Project	IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16 >				
Title	Corrections for AAS IE in OFDMA PHY				
Date Submitted	2004-11-1				
Source(s)	Tal Kaitz, Ran YanivAlvariontal.kaitz@alvarion.com, ran.yaniv@alvarion.com				
	Dave Pechner, Doug Dahlby, Adam Kerr, ToddArrayComm Inc.dpechner@arraycomm.com, dahlby@arraycomm.com, adam@arraycomm.com, chauvin@arraycomm.comChauvin				
Re:	IEEE P802.16-REVd/D5				
Abstract	This contribution introduces corrections to the definitions of the AAS-IE in the OFDMA PHY				
Purpose	Adopt into P802.16d/D5 corrigenda				
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.				
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.				
Patent Policy and Procedures	The contributor is familiar with the IEEE 802 16 Patent Policy and Procedures				

Corrections for AAS IE in OFDMA PHY Dave Pechner, Todd Chauvin

1 Problems with the current AAS IE definition

- 1) The definition of a DL AAS Zone by the AAS_DL_IE is incomplete. The DL AAS Zone must be completely defined by the AAS_DL_IE. Missing information include:
 - OFDMA Symbol Offset
 - AAS Zone Duration
 - Preamble Type (frequency or time shifted)
 - Preamble Configuration (number of symbols)
 - Default preamble shift index
 - AAS Diversity-Map Scan indicator
 - AMC tile configuration
- 2) The definition of an UL AAS Zone by the AAS_UL_IE is incomplete. The UL AAS Zone must be completely defined by the AAS_UL_IE. Missing information include:
 - OFDMA Symbol Offset
 - AAS Zone Duration
 - Preamble Type (frequency or time shifted)
 - Preamble Configuration (number of symbols)
 - Default preamble shift index
 - AMC tile configuration

2 Outline of proposed solution

The following changes are proposed. Specific text changes are presented in the next section.

- 1) Update the AAS_DL_IE definition to completely define the DL AAS Zone
- 2) Update the AAS_UL_IE definition to completely define the UL AAS Zone

3 Proposed Text Changes

Section 8.4.5.3.3:

[Replace section 8.4.5.3.3 with the following:]

Within a frame, the switch from non-AAS to AAS-enabled traffic is marked by using the extended DIUC = 15 with the AAS_DL_IE() to indicate that the subsequent allocations shall be for AAS traffic. , until the start of the first UL MAP allocation using TDD, and until the end of the frame using FDD, shall be for AAS traffic. The AAS Zone duration is specified as a number of consecutive symbols. Multiple AAS Zones can exist within the same frame. When used, the CID in the DL-MAP_IE() shall be set to the broadcast CID. All DL bursts in the AAS portion of the frame may be preceded by a an AAS preamble based on the indication "Downlink_preamble_config" field in the AAS_DL_IE(). The preamble is defined in 8.4.6.3.1. The preamble is defined in 8.4.6.1.1, and shall be selected to have the same segment number as the DL frame preamble, and the cell ID shall equal to (*DL Preamble IDcell + 16) mod 32*. The preamble shall exist only on those sub-channels used by the DL burst.

Syntax	Size	Notes
AAS DL IE() {		
Extended DIUC	4 bits	AAS = 0x02
Length	4 bits	Length = 0x03
Permutation	2 bits	0b00 = PUSC permutation
		0b01 = FUSC permutation
		0b10 = Optional FUSC permutation
		0b11 = AMC permutation
DL_PermBase	6 bits	
OFDMA Symbol Offset	8 bits	
DL AAS Zone Duration	8 bits	Specified in OFDMA symbols
Preamble Indication	1 bit	0 = Frequency shifted preamble
		1 = Time shifted preamble
Preamble indication	2 bits	0b00 = No preamble
Preamble Configuration		0b01 = Preamble used
		0b10 – 0b11 = Reserved
		0b00 - 0 symbols
		0b01 - 1 symbols
		0b10 - 2 symbols
		0b11 - 3 symbols
AAS Diversity-Map Scan Indication	2 bits	0b00 – Diversity Map Scan present
		0b01 – Diversity Map Scan not included
		0b10 – Reserved
		0b11 - Reserved
If (AMC Permutation) {		
AMC Configuration	2 bits	0b00 = 6x1 tiles
		0b01 = 3x2 tiles
		0b10 = 2x3 tiles
		0b11 – 1x6 tiles
}		
Else {		

