
2002-01-05 IEEE C802.16a-02/11

 0

Project IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16>

Title LB4 Comment Support

Date
Submitted

2002-01-04

Source(s) Mika Kasslin
Nokia
Itämerenkatu 11-13
00180 Helsinki, Finland

Voice: +358-718036294
Fax: +358-718036856
[mailto:mika.kasslin@nokia.com]

Re: LB4 on 802.16a/D1

Abstract This contribution contains text related to the letter ballot comments provided by the author.

Purpose Discuss the text when addressing the comments.

Notice This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on
the contributing individual(s) or organization(s). The material in this document is subject to change in form and
content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained
herein.

Release The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution,
and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name
any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole
discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The
contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent
Policy and
Procedures

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0)
<http://ieee802.org/16/ipr/patents/policy.html>, including the statement “IEEE standards may include the known
use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-
developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants
under reasonable terms and conditions for the purpose of implementing the standard.”

Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to
reduce the possibility for delays in the development process and increase the likelihood that the draft publication will
be approved for publication. Please notify the Chair <mailto:r.b.marks@ieee.org > as early as possible, in written
or electronic form, of any patents (granted or under application) that may cover technology that is under
consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE
802.16 web site <http://ieee802.org/16/ipr/patents/notices>.

2002-01-05 IEEE C802.16a-02/11

 1

LB4 Comment Support
Mika Kasslin

Nokia

Introduction
This paper contains supporting text for the LB4 comments provided by the author. This document is not a
standalone document but should be used in parallel with the related commentary file.

Comment 1 related tables:

Table X1 – Mesh Sub-header Format

Syntax Size Notes
Mesh sub-header() {
 TxNbrID 8 bits
 RxNbrID 8 bits
 FSMID 3 bits
 Priority 2 bits
 Reliability 1 bits
 Importance 2 bits
}

Table X2 – Mesh Sub-header Fields

Name Length
(bits)

Description

TxNbrID 8 The ID assigned by the transmitter node to the receiver node
RxNbrID 8 The ID assigned by the receiver node to the transmitter node
FSMID 3 Fragmentation state machine ID
Priority 2 Priority field indicates message class
Reliability 1 Message reliability information carried with message from ingress to egress.

0 = no ARQ
1 = ARQ used

Importance 2 Indicates drop precedence

Comment 10 related text and tables:

SchedulingEpochPeriod
Number of frames the reported schedule shall be valid defined as follows:

ValidFrames = 2SchedulingEpochPeriod

SchedulingConfigPeriod
The frequency that this MSH-CSCF message is distributed.

CentSchedXmtsPerFrame
Number of MSH-CSCH or MSH-CRQS transmit opportunities per frame

SchedConfigXmtsPerFrame
Number of MSH-CSCF transmit opportunities per frame

NumberOfChannels
Number of channels available

NumOfNodes
Number of nodes in scheduling tree

2002-01-05 IEEE C802.16a-02/11

 2

Each entry of the scheduling tree shall include all of the following parameters:
NodeID

Unique node identifier assigned to the node
NumOfChildren

Number of child nodes for the node
ChildIndex

Index of the child node

Table X3 – MSH-CSCF Message Format.

Syntax Size Notes
MSH-CSCH_Message_Format() {
 Generic_MAC_Header() 48 bits
 Management Message Type = 42 8 bits
 SchedulingEpochPeriod 8 bits
 SchedulingConfigPeriod 8 bits
 CentSchedXmtsPerFrame 3 bits
 SchedConfigXmtsPerFrame 2 bits
 NumberOfChannels 3 bits
 NumOfNodes 8 bits
 for (i=0; i< NumOfNodes; ++i) {
 NodeID 16 bits Node index for this node is thus i
 NumOfChildren 8 bits
 for (j=0; j< NumOfChildren; ++j) {
 ChildIndex 8 bits Index of jth child node
 }
 }
}

Comment 14 related new sub-clause:

6.2.7.6.4.5.1 Scheduling next MSH-NCFG transmission

During the current Xmt Time of a node (i.e., the time slot when a node transmits its MSH-NCFG packet), the
node uses the following procedure to determine its Next Xmt Time:

