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Codebook Design for IEEE 802.16m MIMO Schemes

Qinghua Li, Hongming Zheng, Shanshan Zheng
Intel Corporation
1. Introduction
Currently, two main codebooks are discussed in DL MIMO Rapp. One is 16e codebook [1], and the other is DFT codebook [2][3]. The 16e codebook has better performance for the uncorrelated channel while DFT codebook has better performance for the correlated channel. But none of them performs well in both channels. However, in reality, subscriber stations (SSs) experience both correlated channel and uncorrelated channel. Specifically, some SSs’ channels are correlated while the others’ channels are uncorrelated at the same time. For the each SS, the antenna correlation also varies slowly. It is undesirable for the system to maintain two sets of codebook and switch between them according to each correlation. There are ongoing efforts to design a single codebook for all scenarios. 

Since 802.16m supports backward compatibility to 802.16e, it is desirable to improve upon the 802.16e codebook for all correlation scenarios. In this contribution, we propose a simple transformation on the 16e codebook, where the transformation is computed from the antenna correlation. The transformation tunes the uniform 802.16e codebook pointing to a principal direction so that the transformed codebook adapts to any given correlation scenario. Although the transformation complexity is negligible as compared to the receiver’s complexity, a simplified transformation is devised, which share lots of commonalities with a differential feedback scheme. While the transformed codebook exploits the correlation in space and frequency domains, we propose a differential codebook to exploit the time domain correlation. Simulation results demonstrate that the transformed 802.16e codebook and the differential codebook outperform the 802.16e and DFT codebooks for all scenarios in terms of throughput and feedback overhead.
2.
System Model
The assumed system model is 
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where 
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[image: image23.wmf]t

R

 contains the averaged directions for beamforming.  
2.
Transformed Codebook
Besides backward compatibility, the advantage of the transformed codebook is illustrated in Figure 1. In this example, a 
[image: image24.wmf]1

2

´

 real (not complex) channel is assumed. The ideal beamforming vector is uniformly distributed over the semicircle for uncorrelated channels. The uniform codeword distribution of the 802.16e codebook matches to this input distribution and therefore has a good performance. In contrast, the DFT codebook suffers from the constant modulus constrain that requires all vector entries have the same magnitude. Although more than two codewords are available, the DFT codebook only has two valid codewords in this case as shown by the two clusters at 45 and -45 degrees on the semicircle. This leaves large holes in the quantization space and causes large quantization errors for input vectors around 
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. On the other hand, for highly correlated channels, the entry magnitudes of the input beamforming vector are close due to the high correlation of the channel responses. The DFT codewords with constant modulus entries matches to the input distribution that has close entry magnitudes and thus has a good performance. Note that there are two clusters of the DFT codewords and only one of them is used for each correlated scenario. Since the other cluster is too far away from the input vector, it is not used. This is the downside of the DFT codebook because it only exploits the rough information about the magnitude similarity. In contrast, the transformed codebook makes use of both the magnitude and phase information about the antenna correlation. The uniform codewords of the 802.16e codebook are dynamically transformed to only one cluster pointing to one direction as shown on the right of Figure 1. As the correlation decreases, the codeword concentration of the transformed codebook decreases and the codebook degrades to the 802.16e codebook for uncorrelated channels, which the best codebook for uncorrelated channels. 
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Figure 1. Codebook distribution and concept illustration.

Denote the transmit antenna correlation matrix (or covariance matrix) as 
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, which is measured as the SS, and denote the eigenvalue decomposition of 
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. We would like to transform the uniform 802.16e codebook for the correlated channels. The transformation takes the form 
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where 
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 is the i-th codeword of the original 802.16e codebook and the transformed codebook, respectively; 
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 to an orthogonal matrix with orthonormal column(s) that span the same subspace as 
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 can have various choices e.g. the 4th and square roots of 
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 becomes the identity matrix for uncorrelated channels and the transformed codebook smoothly degrades to the 802.16e codebook for the optimal performance. 
The advantages of the transformed codebook are:

· One codebook for all correlation scenarios.

· No additional codebook and codebook switch are needed. 

· Backward compatible. Share the same codebook and indexing with the 802.16e codebook. 

