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Link Performance Abstraction for ML Receivers based on RBIR Metrics
Hongming Zheng, May Wu, Yang-seok Choi, 
Nageen Himayat, Jingbao Zhang, Senjie Zhang, Intel Corporation
Louay Jalloul, Beceem Communications
1.0 Purpose

This contribution provides a detailed description of a link evaluation methodology for MIMO Maximum likelihood (ML) receivers. With our proposed modeling technique, we obtain accurate link abstractions, which are based on the mean RBIR (Received Bit Information Rate) mapping between the transmitted symbols and their received LLR values after symbol-level ML detection. 

2.0 Introduction
In order to reduce the complexity arising from modeling the actual link performance within system level simulations, an accurate block error rate (BLER) prediction method is required to map link performance for system capacity evaluation. 

A well-known approach to link performance prediction is the Effective Exponential SINR Metric (EESM) method. The EESM has been widely applied to OFDM link layers ([1]-[3]) and Linear MMSE detection receiver algorithms, but this approach is only one of the many possible methods for predicting link performance. 
The EESM relies on computing an “effective SINR” metric from a vector of post-processing SINR values obtained after linear detection in an OFDM system. One of the disadvantages of the EESM approach is that a normalization parameter (usually represented by a scalar, β) must be computed for each modulation and coding (MCS) scheme for many scenarios. In particular, considering broader link-system mapping applications, it can be inconvenient to use the EESM for adaptive modulation when HARQ is used in the system, as adaptive HARQ requires that codewords with different modulation types be combined across the different transmission/retransmissions. In addition, it is difficult to extend this method to ML detection in the SISO/MIMO case because it is not easy to directly compute the required post-processing SINR values.
In order to overcome the shortcomings of EESM as described above, in this contribution we focus on the conventional Mutual Information (RBIR) method for the phy abstraction/ link performance prediction for MLD receivers. This contribution provides a computationally-efficient method for computing the RBIR metric for ML receivers that is easily extensible for the MIMO case.  Once the RBIR metric is computed, link performance can be predicted simply by using the metric to look up AWGN BLER curves for error-rate performance.  
Computing the RBIR metric for the ML receiver is difficult because it relies on the computation of mutual information per symbol, which is obtained as an “expected value” of symbol-level log-likelihood ratios (LLR).  Since no closed-form expression is available for this expected value, it must be computed through numerical integration over channel-dependent LLR expressions. Therefore, the computation of the RBIR metric can become prohibitive for predicting instantaneous link performance. In this contribution, we show that the LLR distribution can be well-approximated by a Gaussian distribution with mean and variance that are a function of channel-dependent “effective SINR” values. Therefore, the symbol-level mutual information can be pre-computed off-line for a range of mean and variance values and stored as a table. This table can then be utilized for computing the RBIR values for predicting instantaneous link performance. For MIMO, a channel-eigenvalue dependent, fit parameter is introduced, which allows for re-using the symbol information tables for the SISO case. We note that our proposed RBIR method for MIMO-ML receivers can be applied to both “vertical” and “horizontal” encoding profiles defined for WiMAX. 
The organization of this contribution is as follows. Section 3 of the contribution provides an overview of the RBIR PHY abstraction metric for symbol-level ML detection.  Section 4 covers the theoretical analysis, as well as the simulation results to justify the use of the Gaussian approximation for modeling the LLR distribution for the ML receiver.  Both SISO, as well as MIMO cases are considered. Section 5, covers the detailed steps required to compute RBIR PHY mapping for an ML receiver, both for the SISO and MIMO systems. Simulation results showing the validity of our RBIR approach are shown in Section 6. Finally this contribution includes the proposed text for 802.16m EVM document on RBIR, in Section 7. 
3.0 Overview of the RBIR Mapping 

This section describes the RBIR definition for a SISO system, focusing on the notation and theoretical concepts.  Additionally, the computation of the actual RBIR from symbol-level level log likelihood ratio (LLR) values will be derived in detail. 