- Order its physical neighbor table by the Next Xmt Time.
- For each entry of the neighbor table, add the node’s Next Xmt Time to the node’s Xmt Holdoff

Time to arrive at the node’s Earliest Subsequent Xmt Time.
- Set TempXmtTime equal to the node’s advertised Xmt Holdoff Time added to the current Xmt

Time.
- Set success equal to false
- While success equals false do:

o If TempXmtTime equals the Next Xmt Time of any node in the Physical Neighbor List
Then
� Set TempXmtTime equal to next MSH-NCFG opportunity.

o Else Do:

2002-01-05 IEEE C802.16a-02/11

 3

� Determine the eligible competing nodes, which is the set of all nodes in the physical
neighbor list with an Earliest Subsequent Xmt Time equal to or smaller than
TempXmtTime.

� Hold a Mesh Election among this set of eligible competing nodes and the local node
using TempXmtTime and the list of the MAC addresses of all eligible competing
nodes as the input:
 MeshElection (TempXmtTime, MyMacAdr, CompetingMacAdrsList[])

� If this node does not win Mesh election Then
• Set TempXmtTime equal to next MSH-NCFG opportunity.

� Else Do
• Set success equal to true
• Set the node’s Next Xmt Time equal to TempXmtTime.

The Mesh Election procedure determines whether the local node is the winner for a specific TempXmtTime
among all the competing nodes. It returns TRUE if the local node wins or FALSE otherwise. The algorithm works
as follows:

boolean MeshElection (uint32 XmtTime, uint32 MyMacAdr, uint32 MacAdrList[])
{
 uint32 nbr_smear_val, smear_val1, smear_val2;

 smear_val1 = inline_smear(MyMacAdr ^ XmtTime);
 smear_val2 = inline_smear(MyMacAdr + XmtTime);

 For each mac address nbrsMacAdr in MacAdrList Do
 {
 nbr_smear_val = inline_smear(nbrsMacAdr ^ XmtTime);

 if(nbr_smear_val > smear_val1)
 {
 return FALSE; // This node looses.
 }

 else if(nbr_smear_val == smear_val1)
 {
 // 1st tie-breaker.

 nbr_smear_val = inline_smear(nbrsMacAdr + XmtTime);

 if(nbr_smear_val > smear_val2)
 {
 return FALSE; // This looses.
 }

 else if(nbr_smear_val == smear_val2)
 {
 // If we still collide at this point
 // Break the tie based on MacAdr

 if ((XmtTime is even && (nbrsMacAdr > MyMacAdr)) ||
 (XmtTime is odd && (nbrsMacAdr < MyMacAdr)))
 {
 return FALSE; // This node looses.
 }

2002-01-05 IEEE C802.16a-02/11

 4

 }
 }
 }

 // This node won over this competing node

 } // End for all competing nodes

 // This node is winner, it won over all competing nodes.
 return TRUE;
}

// Convert a uniform 32-bit value to an uncorrelated uniform
// 32-bit hash value, uses mixing.

uint32 inline_smear(uint32 val)
{
 val += (val << 12);
 val ^= (val >> 22);
 val += (val << 4);
 val ^= (val >> 9);
 val += (val << 10);
 val ^= (val >> 2);
 val += (val << 7);
 val ^= (val >> 12);

 return(val);
}

Comment 15 related new sub-clause:

6.2.7.6.4.5.2 Scheduling MSH-NENT messages

NetEntry scheduling protocol described in this section provides the upper layer protocol an unreliable mechanism
to access the NetEntry slot(s), which are the very first slot(s) in each super-frame, so that new nodes, which are not
yet fully-functional members of the network, can communicate with the fully-functional members of the network.

In the NetEntry slots new nodes shall transmit MSH-NENT messages using one of two methods:
1. In a random, contention-based fashion in a free network entry transmission slot immediately

following a MSH-NCFG transmission by a proposed sponsor node, or
2. In a network entry transmission slot in which the new node is polled by its sponsor.