· Correlation matrix feedback incurs little overhead. It is fed back infrequently e.g. every 100 ms and shared by all subbands’ feedbacks. 

· Feedback mechanism for long term CSI is already defined in the 802.16e standard. 
For low complexity, the transformation matrix can be square root of 
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 computed by Cholesky decomposition and has the form 
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where the diagonal entries 
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 are positive and the other nonzero numbers are complex. The normalized diagonal entries can be quantized by 1 bit, such as 0.5 and 1. The normalized complex numbers are quantized by the constellation as shown in Figure 2. 
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Figure 2. Constellation for quantizing complex number of F by 4 bits.
2.1. Simplified Codebook Transformation

The scheme above can be simplified. Note that the ideal beamforming matrix has the its distribution peak at the principal subspace spanned by the columns of 
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, where the principal subspace corresponds to the large eigenvalues of 
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. The ideal beamforming matrix concentrates on the principal subspace with a higher and higher probability as the correlation increases. This implies that a localized codebook around the principal subspace is enough for the quantization. The simplified codebook has two components: codebook center and polar cap. Firstly, the codebook center is the principal subspace spanned by the columns of 
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. Secondly, the polar cap is a codebook that only covers a small portion of the quantization space of the 802.16e codebook as shown in Figure 3 for the vector case. 
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Figure 3. Full quantization space and polar cap.
For quantization, the SS first rotates the center of the polar cap to the principal subspace of 
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, and then computes and quantizes the difference (called differential matrix) between the ideal beamforming matrix and the principal subspace. Equivalently, the SS first removes the principal subspace from the ideal beamforming matrix and then quantizes the remaining using the polar cap codebook. The BS receives the quantization index and adds the differential matrix to the quantized principal subspace for reconstructing the beamforming matrix. 
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 with the complementary columns orthogonal to 
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. The operations of beamforming, quantization, and reconstruction are written as

Differential at SS: 
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Quantization at SS: 
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Beamforming matrix reconstruction at BS: 
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Beamforming at BS: 
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In (4), the 
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The quantization of 
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where 
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2.1.1. Polar Cap Codebook
For backward compatibility, the polar cap codebooks can be generated from the 802.16e codebooks using a simplified version of (3). The transformation reduces the chordal distance between each codeword and the matrix 
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 as illustrated in Figure 4. Note that each 3-bit vector codebook and some other codebooks of 802.16e have the codeword 
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where 
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 is the diagonal matrix for correlation scenario 
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 for 0.5 wavelength antenna spacing. After the SS feeds back the index of 
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 e.g. using 2 bits, both the BS and the SS can generate the same polar cap codebook. 
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Figure 4. Generation of polar cap by codeword concentration.
3.
Differential Feedback
There exist strong correlations between beamforming matrixes in adjacent frequencies and frames, and the correlation can be exploited to reduce feedback overhead. We take the example of time domain correlation to depict the differential feedback scheme. It is to the same as the polar cap scheme depicted above except that 
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 is replaced by the fed back beamforming matrix for the previous frame. 
Differential at SS: 
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Quantization at SS: 
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Beamforming matrix reconstruction at BS: 
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Beamforming at BS: 
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In (11), the 
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The polar cap codebook can be used as the differential codebook for backward compatibility. Besides the transformation approach in (10), an alternative is as follows. To lower the computational complexity, we concatenate polar cap vector codebook to build polar cap matrix codebook without the 
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where 
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4.
Feedback Overhead
The PMI feedback of the transformed codebook has two parts: the index of the transformed 80.216e codebook per 5 ms and the index of transformation matrix per 100 ms. The sum of them is the total feedback overhead. Here, the transformation matrix is computed by Cholesky decomposition. We assume the PMIs for all subbands are fed back for subband selection and there are 12 subbands across frequency. Note that all the subbands share the same transformation matrix. We compare the feedback overheads the table below.
	Feedback overhead
	802.16e
	DFT
	Transformed 802.16e

