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Proposed Text of Enhanced Structured LDPC coding with rate matching for the IEEE 802.16m Amendment
Wu Zhanji

Beijing University of Posts and Telecommunications(BUPT)

Luo Zhendong, Du Ying

CATR
1. Introduction

In this contribution, we proposed the parity-check matrix construction of LDPC codes to achieve good performance for wide range of code word length and code rate. We informed the parity-check matrix construction method which can support the code rate range from 1/3, 1/2,2/3,3/4 to 5/6, the information length from 192bits to 9040bits. Through expanding and puncturing one predefined uniform base matrix, the structured LDPC codes defined here can be used to support any rate and any code size defined above. ZTE and Mitsubishi are two prominent spearheads to push structured LDPC codes in 3GPP LTE meetings, and they have made some brilliant contributions about it[1-4].On their shoulders, we further optimize the parity-check matrix construction of LDPC to improve its error performance, which is called “enhanced structured LDPC codes with rate matching” in the following.

2.   Enhanced Structured LDPC coding
2.1 Code structure and code description
2.1.1 Basic description of structured LDPC codes
The parity check matrix of structured LDPC Codes is defined by a matrix H of size m-by-n, where n is the length of the codeword and m is the number of parity bits in the code. The number of information bits is k=n-m.

The matrix H is defined as: 
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where 
[image: image2.wmf]b

ij

h

P

is one of a set of z-by-z permutation or a z-by-z zero matrix. The matrix H is expanded from a binary base matrix 
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.The base matrix is expanded by replacing each 1 in the base matrix with a z-by-z permutation matrix, and each 0 with a z-by-z zero matrix. Through changing the expand factor z, a LDPC set of variable information length and certain code rate can be obtained.
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P is a 
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standard permutation matrix of the form:
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And 
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 of size 
[image: image13.wmf]bb

mn

´

 has the form:


[image: image14.wmf]111

00010201

10111211

01211

b

b

bbbbb

bbbb

n

bbbb

n

b

bbbb

mmmmn

hhhh

hhhh

H

hhhh

---

-

-

--

éù

êú

êú

=

êú

êú

êú

ëû

L

L

LLLLL

L


Due to the structured characteristic of parity check matrix, the parity check matrix of LDPC codes can be fully described by small set parameters, which results in very low complexity implementations. Actually we only need base matrix
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, instead of parity check matrix H, to perform encoding and decoding. The encoding and decoding algorithms become the matrix calculation of size
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, the basic structure of encoder and decoder only depends on the positions of the non-negative-one elements in the base matrix.

2.1.2 Structured LDPC Mother Code set with different code sizes

To generate a LDPC code set of a certain code rate and various code sizes, a uniform base matrix 
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is defined. In order to obtain the base matrix of certain code size, the uniform base matrix has to be modified to generate a modified base matrix
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, which will really be used in the encoder/decoder of the LDPC code of certain code size. 

The code rate of the designed mother code sets is always 1/2, and the designed information block sizes increase from 192 to 9040, and the increasing step is 16, That is to say, K=192,192+16,192+2*16,192+3*16,…, 9040. The size of base matrix is 16×32，namely, 
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. So expand factors z =12:1:565. One uniform base matrix 
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of rate 1/2 LDPC code set is defined as following:
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To obtain the LDPC code of certain code size, the uniform base matrix above has to be modified and then can be regarded as the base matrix
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, which together with expand factor z can be used to define the parity check matrix H of the LDPC code.

For each non-negative-one elements of the uniform base matrix above, the value 
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represents the i-th row, j-th column element of modified base matrix
[image: image29.wmf]mod

ified

b

H

, 
[image: image30.wmf]uniform

b

ij

h

)

(

 represents the i-th row, j-th column element of the uniform base matrix
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[image: image33.wmf]max
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is the largest expand factor, here equals to 565, and z is the currently used expand factor uniquely corresponding to the currently used code size. 
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 denotes the operation that rounds the elements in it to the nearest integers towards minus infinity.
2.2 Multi-rate support of LDPC
By puncturing parity bits from the LDPC mother code block, LDPC codes of rate higher than 1/2 can be generated.