[Modify table 276 as follows:]

Reserved	2 bits	Set to Zero
}		
Padding	1 bit	Set to Zero
-First bin index 6 bits When	index of the first	Segment
Permutation=0b10, this indicates the	band allocated to	
	this AMC	
-Last bin index 6 bits When	index of the last	Segment
Permutation=0b10, this indicates the	band allocated to	
	this AMC	
}		

Permutation

Defines the permutation used within the DL AAS Zone

DL_PermBase

Permutation Base for specified DL AAS Zone

OFDMA Symbol offset

The offset of the OFDMA symbol in which the AAS Zone starts, measured in OFDMA symbols from beginning of the current downlink frame.

AAS Zone Duration

The duration of the specified AAS Zone, measured in OFDMA symbols.

Preamble Indication

Defines the type of preamble used in the DL AAS Zone.

Preamble Configuration

Defines the number of DL AAS preambles to be used before each DL burst in the AAS Zone.

AAS Diversity-Map Scan

Indicates if the AAS Diversity-Map Scan Zone is present in the downlink AAS Zone.

AMC Configuration

Defines the tile structure of the AMC permutation in the DL AAS Zone. This field is only used if the AAS Zone utilizes the AMC permutation.

Section 8.4.5.4.6:

[Replace section 8.4.5.4.6 with the following:]

Within a frame, the switch from non-AAS to AAS-enabled traffic is marked by using the extended UIUC = 15 with the AAS_UL_IE() to indicate that the subsequent allocation until the end of the frame shall be for AAS traffic. The UL AS Zone duration is specified as a number of consecutive symbols. Multiple UL AAS Zones can exist within the same frame. When used, the CID in the UL-MAP_IE() shall be set to the broadcast CID. All UL bursts in the AAS portion of the frame may be preceded by a an AAS preamble based on the indication "Uplink_preamble_config" field in the AAS_UL_IE().The preamble is defined in section 8.4.4.6.3.2.

[Modify table 291 as follows:]

Syntax	Size	Notes
--------	------	-------

AAS UL IE() {		
Extended UIUC	4 bits	AAS = 0x02
Length	4 bits	Length = 0x03
Permutation	2 bits	0b00 = PUSC permutation
		0b01 = FUSC permutation
		0b10 = AMC permutation
		0b11 = Reserved
UL_PermBase	7 bits	
OFDMA Symbol Offset	8 bits	
DL AAS Zone Duration	8 bits	Specified in OFDMA symbols
Preamble Indication	1 bit	0 = Frequency shifted preamble
		1 = Time shifted preamble
Preamble indication	2 bits	0b00 = No preamble
Preamble Configuration		0b01 = Preamble used
		$\frac{0b10 - 0b11 = \text{Reserved}}{00000000000000000000000000000000000$
		0b00 - 0 symbols
		0b01 - 1 symbols
		0b10 - 2 symbols
		0b11 - 3 symbols
If (AMC Permutation) {		
AMC Configuration	2 bits	0b00 = 6x1 tiles
		0b01 = 3x2 tiles
		0b10 = 2x3 tiles
		0b11 – 1x6 tiles
}		
Else {		
Reserved	2 bits	Set to Zero
}		
Padding	2 bits	Set to Zero
-First bin index 6 bits When	index of the first	Segment
Permutation=0b10, this indicates the	band allocated to	
	this AMC	
-Last bin index 6 bits When	index of the last	Segment
Permutation=0b10, this indicates the	band allocated to	
	this AMC	
}		

Permutation

Defines the permutation used within the UL AAS Zone

OFDMA Symbol offset

The symbol offset of the UL AAS Zone. This is referenced to the start of the DL frame plus the value TTG.

UL_PermBase

Permutation Base for specified UL AAS Zone

AAS Zone Duration

The duration of the specified UL AAS Zone, measured in OFDMA symbols.

Preamble Indication

Defines the type of preamble used in the UL AAS Zone.

Preamble Configuration

Defines the number of UL AAS preambles to be used before each UL burst in the AAS Zone.

Preamble Shift Index

Default value of K in equations 100 and 101. This should match the beam index value in the DLFP message

AMC Configuration

Defines the tile structure of the AMC permutation in the UL AAS Zone. This field is only used if the AAS Zone utilizes the AMC permutation.