Simulation on Aggregate Interference from Wireless Access Systems including RLANs into Earth Exploration-Satellite Service in the 5250-5350 MHz Band

> Spectrum Engineering Branch Industry Canada March, 2002

BACKGROUND

Current Canada/United States/CEPT provisions for RLAN applications

Current ITU Allocation

WRC-03 consideration

Overall Comparison of Allocations and provisions for RLANs and other services in the 5GHz range

Current Canada/United States/CEPT technical rules for RLAN applications

Characteristics of EESS

Characteristics of EESS in the 5GHz range

5	0	5		
J	~	J	U	

EES

SRS

RADIOLOC

MS/ms - RLANs

FS/fs – FWA (R3)

• Radar scatterometers

- useful for determining the roughness of large objects such as ocean waves
- Radio altimeters
 - used to determine the height of the Earth's land and ocean surfaces
- Imaging radars (synthetic aperture radars)
 - used to produce high resolution images of land and ocean surfaces.
- In this analysis only one of the imaging radars (SAR 4-most sensitive) and altimeters were examined

Characteristics of SARs in the 5 GHz range

Parameter	SAR 2	SAR 3	SAR 4	
Orbital Altitude	600 km (circular)	400 km (circular)	400 km (circular)	
Orbital inclination	57 degrees	57 degrees	57 degrees	
Frequency	5405 MHz	5405 MHz	5300 MHz	
Peak Radiated Power	4800 W	1700 W	1700 W	
Pulse Bandwidth	310 MHz	310 MHz	40 MHz	
Antenna Orientation	20-38 deg from nadir	20-55 deg from nadir	20-55 deg from nadir	
Receiver Noise Figure	4.62 dB	4.62 dB	4.62 dB	
Footprint	164.3 km ²	225.3 km ²	76.5 km ²	
Receiver Bandwidth	356.5 MHz	356.5 MHz	46 MHz	
Noise Power	-113.84 dBW	-113.84 dBW	-122.73 dBW	
Interference Threshold	-119.84 dBW	-119.84 dBW	-128.73 dBW	

Characteristics of outdoor WAS/RLANs

Outdoor WAS in the 5250-5350 MHz Range

Parameter	Value
Frequency	5.3 GHz
Bandwidth	20 MHz
Antenna Gain Pattern —azimuth plane	Omnidirectional (for simulation purposes)
Antenna Gain pattern — elevation plane	Implicit within proposed EIRP mask to be shown later
Antenna tilt	0 degrees
Cell radius	1.5 km
Transmitter Power	250 mW
Scattering Coefficient	17 dB
Active Ratio	100%

EIRP mask used in simulation

WAS EIRP mask above local horizon

-14 dBW/MHz -14 -0.711 (θ -5) dBW/MHz -38.9 -1.222(θ-40) dBW/MHz -45 dBW/MHz for $0^{\circ} \le \theta < 5^{\circ}$ for $5^{\circ} \le \theta < 40^{\circ}$ for $40^{\circ} \le \theta < 45^{\circ}$ for $\theta > 45^{\circ}$

 θ =elevation angle above the local horizon For θ <0, EIRP= -13 dBW/MHz

Characteristics of indoor WAS/RLANs

Characteristics of Indoor WAS systems

	Indoor Type 1	Indoor Type 2	
Parameter	Value	Value	
Frequency	5.3 GHz	5.3 GHz	
Bandwidth	20 MHz	20 MHz	
Antenna	Isotropic (for simulation purposes)	Isotropic (for simulation purposes)	
Antenna gain	0 dBi	0 dBi	
Transmitter power	250 mW	200 mW	
Building loss	18 dB	18 dB	
Active Ratio	100%	100%	

Distribution of WAS/RLANs

Distribution of WAS/RLANs

 Based on population data from the UN, cell radius of WAS/RLANs and perceived deployment rate.
Deployment factor of 30% was used. See ITU-R Doc. 8A-9B/83

City A (extremely large city)

- Population = 17.6 million
- Include effects of stations operating in sub-urban areas surrounding the city as well as to simulate effects of aggregate interference from stations operating in near-by cities, the radius was extended from 54 km to approximately 81 km.

City B (medium size city)

- Population = 3.7 million
- Radius of this city = approximately 12 km. An actual radius of 18 km was used to account for effects from stations operating in sub-urban areas as well as effects from near-by cities.

