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Matrix D: 2x2 Space-time code with low complexity ML detection 

Serdar Sezginer, Hikmet Sari, Bertrand Muquet, Fabien Buda, Sylvain Labonte, Jeremy Gosteau
SEQUANS Communications

1. Summary
Multiple-input multiple-output (MIMO) techniques have become one of the most essential parts of wireless communications systems. Indeed, IEEE 802.16e specifications include three 2×2 MIMO profiles. The first one (Matrix A) is based on Alamouti’s space-time code (STC) for transmit diversity, and the second one (Matrix B) is based on spatial multiplexing (SM). The former has full diversity, and the latter has full rate, but neither of them has both of these desired features. The third 2×2 STC, which is both a full rate and a full diversity code, is the Matrix C. It is the best known 2×2 STC, but it has a high decoding complexity. Recently, the attention has been turned to the decoder complexity, and this issue was also included in the high-rate STC design criteria and different STCs were proposed. In this contribution, we present Matrix D as an alternative full-rate full-diversity 2×2 STC leading to substantially lower complexity of the optimum detector compared to that of Matrix C while providing essentially the same performance. This equivalently means that for Matrix D any ML-like suboptimum detector can be applied with substantial complexity reduction without loss of performance. Therefore, with an affordable complexity, Matrix D provides the robustness of Matrix A on degraded channels and the capacity of Matrix B on favorable channels.
2. Introduction
From the MIMO schemes included in the IEEE 802.16e specifications [1], the WiMAX Forum has specified two mandatory profiles for use on the downlink. One of them, namely Matrix A, is based on the space–time code (STC) proposed by Alamouti for transmit diversity [2]. This code achieves a diversity order that is equal to twice the number of antennas at the receiver, but it is only a rate-1 STC, because it only transmits two symbols using two time slots and two transmit antennas. The other profile is spatial multiplexing (SM), namely Matrix B, which uses two transmit antennas to transmit two independent data streams. This scheme is rate-2 STC, but it does not benefit from any diversity gain at the transmitter, and at best, it provides a diversity order equal to the number of receive antennas.
Although it can be anticipated that these STCs will be two basic profiles of most future standards, such as the IEEE 802.16m for mobile WiMAX evolutions and the Long-Term Evolution (LTE) of the 3GPP, there is a need to include a new code combining the respective advantages of Matrix A and Matrix B while avoiding their drawbacks. Such a code actually exists in the IEEE 802.16e-2005 specifications. This code is a variant of the Golden code [3] (see also [4] and [5] for other variants), which is the best known 2×2 STC achieving the diversity-multiplexing frontier [6]. But the problem of this code is its detection complexity, which grows as the fourth-power of the signal constellation size, and this makes it impractical for low-cost wireless user terminals. 

In this contribution, motivated by the orthogonality of Matrix A, we present Matrix D as a new full-rate full-diversity (FR-FD) 2×2 STC which has recently been proposed in [7]. This code achieves the diversity-multiplexing frontier, while its optimum detection complexity grows at most quadratically with the size of the signal constellation. Below, we present Matrix D with its optimized form and its corresponding optimum ML detector. 

3. Description of Matrix D
Matrix D has a symmetric structure and evenly distributes the average transmitted energy for each symbol per channel use. In this code, a group of 4 symbols 
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A careful look clearly shows that (1) is nothing but an intelligent combination of two Matrix A schemes. Here, a, b, c, and d are complex-valued design parameters. They are chosen such that Matrix D attains FR-FD transmission in a quasi-static Rayleigh fading channel and by introducing the following average transmit power constraints:
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The first condition ensures the transmission of equal average power at each symbol time, while the second condition ensures that equal average total power is transmitted for each symbol. 
4. ML Detection of Matrix D
Here, we explain the interesting features of Matrix D given in (1) considering the exhaustive ML procedure. However, it is worth noting that Matrix D leads to similar complexity reduction in any ML-like suboptimum detection algorithm. On the first receive antenna, we have the two signals
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received during the first and second symbol intervals, respectively. Similarly, we have on the second receive antenna:
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where hij designates the channel response from the jth transmit antenna to the ith receive antenna for i, j = 1, 2.

The optimum (ML) detector makes an exhaustive search over all possible values of the transmitted symbols and decides in favor of 
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 which minimizes the Euclidean distance, say 
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. For M denoting the size of the signal constellation, an exhaustive search clearly involves the computation of M4 metrics and M4-1 comparisons, which is excessive for the 16-QAM and 64-QAM signal constellations. But Matrix D lends itself to a low-complexity implementation of the ML detector. From the received signal samples 
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, let us compute the following signals:
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for a given value of the symbol pair (s3, s4). From, (4), (5) and (6), these signals can be expressed as:
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Next, from (6a)–(6d), we compute:
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Finally, from those signals, we compute the signal u1 given by:
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(9)

with 
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It can be seen that the signal u1 has no terms involving symbol s2 and the coefficient of the term in s1 clearly indicates that estimation of s1 benefits from full fourth-order spatial diversity. By sending this signal to a threshold detector, we get the ML estimate of symbol s1 conditional on 
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. Note that elimination of the terms involving s2 is possible if and only if (iff) the coefficients of the symbols s1 and s2 in each column of the code matrix are identical.