Assume that k denotes the information block size, n means the codeword block size, the number of parity bits (or equalization) equals to m = n-k, whereas n, k and m all are integers larger than zero. Define that 
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 denotes the number of rows of base matrix
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, 
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 denotes the number of columns of base matrix
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, and z means the expand factor of structured LDPC codes.

2.1 Puncturing operations to obtain LDPC codes of rate higher than 1/2

Puncturing operations to rate 1/2 LDPC mother codes are needed, while obtaining LDPC code of rate lager than 1/2. The basic design principle is that information block size of mother LDPC codes should be close to m as possibly as we can, which may better utilize the characteristic of structured LDPC mother codes of variable code sizes. If the information block size of mother code is always larger than k, a little zeros bits need to be added before the information block of size k. Then the encoder of LDPC mother code shall be performed. Finally, these added zero bits need to be deleted, and further certain amount codeword bits still need to be deleted to generate the codeword of size n.

There are three steps to perform the encode process of (n, k) Punctured LDPC codes.

Step 1:  Compute the expand factor 
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 . Based on the uniform base matrix 
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LDPC mother code can be obtained, here 
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 = 16 and 
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Step 2:  Add 
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 zero bits before the information bits of size k, and constitute 
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 bits information block of mother code. Perform the encode process of 
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 mother code, and  
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 parity bits will be generated, here 
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 is always less than z.

Step 3: Delete the added zero bits in Step 2. If the number of codeword bits after the deletion doesn’t equal to N, 
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 parity bits in the predefined position of codeword need to be punctured.

The puncture positions are one of the key elements of the performance of punctured LDPC codes, thus the puncture position need to be selected carefully. Figure 2.1 is an example of puncture position of code rate 2/3 . The mother code is divided into 
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 parts, and each part contains z bits. Label the positions of the bits of the mother codeword block from 0 to
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Figure 2.1 Puncture position of code rate 2/3 LDPC
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These three processes of code puncturing are depicted in Figure 2.2. The new codeword length of the code is n. The corresponding information length is given as k. Consequently, the code rate r equals to k/n.

Figure 2.2 LDPC Mother Codeword and punctured LDPC codeword
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Mother Codeword
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Punctured Codeword

2.2.2 LDPC codes of supporting any rate and any code size

Finally, there are three steps operation as following can cover all cases.

Step 1:  Compute the expand factor according to the formula:
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Then, based on the uniform base matrix 
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 and the expand factor z, 
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LDPC mother code can be obtained, here 
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Step 2:  Add 
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 zero bits before the information bits of size K, and constitute 
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 bits information block of mother code. Perform the encode process of 
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 mother code, and 
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 parity bits can be generated.

Step 3: Delete the added zero bits in Step 2. If the number of codeword bits after the deletion doesn’t equal to N, 
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 bits in the predefined position of codeword need to be deleted.

When code rate
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Define puncture pattern vector P of size
[image: image69.wmf]b

m

as following:

The elements of vector P are different integers from 
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, and the permutation order of these elements in vector P shall be predefined. Here, the size of 
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, vector P is defined as 

P=[17，19，21，23，25，27，31，29，18，24，22，28，30，20，26]。
The following parameters are defined: 
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Label the positions of the bits of the mother codeword block from 0 to
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, then the puncturing positions of y deleted bits in the mother codeword block have been defined:
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2.2.3 Extending operations to obtain LDPC codes of rate lower than 1/2

Extending operations to rate 1/2 LDPC mother codes are needed, while obtaining LDPC code of rate lower than 1/2. The structure of the extended parity-check is shown as follows:
Figure 2.3 Extended parity-check matrix structure
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There are three steps to perform the encode process of (n, k) Extended LDPC codes.
Step 1: Compute
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 columns shall be added to the last row and the last column of 
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 is depicted by Figure 2.3.The whole extended base matrix 
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 after expanding is shown as follows: 
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Step 2: Compute the expand factor
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Step 3: 
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 LDPC code. 

