Cover Sheet for Presentation to IEEE 802.16 Broadband Wireless Access Working Group (Rev. 0)

Document Number:		
IEEE 802.16.1pp-00/14a		
Title:		
Tamed Frequency Modulation TFM (CQPSK) in the	802.16.1 Upstre	eam
Date Submitted:		
00-03-09		
Source:		
Lars Lindh	Voice:	+358 9 4376 6671
Nokia Research Center	Fax:	+358 9 4376 6851
P.O. Box 407, FIN-00045	E-mail:	lars.lindh@nokia.com
NOKIA GROUP, Finland		
Venue:		
Meeting #6 in Albuquerque		
Base Document:		
http://grouper.ieee.org/groups/802/16/phy/contrib/80216	1pc-00_14.pdf	
Purpose:		
This contribution tries to clarify some of the issues relate	d to Tamed Free	quency Modulation (TFM).
Notice:		
This document has been prepared to assist the IEEE 802. individual(s) or organization(s). The material in this docu		as a basis for discussion and is not binding on the contributing to change in form and content after further study. The

Release:

The contributor acknowledges and accepts that this contribution may be made public by 802.16. IEEE Patent Policy:

contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

The contributor is familiar with the IEEE Patent Policy, which is set forth in the IEEE-SA Standards Board Bylaws <<u>http://standards.ieee.org/guides/bylaws</u>> and includes the statement: "IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard."

Tamed Frequency Modulation TFM (CQPSK) in the 802.16.1 Upstream

Lars Lindh

IEEE 802.16.1 Session #6 Mar. 2000

Issues covered

- Spectral Efficiency
 - TFM spectrum occupancy
 - Net Filter Discrimination
 - TFM bitrate
- Bit Error Rate
 - The Optimal TFM receiver
 - BER curves
- Power Amplifier structures
 - The 28 GHz Linear Upconverter
 - The VCO Modulated 28 GHz Transmitter

TFM spectrum occupancy

Net Filter Discrimination NFD

$$NFD = \frac{\overset{+\times}{S_{I}(f)df}}{\underset{+\times}{S_{I}(f)|H(f)|^{2}df}}$$

Ratio between the power transmitted by the interfering system and the portion that can be measured after the receiver filter in the adjacent channel

Required and realized NFD

	Interferer			
Receiver	TFM	4QAM	16QAM	
TFM	20.7 dB	20.7 dB	20.7 dB	
4QAM	19.7 dB	19.7 dB	19.7 dB	
16QAM	26.7 dB	26.7 dB	26.7 dB	

- NFD between TFM and QAM with different values of alphas
- Required NFD assuming equal power and BER=10⁻⁴
- -> QAM curves 2,3 and 4 has sufficient NFD for TFM with relative bitrate of 1.33

The Optimal TFM receiver

- The optimal TFM receiver selects the most likely signal from all possible signal sequences
 - Squared minimum distance between sequences will determine the performance

QPSK has squared minimum distance 2, TFM 1.594

- Optimal receiver is complex but a Viterbi based TFM receiver has an almost equally good performance
- All TFM receivers need an optimal filter
 - Raised Cosine not suitable for TFM
 - Asymtotically Optimum Filter (AOF) good choice
- Also a simple MSK-type receiver has moderate performance when used with an optimal filter

BER Performance of TFM and QPSK

- 1 QPSK with optimal receiver
- 2 TFM with optimal receiver
- 3 TFM with MSKreceiver and AOF-filter
- 4 TFM with MSKreceiver and RC-filtering

28 GHz Linear Upconverter

- The maximum linear output from a mixer is around -10 dBm, after filtering -11.5 dBm
- To reach +20 dBm level 31.5 dB of HPA gain is needed
- The gain of 28 GHz amplifier stage with good yield is 9 +-2 dB (unit, temp, freq)
- Total of 5 stages are needed, with max gain of 55 dB, unstability, noise floor, image
- => to compensate tolerances extra 20 dB gain adjustment range is needed, with 50 dB output power range we end up with adjustment range of 70 dB + other tolerances
- Note that ALC detector is needed even with closed loop power control to avoid saturation of non-constant amplitude modulation

VCO modulated 28 GHz transmitter

- The output from a buffered multiplier is around +13 dBm and to reach +20 dBm level only 13.5 dB of HPA gain is needed
- The gain of 28 GHz amplifier stage with good yield is 9 +-2 dB
- Total of 2 stages are needed, with max gain of 22 dB
- => to compensate tolerances extra 8.0 dB gain adjustment range is needed, with 50 dB output power rang we end up with adjustment range of 58.0 dB + other tolerances
- Note that ALC detector is not necessary with closed loop power control, since HPA can freely saturate. Smaller FETs can be used to produce the output power
- Higher efficiency in power amplifier -> reduced heat sinking and mechanics

Conclusions

- NFD analysis shows that TFM does not interfere with 16-QAM when transmitting in the adjacent channel in a typical scenario where
 - BER = 10⁻⁴
 - TFM and QAM received with the same power
 - QAM alpha >= 0.2
 - TFM relative bitrate = 1.33
- BER analysis shows that there is no more than 1 dB difference in BER curves between QPSK and optimal TFM. Viterbi based TFM receiver with optimal filter is close to optimal TFM. Even MSK-type TFM receiver with optimal filter performs well.
- Big savings can be done in transmitters when using TFM. At 28 GHz TFM uses 2 stages where QPSK needs 5. The difference is even larger at higher frequencies
 - -> reduced cost terminals viable with TFM