The RBIR metric is computed from the per subcarrier symbol mutual information values comprising a coded block, as follows 
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where SIn is the mutual information over the n-th subcarrier and m(n) is the information bit per symbol over the n-th subcarrier. 
The computation of the symbol mutual information (SI) is dependent on the symbol-level log-likelihood ratio (LLR).  The symbol-level LLR given symbol 
[image: image2.wmf]i

x

 is transmitted, can be computed for the ML receiver as follows: 
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In the above, di, (i=1, 2, …, M), indicates the Euclidean distance of the symbol xi  from the  current received symbol.  Specifically, 
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 represents the ith symbol. 
The mutual information per symbol as symbol, SI,  is given by the following expression:
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If the probability distribution function (pdf), p, of the LLR values is known, then SI can be calculated as:
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For QPSK modulation, the pdf of LLR values is independent of the specific transmitted symbol, but for the general case of QAM modulation, the LLR pdf must be computed for each symbol within the QAM constellation, separately. However, since the Euclidean distance from the first tier constellation dominates the LLR (i.e. first 3 or 4 neighboring constellation points), for QAM we can approximately calculate the LLR using the dominant 3-4 constellation points as follows
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For example, for 16 and 64-QAM, the outer constellation point will have 3 dominant Euclidean distances while the inner constellation points will have 4 dominant Euclidean distances. Note that the inner and outer constellation may have different pdf for the LLR. For simplicity, we propose to choose one representative LLR among N possibilities to represent the signal quality. In the simulation we just choose the constellation point (1,1,..,1) as the representative value. 
If the symbol-level LLR can be modeled as a Gaussian distribution, then the SI over the n-th subcarrier can be derived through numerical integration as follows.
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where it is assumed that symbol LLRi under ML detection satisfies the Gaussian distribution with mean= AVEi and the variance =VARi. 

In the following section we will validate the Gaussian approximation for the symbol LLR distribution through theoretical analysis as well as through simulation results. 
4.0 The Gaussian Approximation for Symbol-Level LLR Distribution for ML Receivers 
In this section we will theoretically derive the symbol LLR expressions, assuming different modulation levels such as QPSK, 16-QAM and 64-QAM schemes.  We will first show the results for the SISO case and then extend it for the 2x2 MIMO (matrix B) case as well. In the following we will need to use the parameter d, characterizing the minimum distance of the QAM constellation. For example,
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 for the case of QPSK, 16-QAM and 64-QAM modulations, respectively. 

4.1 Theoretical Derivation of Symbol LLR Distribution (SISO QPSK as Example)
We first consider the case of QPSK modulation, for a SISO system. 

It is easy to show that the LLR value for the ith symbol is given by the following expression:
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where 
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and 
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From the above formula we can see that, for QPSK, the symbol LLRi can be approximated as Gaussian distribution, where the average of LLRi is:
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The variance of LLRi is
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For that:
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Here:
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Then LLRi is distributed as:
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Similar conclusions for the case of 16QAM and 64QAM modulations may also be obtained. 
4.2 Simulation Results for Symbol LLR Distributions (SISO) – QPSK/16QAM/64QAM
In this section we compare the theoretical LLR distributions derived in the previous section, with those obtained through simulations. Assuming that the transmitted symbol is ’11 …1’, the LLR distributions under different normalized fading factor ‘h’ are simulated as in Figure 1a, 1b and 1c for the different modulation schemes. In Figure 1a-1b-1c the black curves are the standard Gaussian curves generated by Matlab, which are used to approximate the real LLR value shown by the red curves. It is verified that the mean and variance correspond to the derivation of LLR distribution in the previous section. 
From the figures below, it is easy to see that the distribution of the symbol level LLR values for ML detection, can be well-approximated by the Gaussian distribution. This result is also consistent with the theoretical derivation of symbol LLR distribution, shown in the previous section. In the example shown, we assume the QPSK SISO case. Assuming h=1, the AVE and VAR1/2 can be computed can be computed as follows:  when SNR = 5dB, AVE = 4.2147 and VAR1/2 = 2.8290; when SNR = 10dB, AVE = 16.3990 and VAR1/2= 5.0956. From the figures, it is also clear that the simulation results closely match the theoretical LLR distributions for 16QAM and 64QAM as well. 
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[image: image25]
Figure 1a QPSK LLR Distribution (SISO)


Figure 1b 16QAM LLR Distribution (SISO)
 
[image: image26]
Figure 1c 64QAM LLR Distribution (SISO)
4.3 Theoretical Derivation of Symbol LLR Distribution (MIMO QPSK as Example)