2. Performance of rate matching LDPC code
In this proposal, we compare the FER performance of higher rate LDPC codes and lower rate LDPC codes with the following codes.,respectively.

· Turbo codes in 3GPP[1]

· LDPC codes in Mitsubishi[2]

· Enhanced Structured LDPC codes.

Table 3.1 gives the parameters used in the comparisons.

Table 3.1 Parameters

	Parameter
	Value

	Information block size (k)
	530,1060,2020,5114

	Coding rate
	1/2,2/3,3/4,5/6

	Modulation scheme
	QPSK

	Channel model
	AWGN

	Decoding scheme
	Turbo: Log-MAP MaxIterner=8

LDPC: Log-BP MaxIterner=50


Fig3.1 to fig3.4 are the comparison results between turbo codes and Enhanced Structured LDPC codes with higher rate.
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Fig3.1 k=530, coding rate =1/2,2/3,3/4,5/6
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Fig3.2 k=1060, coding rate =1/2,2/3,3/4,5/6
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Fig3.3 k=2020, coding rate =1/2,2/3,3/4,5/6
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Fig3.4 k=5114, coding rate =1/2,2/3,3/4,5/6

Fig3.5 to fig3.8 are the comparison results between LDPC in Mitsubishi and Enhanced Structured LDPC codes with higher rate.
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Fig3.5 k=570, coding rate =1/2,2/3
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Fig3.6 k=570, coding rate =1/2,2/3
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Fig3.7 k=1476, coding rate =1/2,2/3
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Fig3.8 k=1476, coding rate =1/2,2/3
Fig3.9 are the comparison between Turbo codes and Enhanced Structured LDPC codes with lower rate.
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Fig 3.9 rate=1/3,length=530,1060,2020,5114

3. Conclusion
As compared with turbo codes, when code rate is higher than 1/2 or the code size is large, the error performance of the enhanced structured LDPC codes is obviously better than that of turbo codes; As compared with turbo codes, when code rate is lower, the error performance of the enhanced structured LDPC codes is better and successfully overcomes the error floor effect, especially when the code size is large.

As compared with Mitsubishi’s LDPC codes, our enhanced structured LDPC exhibit superior error performance for mother half rate and similar performance for higher rate.
LDPC codes are cutting-edge coding scheme, so the improvement of LDPC codes still exists. Structured LDPC codes can support flexible code rate and code size, and exhibit the better error performance than turbo codes for large code size and high code rate. In addition, thanks to its nature parallel decoding scheme, it can achieve much higher throughput than Turbo codes for decoding hardware implementations, which is very crucial for the future communication system. In a word, we think these advantages will make it a wining rival that exceeds turbo codes in the future channel coding method. In addition, the combinations of LDPC codes and other technologies, such as coding-modulation, HARQ, and AMC, are becoming the hot research topics recently. Based on our proposed LDPC codes, we will make our contributions on these fields in the future.
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6. Text proposal for inclusion in the 802.16m amendment

[In Section 11.13.1 Insert the following text]
===================Start of Proposed Text====================
15.3.X Channel Coding and HARQ

15.3.X.X LDPC Code structure and code description
15.3.X.X.1 Basic description of structured LDPC codes
The parity check matrix of structured LDPC Codes is defined by a matrix H of size m-by-n, where n is the length of the codeword and m is the number of parity bits in the code. The number of information bits is k=n-m.

The matrix H is defined as: 
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where 
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is one of a set of z-by-z permutation or a z-by-z zero matrix. The matrix H is expanded from a binary base matrix 
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.The base matrix is expanded by replacing each 1 in the base matrix with a z-by-z permutation matrix, and each 0 with a z-by-z zero matrix. Through changing the expand factor z, a LDPC set of variable information length and certain code rate can be obtained.
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P is a 
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standard permutation matrix of the form:
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And 
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Due to the structured characteristic of parity check matrix, the parity check matrix of LDPC codes can be fully described by small set parameters, which results in very low complexity implementations. Actually we only need base matrix
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, instead of parity check matrix H, to perform encoding and decoding. The encoding and decoding algorithms become the matrix calculation of size
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, the basic structure of encoder and decoder only depends on the positions of the non-negative-one elements in the base matrix.

