Study of IEEE 802.16 Mobile Multi-hop Relay

IEEE 802.16 Presentation Submission Template (Rev. 8.3)

Document Number:

IEEE C802.16mmr-05/001

Date Submitted:

2005-09-09

Source:

Kenji Saito, Mitsuo Nohara, Keizo Sugiyama	Voice:	+81-46-847-6350
KDDI R&D Laboratories Inc. YRP Research Center	Fax:	+81-46-847-0947
7-1 Hikarinooka, Yokosuka, Kanagawa 239-0847, Japan	E-mail:	<u>saito@kddilabs.jp</u>

Venue:

IEEE 802.16 Session #39, Taipei, Taiwan

Base Document:

None

Purpose:

Information

Notice:

This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release:

The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures http://ieee802.org/16/ipr/patents/policy.html, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices/.

Study of IEEE 802.16 Mobile Multi-hop Relay

Kenji Saito, Mitsuo Nohara, Keizo Sugiyama KDDI R&D Laboratories Inc. YRP Research Center

September, 2005

Contents

- Review of #38 session
- Study items of Mobile Multi-hop Relay (MMR)
- Related work
- Requirement of MMR
- Summary

Review of #38 session [1/3]

- Purpose
 - Coverage extension
 - Throughput enhancement
- Focus in MMR SG (Refer to C802.16-05/013)

		Infrastructure	Client
M	esh	No	No
	Fixed	Yes	No
Relay	Nomadic	Yes	Yes
	Mobile	Yes	No

Inter-SS/MS communication like ad-hoc network is out of scope.

Review of #38 session [2/3]

• Fixed / Nomadic Relay

Review of #38 session [3/3]

Mobile Relay

Study items for MMR

		Relay		
		Fixed / Nomadic	Mobile	
Frame structur	ame structure based on PMP Common subject		n subject	
Network entry procedure		Common subject		
	L2 routing		For both RS and MS	
Mobility	HO sequence	For MS		
Woomry	Optimal route selection			
Radio Resource ManagementFrequency reuse strategyCoordination b BS and RSInterferenceInterference				
	•	Coordination between BS and RS	More complex than Fixed / Nomadic	
	Interference			
Synchronizatio	n	Common but more co	omplicated for mobile	
Security		Common	subject	

There may be more security issues for the client RS compared with Infra-ones.

Related work [1/2]

IEEE Std 802.16-2004 Mesh mode

Mesh scheduling		Content	
Distributed	Coordinated	Schedule coordination to all neighbor SSs	
Distributed	Un-coordinated	Schedule negotiation by directed requests and grants between two SSs	
Centralized		 Mesh BS Determination of flow assignments by resource requests from SSs SS Determination of actual schedule from Mesh BS's flow assignments 	

MMR resembles the concept of Centralized than Distributed mode in IEEE 802.16-2004 Mesh.

Related work [2/2]

IEEE 802.16-2004 Mesh mode (Centralized scheduling)

• MSH-CSCF message

	Syntax	Size	Nodes
	MSH-CSCF_Message_Format() {		
	Management Message Type = 43	8 bits	
	Configuration sequence number	4 bits	
	NumberOfChannels	4 bits	
	for (i=0; i < NumberOfChannels; ++i) {		
	Channel index	4 bits	
	}		
ŀ	Padding Nibble	0 or 4 bits	Pad till byte boundary.
4	NumberOfNodes	8 bits	>
	for (i=0; i< NumberOINodes; ++1) {		
	NodeID	16 bits	Node index for this node is <i>i</i> .
	NumOfChildren	8 bits	
	for (j=0; j< NumberOrChildren; ++j) {		
	Child Index	S bits	Index of j th child node.
(Uplink Burst Profile	4 bits	Burst profile from j th child node.
	Downlink Burst Profile	4 bits	Burst profile to j th child node.
	}		
	}		
	}		

Requirement of MMR [1/2]

- Backward compatible to PMP mode
 - PHY Compatible to PMP frame structure

Support OFDM / OFDMA

- MAC Common network entry procedure for MS
- Support for 802.16TGe MS
- Minimum change of the existed standard / devise function
 - BS Some changes of BS function may be necessary, such as firmware update
 - MS Few change of MS function, if possible
- Efficient RS
 - RS may need to have a part of BS function
 - Active repeater

Requirement of MMR [2/2]

Network entry procedure (case of passive repeater)

Passive repeater

۲

- Passive repeater only retransmits a message/data
- BS recognizes that the passive repeater is MS
 - MS recognizes that the passive repeater is BS
- BS could not create exact MAP information for relayed MS

Active repeater is required for MMR

Summary

- Review of #38 session
 - Focus of MMR is Relay, not Mesh
- Study items of MMR
 - Fixed / Nomadic Relay
 - Mobile Relay
- Requirement of MMR
 - Backward compatible to PMP mode
 - Efficient RS