Changes
Change 1: On page 3, modify section 6.3.9.5.1 as follows:
>>>>>>>>>>>>>>>>>>>> Start of Change <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

6.3.9.5.1 Contention-based initial ranging and automatic adjustments

First, an SS shall synchronize to the DL and learn the UL channel characteristics through the UCD MAC

management message. At this point, the SS shall scan the UL-MAP message to find an initial ranging

interval. The BS shall allocate an initial ranging interval consisting of one or more transmission

opportunities. For SC and OFDM PHY, the size of each transmission opportunity shall be as specified by the

UCD TLV, Ranging Request Opportunity Size.

For SC and OFDM PHY, the SS shall put together a RNG-REQ message to be sent in an initial ranging

interval. The duration of the burst carrying the RNG-REQ message shall be as specified in the Ranging

Request Burst Size TLV (see 11.3.1). The CID field shall be set to the noninitialized SS value (zero). For the

OFDM PHY, the initial ranging process may include a subchannelized mechanism specified in 8.3.7.2. For

the OFDMA PHY, the initial ranging process shall begin by sending initial ranging CDMA codes on the UL

allocation dedicated for that purpose (for more details see 6.3.10.3), instead of RNG-REQ messages sent on

contention slots. An M2M device shall apply a uniform random process to select the start of the initial backoff window from a window whose size is greater than or equal to the Minimum Access Window Size. The Minimum Access Window Size may be overridden by a MOB_PAG-ADV or M2M_POLL-ADV message, in which case, the overriding value shall only apply to the ranging process that is in response to that message. The Minimum Access Window Size does not apply to the power outage procedure, see <??>.
>>>>>>>>>>>>>>>>>>>> End of Change <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

On page 6, add the following change:

>>>>>>>>>>>>>>>>>>>> Start of Change <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

[Add the following row to Table 554—Parameters and constants]

	M2M device
	Minimum Access Window Size
	The minimum size in number of frames of a window from which the M2M device shall randomly select the frame in which it starts the ranging procedure
	 --
	 --
	 --

Annex A: Simulation Code

A.1 Base Station

package com.huawei.ecolban.m2m.access;

import java.util.Arrays;

/**

 *

 * @author Erik

 */

public class BaseStation {

 private final int NUM_MOBILE_STATIONS = 12000;

 int REPORTING_PERIOD = 10 * 200; // 10 seconds

 final int MAX_NUM_RETRIES = 8;

 final int NUM_RNG_CHANNELS = 1;

 final int INITIAL_BACKOFF_WINDOW_SIZE = 2;

 final int MAX_BACKOFF_WINDOW_SIZE = 65536;

 int frameNumber = 0;

 private int numRange = 0;

 private MobileStation[] mobileStations = new MobileStation[NUM_MOBILE_STATIONS];

 private final MobileStation collision = new MobileStation(null);

 private MobileStation[] mobilesRanging = new MobileStation[NUM_RNG_CHANNELS];

 /**

 * Instantiates the MS, then runs 100 simulations of a power outage.

 * @param args ignored

 */

 public static void main(String[] args) {

 BaseStation bs = new BaseStation();

 System.out.println("NUM_MOBILE_STATIONS = " + bs.NUM_MOBILE_STATIONS);

 System.out.println("REPORTING_PERIOD = " + bs.REPORTING_PERIOD);

 System.out.println("NUM_RNG_CHANNELS = " + bs.NUM_RNG_CHANNELS);

 System.out.println("INITIAL_BACKOFF_WINDOW_SIZE = " + bs.INITIAL_BACKOFF_WINDOW_SIZE);

 System.out.println("MAX_NUM_RETRIES = " + bs.MAX_NUM_RETRIES);

 for (int i = 0; i < bs.mobileStations.length; i++) {

 bs.mobileStations[i] = new MobileStation(bs);

 }

 int[] success = new int[16];

 int[] failure = new int[16];

 for (int i = 0; i < 16; i++) {

 bs.REPORTING_PERIOD = (i + 4) * 15 * 200; // 1 - 5 minutes

 bs.run();

 for (int j = 0; j < bs.mobileStations.length; j++) {

 success[i] += bs.mobileStations[j].numberOfSuccesses;

 failure[i] += bs.mobileStations[j].numberOfFailures;

 }

 System.out.println("Last frame = " + bs.frameNumber);

 }

 System.out.println(Arrays.toString(success));

 System.out.println(Arrays.toString(failure));

 }

 /**

 * Single run of a power outage simulation.