We first consider the case of a 2x2 spatially multiplexed (SM) MIMO system (Matrix B).  The LLR distribution of each stream is derived separately.  The signal model for the 2x2 SM with MLD reception is 
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For the 1st stream:
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The LLR for the first stream of 2x2 Matrix B is
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Where:
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From the above we can see that the symbol LLR for the first stream can still be approximated as a Gaussian distribution. The distribution is given by
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where
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For simplicity, the different conditional LLR1i distributions can be approximated by the same Gaussian because we used the dominant constellation points for LLR calculation. 
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And
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For high SNR we will have
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Similar expressions for the case of 16QAM and 64QAM modulations may also be obtained, and the same derivation can be used for the 2nd stream of a 2x2 MIMO system as well.
4.4 Simulation Results for Symbol LLR Distributions (MIMO) – QPSK/16QAM/64QAM

Assuming that the transmitted symbol is ’11 …1’ for each of the 2 transmit antennas, the LLR distributions under different fading factors ‘H’ are simulated as in Figure 2a, 2b and 2c for the different modulation. 
The channel matrix used in the example is H = [-0.1753 + 0.1819i   0.1402 + 0.5974i;    0.4829 - 0.2616i   0.4019 + 0.3107i] and the figures give the LLR distribution obtained from H and SNR.

In Figure 2a-2b-2c the black curve is the standard Gaussian curve generated via Matlab, which is used to approximate the real LLR distribution shown by the red curve.  The figures shown are for a “horizontally encoded MIMO system. Therefore, the two LLR distributions corresponding to the two streams are shown separately. 

From the figures below, it can be seen that the symbol level LLR for an ML receiver can be well-approximated by the Gaussian distribution, which is also consistent with the theoretical derivation of symbol LLR distribution, described in the previous section. 
In the example shown, 2x2 SM QPSK is assumed. The channel matrix H=[ -0.1753 + 0.1819i   0.1402 + 0.5974i;    0.4829 - 0.2616i   0.4019 + 0.3107i]. The AVE and VAR can be computed as follows: when SNR = 5dB, AVE1 = 0.8848;  VAR11/2 = 1.6756;  AVE2 = 2.2740; VAR21/2 = 2.2347; when SNR = 10dB,  AVE1 = 5.0586; VAR11/2 = 3.0481; AVE2 = 9.7909;  VAR21/2  =  4.0439. 
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[image: image42]
Figure 2a QPSK LLR Distribution (Matrix B 2x2)


Figure 2b 16QAM LLR Distribution  (Matrix B 2x2)
  
[image: image43]
Figure 2c 64QAM LLR Distribution  (Matrix B 2x2)
5.0 Computing the RBIR PHY Abstraction for an ML Receiver
5.1 Summary of the Generalized Symbol LLR PDF Model 
As shown in the previous section, the conditional PDF of symbol LLR can be approximated by the Gaussian distribution. For the SISO case, the LLR distribution for the ML receiver can be written as 
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For a MIMO Matrix B, 2x2 system, the conditional PDF of symbol LLR output can be approximated by two different Gaussian curves for each of the two streams for the ‘horizontal’ encoded system. The per stream LLR for the ML receiver can be written as
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For the MIMO case, we need to introduce an optimization parameter ‘
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’ for weighting with the AVEstream to minimize the difference between effective SINR and AWGN SINR for a given set of BLER value. The parameter ‘
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’ is related to the channel condition number, which is obtained through the eigenvalue decomposition of the channel.  However, this fit parameter 'a' has been found to be independent of the specific power delay profiles and the MIMO channel models.   Specifically, the LLR distributions for the 2x2 MIMO case are modified as follows:
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For MIMO Matrix B 2x2 and a ‘vertical’ encoded system, the distribution of LLR from ML receiver can be written as
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. Where p1 and p2 are additional fit parameters that may be computed by minimize the difference between effective SINR and AWGN SINR for a given set of BLER values.
The simplified Gaussian approximation on the symbol LLR is beneficial for different ‘encoding’ schemes and antenna configurations (for example, 4x4, etc). This approach can reduce the offline optimal parameter searching complexity greatly, and make the search practical. 
Using a single Gaussian distribution to model the LLR pdf for different modulation schemes, significantly reduces the PHY abstraction computational complexity when compared to the MMIB method. For the case of MMIB, two Gaussian distributions are used to approximate the LLR distribution for the QPSK case. Whereas,  for the 16-QAM and the 64-QAM cases, 4 and 6 Gaussian  distributions are required to model the LLR distribution  for a ‘horizontal’ encoded system, respectively. Having many Gaussian distributions to model bit-level LLR distributions increases the complexity of the offline parameter search, and makes it difficult to extend the PHY abstraction computation to a 4x4 antenna system.
5.2 Procedure for RBIR PHY Mapping for SISO/MIMO System under ML Receiver
One of the key features behind the RBIR PHY abstraction for the ML receiver, is that once the channel matrix “H” and the SNR is known, the relationship between the LLR distribution and the BLER is fixed. This implies we can have the fixed, table driven method for predicting the PER/BLER per link
As shown in Section 4.0 the real symbol LLR distribution, given channel matrix ‘H’ and SNR, can be approximated as formula (1.10 – 1.13 and 1.20 – 1.23). So we can set up the fixed mapping function between the parameter-bin (H, SNR) and PER/BLER (from real LLR distribution) which is our RBIR PHY Mapping function for ML symbol-level detection.  This mapping function is typically computed and stored off-line.  We will provide this mapping in a tabular form as part of the proposed text in the standard, in Section 7.
As mentioned before, for the MIMO case an optimization parameter 
[image: image50.wmf]a