	2 Tx ant. (bits/5ms/subband)
	3
	3
	3+6/20/12 = 3.03

	4 Tx ant. (bits/5ms/subband)
	6
	4
	3+28/20/12 = 3.12


In the table, the overhead for the transformation matrix is computed as follows. For 4-Tx, the transformation matrix F in equation (3) is 4×4 matrix and it has 4 positive entries and 6 complex entries. Each complex entry is quantized to 4 bits using the constellation shown in Figure 2. Each positive entry is quantized to 1 bit. The total feedback overhead is 1×4+4×6=28 over the time period of 100ms and 12 frequency subbands. Similarly, for 2-Tx transformation matrix F is 2×2, which has 2 positive numbers and 1 complex number. The total feedback number is 1×2+4=6 over 100 ms and 12 subbands. Since 802.16e codebook feedback period is per 5ms (i.e. per frame), the feedback period ratio between the transformation matrix and the 802.16e codebook is 100ms/5ms=20.  
From the table, it is clear that the feedback overhead of the transformed codebook is very close to 3 bits per frame for all cases. For 4-TX, the overhead of the transformed codebook is lower than those of the 802.16e and the DFT codebooks by 48% and 22%, respectively. For 2-TX, all three codebooks essentially have the same feedback overhead. 
5. Link Performance
Some of the link level results are shown in Figure 5 and Figure 6. Figure 5 is performance of PER for low correlation case and Figure 6 is for high correlation case. The channel model is modified ITU Pedestrian B. The BS has four transmit antennas and the SS has two receive antennas. The antenna spacings of BS transmit antennas are 4 wavelengths and 0.5 wavelength for practical mounting with low and high correlations. One data stream is transmitted. One resource block is composed of 4 PRU which is 64 subcarriers by 6 symbols for data. Modulation and code rate are 16 QAM and 0.5. Three codebooks are tested, i.e. the conventional 802.16e codebook, the DFT codebook, Intel’s transformed codebook. 
For both low and high correlation cases, the proposed transformed codebook has better performance than conventional 802.16e codebook and DFT codebook.
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Figure 5. PER performance for highly correlated channels.
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Figure 6. PER Performance for slightly correlated channels.
6. Conclusion
In this contribution, we proposed a simple improvement upon the 802.16e codebook for full backward compatibility. The 802.16e codebook is transformed according the antenna correlation. Besides the transformed codebook, a differential feedback scheme is proposed. Both the transformed and differential codebooks deliver performances better than 802.16e and DFT codebooks for all scenarios. 
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8. Proposed Text

   11.8.2.1.2 Closed-loop SU-MIMO 

   11.8.2.1.2.1 Precoding technique 
   In FDD and TDD systems, unitary codebook based precoding are supported.  
[To add the following text after line 36 in page 71: 
A 802.16e-based codebook is supported. ]
11.8.2.1.3 Feedback for SU-MIMO 
In FDD systems and TDD systems, a mobile station may feedback some of the following information in closed loop SU-MIMO mode: 

• Rank (wideband or sub-band) 

• Sub-band selection 

• CQI (wideband or sub-band, per layer) 

• PMI (wideband or sub-band for serving cell and/or neighboring cell) 

• Doppler estimation 
[To add one more feedback item between line 14 and 16 in page 72: 
    •  Long-term CSI (such as correlation matrix).]
For codebook based precoding, the feedback from a mobile station shall be based on the same codebook as used by base station for transmission.
[To add the following text between line 17 and 19 in page 72: 
Differential feedback is supported. ]
11.8.2.2.1 Precoding technique 

The precoding for MU-MIMO can be either standardized or vendor-specific. Up to four MSs can be assigned to each resource allocation.

[Changed into the following text between line 33 and 34 in page 72]

[The precoding for MU-MIMO can be either standardized or vendor-specific. For the standardized technique, a .16e-based codebook method is supported. Up to four MSs can be assigned to each resource allocation. ]
11.8.2.2.3.2 CSI feedback 

Channel state information feedback may be employed for MU-MIMO. Codebook-based feedback is supported in both FDD and TDD. Sounding-based feedback is supported in TDD. 
[Changed into the following text between line 27 and 29 in page 73: ]
[11.8.2.2.3.2 CSI and PMI feedback 

Channel state information feedback may be employed for MU-MIMO. Codebook-based feedback is supported in both FDD and TDD. Long-term CSI (such as correlation matrix) feedback is supported. Differential feedback is supported. Sounding-based feedback is supported in TDD. ][image: image164.emf] 
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