Distribution of WAS/RLANs

	Case 1	Case 2	Case 3	
Indoor	Indoor Type 1	Indoor Type 2	Indoor Type 1	
Number of active systems	440	440	440	
Deployment Area (km ²)	76.5	76.5	76.5	
Density (number of active systems/km ²)	5.75	5.75	5.75	
Outdoor	Large city City A	Large city City A	Medium city City B	
Number of active systems	870	870	43	
Deployment Area (km ²)	13122	13122	648	
Density (number of active systems/km ²)	0.066	0.066	0.066 18	

Methodology

- Within each cell:
 - one station transmitting at all times
- One-third of all transmitters has an additional scattering coefficient of 17 dB
- 3dB polarization loss for outdoor systems
- OdB polarization loss for indoor systems
- no atmospheric attenuation is assumed
- The satellite was simulated to run for a period of 30 days, the period of time in which the EESS would receive maximum interference was then revisited with time steps of 200 milliseconds. The results shown here represent a period of time in which the EESS would be visible by the WAS systems in a single orbit in which EESS would experience the maximum possible interference from the aggregate interference of WAS.
- Free space propagation
- Building loss = 18 dB

Simulation

Results of simulation

Aggregate interference from indoor and outdoor WAS into SAR 4 at 20 degrees from nadir

Aggregate interference from WAS into SAR 4 at 20 degree from nadir

Aggregate interference from indoor and outdoor WAS into SAR 4 at 55 degrees from nadir

23

Aggregate interference from indoor and outdoor WAS into an altimeter

24

Summary of Result

EESS	SAR 4 @ 20deg from nadir		SAR 4 @ 55deg from nadir			Altimeter	
WAS (see Table 7)	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3	Case 1
Interference criterion (dBW/MHz) (100% of the time)	-145.36	-145.36	-145.36	-145.36	-145.36	-145.36	-143.05
Maximum interference (dBW/MHz)	-142.9	-143.8	-143.9	-138.3	-139.1	-138.7	
Duration of time in which Interference > Interference criterion	1.6 sec	1.4 sec	1 sec	3.2 sec	3.2 sec	2.8 sec	0

Observations

 Actual deployment of WAS indoor and outdoor is expected to be less than what is assumed in this analysis.

- The result represents worst case interference for the EESS
 - interference is expected to be less at any other time.

EIRP mask

- Based on comparison of results between City A and City B, the EIRP mask for outdoor WAS can be increased by at least 3 dB and the interference criterion for the SAR should still be met for the vast majority of cities in the world. Hence, the EIRP mask can be modified as follows:
 - -11 dBW/MHz
 - -11 0.711(θ –5) dBW/MHz
 - -35.9 1.222 (θ 40) dBW/MHz
 - -42 dBW/MHz

 $0^{\circ} \le \theta < 5^{\circ}$ $5^{\circ} \le \theta < 40^{\circ}$ $40^{\circ} \le \theta < 45^{\circ}$ $\theta \ge 45^{\circ}$

where θ is the elevation angle above local horizon in degrees.

 However, since a maximum EIRP of 1W (-13 dBW/MHz) is allowed, the proposed EIRP mask then becomes...

Proposed EIRP mask for outdoor WAS/RLANs

-13 dBW/MHz $0^{\circ} \le \theta < 5^{\circ}$ -13 - 0.711(θ -5) dBW/MHz $5^{\circ} \le \theta < 40^{\circ}$ -35.9 - 1.222 (θ - 40) dBW/MHz $40^{\circ} \le \theta < 45^{\circ}$ -42 dBW/MHz $\theta \ge 45^{\circ}$

where θ is the elevation angle above local horizon in degrees.

Further Simulation

Further simulation

- Regulatory concerns on how to enforce the proposed outdoor EIRP mask
- Simulation performed for SAR 4 operating at 55 degrees from nadir
- Assumed ALL of the WAS/RLANs were pointing upward, although still using the EIRP mask as proposed.
- Pointing angles assumed: 0 to 10 and 0 to 20 degrees

Further simulation

Figure 2: Interference from indoor & outdoor WAS (including the effect of scattering) into SAR 4 (55 deg from nadir) -100 -105 300 400 500 600 100 200 -110 -115 -120 -125 -130 135 **THW -140** -145 -150 -155 -155 -160 0 deg 0 to 10 deg 0 to 20 deg I criterion -160 -165 -170 23 sec -175 ∢₽ -180 29 sec -185 -190 -195 -200 seconds

Conclusion

Conclusion

- With respect to sharing between EESS and WAS/RLANs in the 5250-5350 MHz
 - Sharing appears to be feasible given that indoor systems have a maximum EIRP of 250 mW and that outdoor systems employ certain technical constraints such as the EIRP mask as proposed
- With respect to sharing between EESS and WAS/RLANs in the 5470-5570 MHz range
 - Further studies are required to examine the impact on wideband SARs (SAR 2 and SAR 3)
- Not covered in this presentation sharing between WAS/RLANs and Radiolocation in the 5GHz range