 is used to weight the AVEstream to minimize the difference between effective SINR and AWGN SINR for a given set of BLER values.  The parameter 
[image: image51.wmf]a

  depends on the channel condition number, which is obtained through the eigen-value decomposition of the channel, and reflects the interference impact between the different streams.  The parameter 
[image: image52.wmf]a

 is typically computed through an off-line computation.  In section 7, we provide the values of the parameter a in tabular format.  
Procedure for RBIR PHY Mapping on symbol-level ML detection:

1. Calculate the Symbol-Level LLR distribution (AVE, VAR) given the channel matrix ‘H’ and SNR.
Given the channel matrix ‘H’ and SNR for each subcarrier, the fixed LLR distribution parameter pair (AVE, 
[image: image53.wmf]VAR

) can be computed from formulas in equations (1.10 – 1.13 and 1.20 – 1.23). The detailed formula/numerical derivation is also given as part of the proposed text in Section 7.
2. Calculate the SI/RBIR metric based on SI/RBIR definition (formula 1.5 and 1.6) and LLR distribution as Step 1.

After calculating the mean and variance of LLR (AVE, VAR) for a given subcarrier, the SI can then be computed as:
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      We also can use the proposed method [6, Beceem] to simplify the numerical integration (1.24). 

For the MIMO case, we use the parameter a to modify the LLR distribution  as follows
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3. Sum the SI values over the multiple subcarriers for OFDM system.
4. Divide the SI sum by the sum of bits per symbol to get RBIR.
5. Convert the RBIR for one resource block to one single ‘effective SINR’ from the SNR-to-RBIR Table given by later section.

6. Lookup the AWGN table to get the predicted PER/BLER.

6.0 Performance Results for RBIR PHY Abstraction for 2x2 Matrix B System with ML Receiver

This section provides simulation results to show the efficacy of our RBIR-based PHY abstraction approach for predicting link performance. Results are shown for the case of the WiMAX downlink with AMC permutation and 2x2 MIMO (Matrix B) configuration. The channel is ITU PedB 3 km/ph. Some main simulation parameters are summarized in  Table 1 below.

Table 1 Simulation Parameters for RBIR MLD PHY Abstraction
	Parameter
	Description

	MIMO Scheme
	2by2 SM, horizontal/vertical

	Frame Duration
	5 ms

	Band Width / Number OFDM Subcarrier
	10 MHz / 1024

	Channel Estimation
	Ideal

	Channel Model
	ITU PedB 3kmph/VA 30kmph

	Channel Correlation
	BS_Corr = 0.25; SS_Corr = 0;