Similar to (7a)–(7d), we also compute the following signals:
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and then,
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with 
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As previously, signal u2 has no terms involving symbol s1 and the coefficient of the term in s2 shows that estimation of s2 benefits from full fourth-order spatial diversity. By sending u2 to a threshold detector, we get the ML estimate of symbol s2 conditional on 
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 is illustrated in Fig. 1. In this way, for a given symbol pair 
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 indicate that symbol s3 takes the kth point of the signal constellation and symbol s4 takes the lth point of the signal constellation. The optimum receiver computes the metric 
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[image: image46]
Fig. 1: Processing of the received signals to determine the ML estimate of symbols s1 and s2 conditional on a particular combination of symbols s3 and s4.
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Fig. 2: Second stage of the detector.

Note that the special structure of (7) allows the ML detector also to work the other way round: Instead of deriving the ML estimate of the symbol pair 
[image: image48.wmf](

)

2

1

,

s

s

 conditional on 
[image: image49.wmf](

)

l

k

s

s

4

3

,

 and then computing the metric 
[image: image50.wmf](

)

4

3

2

1

,

,

,

s

s

s

s

D

 for 
[image: image51.wmf](

)

l

k

ML

ML

s

s

s

s

4

3

2

1

,

,

,

, we can first estimate the symbol pair 
[image: image52.wmf](

)

4

3

,

s

s

 conditional on 
[image: image53.wmf](

)

l

k

s

s

2

1

,

 and then compute the metric 
[image: image54.wmf](

)

4

3

2

1

,

,

,

s

s

s

s

D

 for 
[image: image55.wmf](

)

ML

ML

l

k

s

s

s

s

4

3

2

1

,

,

,

, k, l = 1,…, M, and select the quadruplet 
[image: image56.wmf](

)

4

3

2

1

,

,

,

s

s

s

s

 minimizing the metric.

Now, the remaining point in the description is to show that optimum detection is possible when the magnitudes of a and c (equivalently b and d for the reverse detection order as explained above) are equal. This can be easily seen by looking at the ratio of signal power 
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 for i = 1, 2. The signal-to-noise ratio should be kept the same after the proposed process at the threshold detector input. This can be satisfied iff 
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 for the reverse detection. A more rigorous demonstration involves showing that the corresponding columns of the equivalent channel matrix (combining the channel matrix and the generator matrix of the STC) becomes orthogonal iff 
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 for the reverse detection. This is also important from the LLR computation point of view. Indeed, it is evident that Matrix D allows a LLR computation which has exactly the same complexity for each bit value.
5. Optimized parameters

As mentioned previously, a, b, c, d in Matrix D are design parameters to be optimized in order to obtain a full-diversity STC with a large coding gain. However, this task is infeasible especially for higher constellation sizes. Fortunately, the average transmit power constraints given in (8)-(9) can further decrease the number of parameters to be optimized. These equalities together with the constraint 
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Now, without any loss of generality, we may set 
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. This decreases the number of unknown parameters without affecting the coding gain. Then, the remaining parameter pair (b, d) can be optimized numerically leading to a full-diversity scheme with a large coding gain. Note that the values of a and c effect the shape of the resulting lattice structure. Hence, depending on the constellation size, they can be optimized such that the number of nearest points (the so-called kissing number) is minimized. Here, our interest is on the maximization of the coding gain.

In order to set the values of the remaining parameters b and d, one may perform an exhaustive search so as to maximize the coding gain (and, thus, to ensure full diversity). This optimization leads to a set of parameter values which result in a coding gain of 2 independent from the constellation size. We take an example parameter pair from this set as 
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6. Discussion on advantages of the presented STCs

We now provide the most crucial advantages of the proposed STC:

· Backward compatible with 16e
· Low decoding complexity with ML or ML-like suboptimum detection techniques
· Achieves the diversity-multiplexing tradeoff frontier (constant coding gain)

· Transmission of symbols with the same average power at each channel use

· Eliminates the need for MIMO feedback

7. Conclusions
In this contribution, we have presented Matrix D as a new full-rate full-diversity 2×2 STC with an inherent low-complexity optimum decoder. It has full-diversity with a coding gain which does not depend on the constellation size. Matrix D achieves the performance of Matrix C while reducing the decoder complexity substantially. Furthermore, when used at similar decoder complexity, Matrix D may bring considerable performance gain compared to Matrix C. As a final remark, Matrix D provides the robustness of Matrix A on degraded channels and the capacity of Matrix B on favorable channels, and therefore it eliminates the need for MIMO feedback. 
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