 * @return

 */

 private void run() {

 reset();

 boolean stillRanging = false;

 while (frameNumber <= REPORTING_PERIOD || stillRanging) {

 advanceFrame();

 stillRanging = false;

 for (int i = 0; i < mobileStations.length; i++) {

 if (mobileStations[i].ranging) {

 stillRanging = true;

 break;

 }

 }

 }

 }

 /**

 * Advances by one frame, processes received ranging,

 */

 private void advanceFrame() {

 frameNumber++;

 for (int i = 0; i < NUM_RNG_CHANNELS; i++) {

 if (mobilesRanging[i] == null) {

 //

 } else if (mobilesRanging[i] == collision) {

 //

 } else {

 mobilesRanging[i].rangingSuccess();

 }

 mobilesRanging[i] = null;

 }

 for (MobileStation ms1 : mobileStations) {

 ms1.advanceFrame();

 }

 }

 /**

 * Called by the MS to simulate transmission of a ranging code

 * @param ms the MS that is ranging

 * @param channel the ranging channel

 */

 void range(MobileStation ms, int channel) {

 numRange++;

 if (mobilesRanging[channel] == null) {

 mobilesRanging[channel] = ms;

 } else {

 mobilesRanging[channel] = collision;

 }

 }

 /**

 * Resets the BS so that it is ready for a new simulation run.

 */

 private void reset() {

 frameNumber = 0;

 for (int i = 0; i < mobilesRanging.length; i++) {

 mobilesRanging[i] = null;

 }

 for (int i = 0; i < mobileStations.length; i++) {

 mobileStations[i].reset();

 }

 }

}

A.2 Mobile Station

package com.huawei.ecolban.m2m.access;

import java.util.Random;

/**

 *

 * @author Erik

 */

public class MobileStation {

 BaseStation bs;

 /* true if the MS has selected a ranging opportunity*/

 boolean ranging = false;

 int numberOfTries = 0;

 int numberOfSuccesses = 0;

 int numberOfFailures = 0;

 private int t3 = 0; //stopped

 private boolean t3Running = false;

 private int rangingFrameNumber;

 private int rangingChannel;

 private int backoffWindowSize;

 private Random random = new Random();

 /* the frame when the MS starts ranging by selecting a ranging opportunity*/

 private int startRangingFrameNumber;

 /**

 * Constructor

 * @param nMax configurable parameter used in selecting a ranging opportunity.

 */

 MobileStation(BaseStation bs) {

 super();

 this.bs = bs;

 }

 /**

 * Called by the BS when the MS must process the transition to a new frame.

 */

 void advanceFrame() {

 // DL messages received in this frame already processed

 if (ranging) {

 if (t3Running && t3 > 0) {

 t3--;

 } else if (t3Running && t3 == 0) { //t3 has expired

 if (numberOfTries < bs.MAX_NUM_RETRIES + 1) {

 t3Running = false;

 adjustBackoffWindowSize();

 selectOpportunity();

 } else {

 // maxNumberOfRetries exceeded;

 rangingFailed();

 }

 }

 } else { // Not ranging

 if (bs.frameNumber == startRangingFrameNumber) {

 backoffWindowSize = bs.INITIAL_BACKOFF_WINDOW_SIZE;

 selectOpportunity();

 ranging = true;

 }

 }

 // UL processing

 if (bs.frameNumber == rangingFrameNumber) {

 assert !t3Running;

 bs.range(this, rangingChannel);

 t3 = 12; // 60 ms

 numberOfTries++;

 t3Running = true;

 }

 }

 /**

 * Called by the BS when the MS has successfully ranged. Simulates sending

 * a CDMA_Allocation_IE. It is called in the next frame after receiving the

 * ranging signal.

 */

 void rangingSuccess() {

 numberOfSuccesses++;

 assert numberOfTries <= bs.MAX_NUM_RETRIES + 1;

 rangingReset();

 }

 /*

 * Called by this MS when the number of ranging retries has reached its max.

 */

 private void rangingFailed() {

 numberOfFailures++;

 assert numberOfTries == bs.MAX_NUM_RETRIES + 1;

 rangingReset();

 }

 private void adjustBackoffWindowSize() {

 if (backoffWindowSize < bs.MAX_BACKOFF_WINDOW_SIZE) {

 backoffWindowSize *= 2;

 }

 backoffWindowSize = Math.min(bs.MAX_BACKOFF_WINDOW_SIZE, backoffWindowSize);

 }

 /**

 * Selects a ranging opportunity within the backoff window. Uses a

 * uniform distribution.

 */

 private void selectOpportunity() {

 int selected = random.nextInt(backoffWindowSize);

 rangingFrameNumber = bs.frameNumber + selected / bs.NUM_RNG_CHANNELS;

 rangingChannel = selected % bs.NUM_RNG_CHANNELS;

 }

 /**

 * Resets the MS so it is ready to start a new simulation run.

 */

 void reset() {

 startRangingFrameNumber = random.nextInt(bs.REPORTING_PERIOD) + 1;

 rangingFrameNumber = 0;

 numberOfFailures = 0;

 numberOfSuccesses = 0;

 numberOfTries = 0;

 ranging = false;

 t3 = 0;

 t3Running = false;

 }

 /**

 * Resets the MS so it is ready for a new ranging.

 */

 private void rangingReset() {

 numberOfTries = 0;

 ranging = false;

 t3 = 0;

 t3Running = false;

 }

}