	MCS
	QPSK ½; 16QAM ½; 64QAM ½

	Resource Block Size
	16 Subcarriers by 6 Symbols

	Receiver
	MLD Receiver


For our simulations we use the tables 2, 3 4 and 5 shown in Section 7 to compute the RBIR metric, according to the steps defined in Section 5.2.  Figure 3, 4 show the simulation results for the horizontal/vertical encoded 2x2 MIMO case, under ITU PedB 3km/hr. Figure 5 shows the PHY abstraction  results under ITU VA 30kmph by using the same parameter ‘a’ as ITU PedB 3km/hr. The “PHY” figures map the measured PER vs. the effective SNR computing from the LLR and RBIR MLD metric. From the PHY results shown, we observe that the optimization parameter ‘a’ is not sensitive to the different channel profiles. 
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Figure 3 RBIR PHY for ML Detection – Horizontal Encoding (PedB 3km/hr)
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Figure 4 RBIR PHY for ML Detection – Vertical Encoding (PedB 3km/hr)
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Figure 5 RBIR PHY for ML Detection – Horizontal Encoding (VA 30km/hr)
From the above figures we can see that our proposed RBIR mapping method can accurately predict link performance for both the ‘horizontal and the vertical’ encoded cases, when ML detection is used for MIMO reception. 
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Proposed Text
1) Updated Section 4.3.1 as the text below.
-----------------------------Begin Proposed Text ----------------------------------------------------------------------

4.3.1. Received Bit Mutual Information Rate (RBIR) ESM

In this section the RBIR ESM PHY abstraction method is described for SIMO/SIMO as well as for MIMO under various receiver configurations.

4.3.1.1. RBIR Mapping for a SISO/SIMO System

For a SISO/SIMO system the symbol mutual information (SI) is given by 
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where 
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 is zero mean complex Gaussian with variance 
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 is the post-equalizer SINR at the n-th symbol or sub-carrier and 
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is the number of bits at the n-th symbol (or sub-carrier).

The symbol mutual information curves 
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 are generated once in the system simulator for each modulation order, and the RBIR is stored as shown in Table 2 in 0.5dB SINR increments.

Assuming N sub-carriers are used to transmit a coded block, the normalized mutual information per received bit (RBIR) is given by 
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(1.26)
We note that even though we refer to the coded block being carried over a set of sub-carriers, in general, the coded block may be carried over multiple dimensions, including the spatial dimensions available with MIMO.  Also, note that in the above, the mutual information may be computed even with non-uniform modulation across the coded block. RBIR provides a direct relationship to the BLER that is dependent only on the AWGN link performance curves for a given code rate and is independent of the modulation scheme.  This feature is useful in computing the PHY abstraction for cases where the coded block is comprises mixed modulation symbols. 
The relationship between the post-equalizer SINR and RBIR is shown in Table 2 for 0.5dB increments in SINR.
	
	QPSK
	16QAM
	64QAM

	SINR Span (dB)
	[-20:0.5:27]
	[-20:0.5:27]
	[-20:0.5:27]

	RBIR Value
	[0.0072    0.0080    0.0090    0.0101    0.0114    0.0127    0.0143    0.0159    0.0179

0.0200    0.0225    0.0251    0.0282    0.0315    0.0352    0.0394    0.0442    0.0493

0.0551    0.0616    0.0688    0.0767    0.0855    0.0953    0.1061    0.1180    0.1311

0.1456    0.1615    0.1788    0.1978    0.2184    0.2407    0.2650    0.2910    0.3190

0.3489    0.3806    0.4141    0.4493    0.4859    0.5239    0.5628    0.6024    0.6422

0.6817    0.7207    0.7584    0.7944    0.8281    0.8592    0.8872    0.9119    0.9331

0.9507    0.9649    0.9760    0.9842    0.9901    0.9942    0.9968    0.9983    0.9992

0.9997    0.9999    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000

1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000

1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000

1.0000    1.0000    1.0000    1.0000    1.0000]
	[0.0036    0.0040    0.0045    0.0050    0.0057    0.0063    0.0071    0.0080    0.0089

0.0100    0.0112    0.0126    0.0141    0.0158    0.0176    0.0197    0.0221    0.0247

0.0276    0.0308    0.0344    0.0384    0.0428    0.0476    0.0531    0.0590    0.0656

0.0728    0.0808    0.0895    0.0990    0.1094    0.1206    0.1329    0.1461    0.1603

0.1756    0.1920    0.2094    0.2279    0.2474    0.2680    0.2896    0.3122    0.3357

0.3600    0.3852    0.4112    0.4379    0.4653    0.4933    0.5219    0.5509    0.5804

0.6103    0.6403    0.6709    0.7014    0.7317    0.7617    0.7910    0.8193    0.8463

0.8716    0.8949    0.9158    0.9343    0.9501    0.9633    0.9739    0.9821    0.9883

0.9927    0.9957    0.9976    0.9988    0.9994    0.9997    0.9999    1.0000    1.0000

1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000

1.0000    1.0000    1.0000    1.0000    1.0000]
	[0.0024    0.0027    0.0030    0.0034    0.0038    0.0043    0.0047    0.0054    0.0060