To support the above network entry transmission slot access scheme, the MSH-NCFG packets, transmitted by the
normal network nodes, include a “NetEntry Address” field, set to one of the following two values:

1. 0x000000000000 – indicating that the next NetEntry transmission slot is free for contention-
based access in this node’s neighborhood,

2. <MAC Address of New Node> - indicating that the transmitting node is serving as the
“sponsor” for the identified new node, and that the new node is polled by the sponsor to
transmit in the next NetEntry transmission slot.

A sponsor node is a normal fully-functional member of the network that is selected to communicate with a new
node. In order to access the NetEntry transmission slot, MSH-NENT messages should include the address of a

2002-01-05 IEEE C802.16a-02/11

 5

target “sponsor” node, which can then decide whether to advertise the new node’s MAC address in its subsequent
MSH-NCFG message(s).

When the sponsor expects to receive a MSH-NENT message from the new node, it advertises the new node’s
MAC address in its next MSH-NCFG message to allow the new node to send a MSH-NENT message in the next
NetEntry slot following the reception of the MSH-NCFG message.

A new node uses the algorithm specified by the following C-like pseudocode to access NetEntry transmission
slots:

/* Variable Definitions */
Pkt * MSH-NENT_MsgQ = NULL; // MSH-NENT Message queue
uint SponsorsState = UNAVAILABLE; // SponsorsState and OthersState record the NetEntry
uint OthersState = BUSY;

// Address in the MSH-NCFG packet form the sponsor
// or other nodes in the previous supperframe, which
// can be used to determine the availability of the
// NetEntry slot in the current supperframe.
// SponsorsState can be UNAVAILABLE, AVAILABLE and POLLING.
// OthersState can be AVAILABLE and BUSY.

uint OthersMaxMacAdr = 0xffffffff;
uint OthersMinMacAdr = 0x00000000;

void RecvOutgoingMSH-NENT_Msg (Pkt *MSH-NENT_Msg)
{

MSH-NENT_MsgQ->enqueue (MSH-NENT_Msg);
}

void RecvIncomingMSH-NCFG_Msg (Pkt * MSH-NCFG_Msg)
{

if (MSH-NCFG_Msg->sourceMacAdr == sponsorsMacAdr)
{

switch (MSH-NCFG_Msg->NetEntryAddress)
{

case 0x000000000000: SponsorsState = AVAILABLE;
break;

case myMacAdr: SponsorsState = POLLING;
break;

default: break;
}

}
else
{

switch (MSH-NCFG_Msg->NetEntryAddress)
{

case 0x000000000000: break;

default: OthersState = BUSY;
if (OthersMaxMacAdr < MSH-NCFG_Msg->NetEntryAddress)

OtherMaxMacAdr = MSH-NCFG_Msg->NetEntryAddress;
if (OthersMinMacAdr > MSH-NCFG_Msg->NetEntryAddress)

OtherMinMacAdr = MSH-NCFG_Msg->NetEntryAddress;
}

}

2002-01-05 IEEE C802.16a-02/11

 6

}

void SuperFrameBoundary ()
{

boolean xmt = FALSE;

if (MSH-NENT_MsgQ->qLength())
{

if (SponsorsState == AVAILABLE)
{

if (OthersState != BUSY)
{

xmt = TRUE;
}

}
else if (SponsorsState == POLLING)
{

if (OthersState != BUSY)
{

xmt = TRUE;
}
else
{

if (((mayMacAdr > OthersMaxMacAdr) && (even supperframe)) ||
 ((mayMacAdr < OthersMinMacAdr) && (odd supperframe)))

{
xmt = TRUE;

}
}

}
}

if (xmt)
{

Pkt* MSH-NENT_Msg = MSH-NENT_MsgQ->getHead();
MSH-NENT_MsgQ->dequeue(MSH-NENT_Msg);
SendOutPkt (MSH-NENT_Msg, nextNetEntryslot);

}

SponsorsState = UNAVAILABLE;
OthersState = AVAILABLE;

OthersMaxMacAdr = 0x000000000000;
OthersMinMacAdr = 0xffffffffffff;

}