0.0067    0.0075    0.0084    0.0094    0.0106    0.0117    0.0132    0.0147    0.0165

0.0184    0.0207    0.0229    0.0257    0.0285    0.0319    0.0354    0.0396    0.0437

0.0488    0.0539    0.0599    0.0660    0.0732    0.0805    0.0890    0.0974    0.1073

0.1172    0.1285    0.1398    0.1525    0.1653    0.1795    0.1937    0.2092    0.2247

0.2415    0.2583    0.2763    0.2942    0.3132    0.3321    0.3519    0.3718    0.3924

0.4131    0.4345    0.4558    0.4778    0.4997    0.5223    0.5448    0.5677    0.5907

0.6141    0.6374    0.6611    0.6848    0.7087    0.7325    0.7564    0.7802    0.8036

0.8269    0.8489    0.8708    0.8904    0.9100    0.9262    0.9425    0.9547    0.9668

0.9732    0.9796    0.9840    0.9883    0.9910    0.9937    0.9954    0.9971    0.9983

0.9995    0.9998    1.0000    1.0000    1.0000]


Table 2: SINR to RBIR Mapping
4.3.1.2. RBIR Mapping for a Linear MIMO Receiver

With linear equalizers such as zero-forcing (ZF) and minimum mean-squared error (MMSE), each one of the
[image: image66.wmf]T
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 MIMO streams is treated as an equivalent SISO channel with SINRs given by the post combining SINRs of the linear receiver.  The same procedure is applied to the case of MIMO Matrix A.
4.3.1.3. RBIR Mapping for the Maximum-Likelihood (ML) MIMO Receiver 

The SI in Equation (1.26) can now be rewritten as
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where 
[image: image68.wmf]()
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 is the conditional pdf of the symbol-level log-likelihood ratio (LLR) of the i-th constellation point. The conditional pdf of symbol LLR for an ML receiver can be approximated as Gaussian. Note that RBIR PHY abstraction is based on the fixed relationship between the LLR distribution and BLER. Hence, a representative LLR distribution among M distributions is considered. Further using the numerical integration method of [6], the mutual information per symbol in Equation (1.27) can be approximated as
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where the function 
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. From Equation (1.28), it can be seen that only the mean and variance of the LLR are needed to calculate the RBIR metric.
In this section both Vertical and Horizontal encoding are considered. As shown in Table 3, the mean, AVE and the variance, VAR, are computed as a function of an intermediate variable, 
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, defined as


[image: image73.wmf]22

10

2

||

10log,

k

dB

dH

g

s

æö

=

ç÷

èø


where  
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 is the minimum distance in the QAM constellation
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H

is the k-th column vector of the channel matrix 
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 is the variance of noise plus interference (assuming the interference is also spatially white). In Table 3 the 
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 is quantized to 0.5dB increments  ranging from -20 dB  to 30 dB.

A detailed derivation of the AVE and VAR as shown in Table 3 is given in Appendix Q.
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 (dB) 
	[-20:0.5:30]

	AVE
	[-0.4016   -0.4123   -0.4233   -0.4344   -0.4457   -0.4571   -0.4687   -0.4804 

 -0.4922    -0.5041    -0.5160   -0.5279   -0.5397   -0.5515   -0.5631   -0.5745

     -0.5856   -0.5962     -0.6065   -0.6161     -0.6249   -0.6329   -0.6399   -0.6456

-0.6499   -0.6524     -0.6530    -0.6513   -0.6470   -0.6396   -0.6287   -0.6139

-0.5944   -0.5697      -0.5391   -0.5018    -0.4567   -0.4031   -0.3396   -0.2650

-0.1780   -0.0770   0.0398    0.1743    0.3286      0.5051    0.7063      0.9352    1.1949      1.4889     1.8211    2.1959    2.6179    3.0926      3.6259    4.2245      4.8961    5.6491     6.4933     7.4396    8.5006    9.6904   11.0251  12.5229     14.2045   16.0930   18.2146    20.5989    23.2784    26.2897    29.6733   33.4750     37.7458   42.5431      47.9314      53.9830    60.7788    68.4100    76.9786   86.5992      97.4004  109.5263    123.1389   138.4197  155.5725  174.8260  196.4366  220.6922  247.9159  278.4700    312.7611   351.2455  394.4351  442.9043  497.2976  558.3381  626.8372   703.7054   789.9640   886.7593  995.3772]

	VAR
	[0.2952    0.3003    0.3055    0.3108    0.3162    0.3218    0.3276    0.3336    0.3400    0.3468     0.3541    0.3620    0.3705    0.3800    0.3904    0.4021    0.4152    0.4301    0.4471     0.4673    0.4887    0.5143    0.5438    0.5779    0.6175    0.6633    0.7164    0.7779     0.8491    0.9316    1.0270    1.1373    1.2645    1.4112    1.5801    1.7741    1.9967     2.2516    2.5430   2.8755     3.2542    3.6849    4.1737    4.7277    5.3548    6.0636       6.8644     7.7686     8.7895     9.9429    11.2474   12.7253   14.4033   16.3140   18.4964   20.9982   23.8761   27.1982   31.0450   35.5109    40.7058   46.7560   53.8056   62.0176   71.5751   82.6815   95.5627  110.4754   127.720     147.6512   170.6826   197.2945   228.0421   263.5665   304.6084 352.0229   406.7979   470.0740    543.1686   627.6030  725.1343   837.7913   967.9172   1118.2180   1291.8186   1492.3277  1723.9127   1991.3863   2300.3061   2657.0904   3069.1507   3545.0462   4094.6610  4729.4092   5462.4720   6309.0710   7286.7839   8415.9098   9719.8896   11225.7930   12964.8798];


Table 3: Mean and Variance for Symbol Level LLR

For MIMO systems, the average, AVE and the variance, VAR are scaled as follows for both horizontal and vertical coding:
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As seen from the Table 4, the parameter 
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  is referenced based on the channel condition number, 
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 obtained through the eigen value decomposition of the channel as 
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The parameter 
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 in Table 4 is optimized to minimize the difference between effective SINR and AWGN SINR for every definite BLER. The parameter 'a' has been found to be independent of power delay profiles and MIMO channel models. The search procedure used to obtain the parameter 
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 in Table 4 is described as in Appendix Q.
	
	 QPSK

    1/2
	  QPSK

     3/4
	16QAM

    1/2
	16QAM

    3/4
	64QAM

    1/2
	64QAM

    2/3
	64QAM

    3/4
	64QAM

    5/6

	
[image: image87.wmf]min

10

10

k

dB

l

<

£-


	1st Stream
	0.9000
	1.0000
	1.0000
	1.0000
	1.0000
	1.0000
	1.0000
	1.0000

	
	2nd Stream
	0.9000
	1.0000
	1.0000
	1.0000
	1.0000
	1.0000
	1.0000
	1.0000

	
[image: image88.wmf]min

10

108

k

dB

l

<

-<£


	1st Stream
	2.8372
	1.4444
	0.4343
	1.5737
	0.7872
	1.0000
	1.0000
	1.0000

	
	2nd Stream
	1.4801
	1.4859
	0.6389
	1.1526
	1.1000
	1.0000
	1.1000
	1.0000

	
[image: image89.wmf]min

10

8

k

dB

l

<

>


	1st Stream
	1.2000
	1.0000
	0.6000
	0.9889
	0.4695
	1.5889
	1.5000
	0.9222

	
	2nd Stream
	1.2000
	1.2000
	0.6000
	1.3632
	0.3111
	2.0667
	1.0667
	0.9333

	
[image: image90.wmf]min

10100

10

k

dB

l

£<

£-


	1st Stream
	1.9264
	1.1731
	1.0000
	1.0000
	2.0000
	1.0000
	1.0000
	1.0000

	
	2nd Stream
	1.6172
	1.3444
	1.0000
	1.0000
	2.0000
	1.0000
	1.0000
	1.0000

	
[image: image91.wmf]min

10100

108

k

dB

l

£<

-<£


	1st Stream
	0.8833
	1.1900
	0.5000
	1.1246
	0.6611
	0.8556
	1.0111
	1.0000

	
	2nd Stream
	0.8857
	1.3000
	0.5000
	0.8532
	0.6500
	0.8333
	1.1556
	1.0111

	
[image: image92.wmf]min

10100

8

k

dB

l

£<

>


	1st Stream
	1.1000
	1.0000
	0.5500
	1.0000
	0.7310
	1.0778
	1.1111
	0.8333

	
	2nd Stream
	1.1000
	1.1000
	0.5500
	1.0000
	0.9111
	1.0778
	1.1667
	0.8333

	
[image: image93.wmf]min

100

10

k

dB

l

³

£-


	1st Stream
	0.8000
	0.9737
	0.4000
	1.0000
	1.0000
	1.0000
	1.0000
	0.6889

	
	2nd Stream
	0.8111
	1.2456
	0.4000
	0.7479
	1.0000
	1.0000
	1.0000
	1.0000

	
[image: image94.wmf]min

100

108

k

dB

l

³

-<£


	1st Stream
	0.9736
	0.9573
	1.7303
	0.8532
	1.4895
	0.8889
	0.8889
	0.7556

	
	2nd Stream
	2.6241
	1.0222
	0.4667
	0.8310
	0.6444
	0.9445
	1.0555
	0.8445

	
[image: image95.wmf]min

100

8

k

dB

l

³

>


	1st Stream
	0.9000
	1.0000
	0.4500
	1.0000
	0.9000
	0.9000
	0.8889
	0.7556

	
	2nd Stream
	0.9000
	1.0000
	0.4500
	1.0000
	0.9000
	1.0000
	1.0000
	0.7667



Table 4: Values for the parameter 
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Horizontal Encoding:

For a 2x2 system using MIMO Matrix B and horizontal encoding, the conditional PDF of the symbol LLR output is approximated as Gaussian for each of the two streams.
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(1.30)
The numerical approximation in Equation (1.28) can be used to calculate the mutual information per symbol. The RBIR metric is then computed as in equation (1.26).

Vertical Encoding:

For a 2x2 system using MIMO Matrix B and vertical encoding, the distribution of the LLR from an ML receiver can be approximated as a Gaussian mixture. Thus, the PDF of LLR can be expressed as a weighted sum given by
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 where the parameters 
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are given in Table 5. Thus, SI is also a weighted sum of two SI values given by
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Note that 
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 are computed based on Equation (1.28) and the RBIR metric is computed as in equation (1.26).
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Table 5: Values of 
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 and 
[image: image115.wmf]2

p

 for SM with Vertical Encoding.

The parameters 
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 and 
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in Table 5 have been optimized to minimize the difference between effective SINR and AWGN SINR for every definite BLER. The exhaustive procedure used to obtain the parameters 
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 and 
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in Table 5 is described in Appendix Q.

2) Add one appendix in EVM document for the search procedure of RBIR optimization parameters.
-----------------------------Begin Appendix  Text ----------------------------------------------------------------------

Appendix Q: Derivations and Details for RBIR Metric

Q.1 Derivation of the AVE and VAR for RBIR
Given the channel matrix
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 and SNR for each subcarrier, the LLR distribution parameter pair (AVE, VAR) can be obtained for MIMO SM 2x2 as specified below.

The mean of the LLR for the 1st stream is
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where ‘d’ indicates the minimum distance in QAM constellation, for example, QPSK: 
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where  H1 is the first column vector.

The variance of the LLR for the 1st stream can be written as
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From the above formulae the numerical integral results for (AVE, VAR) are shown in Table 3.
Q.2 Search for Optimal ‘a’ value

The procedure used to obtain the parameter 
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 in [7] can be described as follows:

Step 1: From the AWGN SINR-to-BLER curve, calculate 
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 from the measured BLER.

Step 2: For a particular value of 
[image: image131.wmf]a

, calculate the RBIR  metric for a given channel matrix ‘H’  and SINR and then compute the effective SINReff value from the SINR to RBIR mapping in Table 2.

Step 3: Repeat the process over different values of 
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 and choose the value of ‘a’ which results in the smallest gap over all values of BLER between the interpolated SNR (step 1) and effective SNR (step 2).
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Q.3 Search for Optimal values of 
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Step 1: From the AWGN SINR-to-BLER curve, calculate the 
[image: image140.wmf](

)

AWGN

SINRBLER

 from the measured BLER.

Step 2: Calculate the corresponding RBIR metric over the two streams for a given channel matrix ‘H’ , SINR and parameter ‘a’ determined from Table 4. 
Step 3: Calculate the average RBIR metric as a weighted sum of ‘p1’ and ‘p2’ and then calculate the effective SINReff  value using the averaged RBIR from the SINR to RBIR mapping in Table 2.

Step 4: Find the parameters p1 and p2 which result in the smallest gap over all values of BLER between the interpolated SINR (step 1) and effective SNR (step 3).
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