15.3.X.X.2 Structured LDPC Mother Code set with different code sizes

To generate a LDPC code set of a certain code rate and various code sizes, a uniform base matrix 
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is defined. In order to obtain the base matrix of certain code size, the uniform base matrix has to be modified to generate a modified base matrix
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, which will really be used in the encoder/decoder of the LDPC code of certain code size. 

The code rate of the designed mother code sets is always 1/2, and the designed information block sizes increase from 192 to 9040, and the increasing step is 16, That is to say, K=192,192+16,192+2*16,192+3*16,…, 9040. The size of base matrix is 16×32，namely, 
[image: image127.wmf]16

=

b

m

and
[image: image128.wmf]32

b

n

=

. So expand factors z =12:1:565. One uniform base matrix 
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of rate 1/2 LDPC code set is defined as following:
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To obtain the LDPC code of certain code size, the uniform base matrix above has to be modified and then can be regarded as the base matrix
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, which together with expand factor z can be used to define the parity check matrix H of the LDPC code.

For each non-negative-one elements of the uniform base matrix above, the value 
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represents the i-th row, j-th column element of modified base matrix
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 represents the i-th row, j-th column element of the uniform base matrix
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[image: image140.wmf]mod

max

()()

bb

ijifiedijuniform

z

hh

z

êú

=´

êú

ëû

 


[image: image141.wmf]max
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is the largest expand factor, here equals to 565, and z is the currently used expand factor uniquely corresponding to the currently used code size. 
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 denotes the operation that rounds the elements in it to the nearest integers towards minus infinity.
15.3.X.X.3 Multi-rate support of LDPC
By puncturing parity bits from the LDPC mother code block, LDPC codes of rate higher than 1/2 can be generated.

Assume that k denotes the information block size, n means the codeword block size, the number of parity bits (or equalization) equals to m = n-k, whereas n, k and m all are integers larger than zero. Define that 
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 denotes the number of rows of base matrix
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, 
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 denotes the number of columns of base matrix
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, and
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, and z means the expand factor of structured LDPC codes.

15.3.X.X.3.1 Puncturing operations to obtain LDPC codes of rate higher than 1/2

Puncturing operations to rate 1/2 LDPC mother codes are needed, while obtaining LDPC code of rate lager than 1/2. The basic design principle is that information block size of mother LDPC codes should be close to m as possibly as we can, which may better utilize the characteristic of structured LDPC mother codes of variable code sizes. If the information block size of mother code is always larger than k, a little zeros bits need to be added before the information block of size k. Then the encoder of LDPC mother code shall be performed. Finally, these added zero bits need to be deleted, and further certain amount codeword bits still need to be deleted to generate the codeword of size n.

There are three steps to perform the encode process of (n, k) Punctured LDPC codes.

Step 1:  Compute the expand factor 
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LDPC mother code can be obtained, here 
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Step 2:  Add 
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 zero bits before the information bits of size k, and constitute 
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 mother code, and  
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 parity bits will be generated, here 
[image: image157.wmf]x

 is always less than z.

Step 3: Delete the added zero bits in Step 2. If the number of codeword bits after the deletion doesn’t equal to N, 
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 parity bits in the predefined position of codeword need to be punctured.

The puncture positions are one of the key elements of the performance of punctured LDPC codes, thus the puncture position need to be selected carefully. Figure 1 is an example of puncture position of code rate 2/3 . The mother code is divided into 
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 parts, and each part contains z bits. Label the positions of the bits of the mother codeword block from 0 to
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Figure 1 Puncture position of code rate 2/3 LDPC
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These three processes of code puncturing are depicted in Figure 2. The new codeword length of the code is n. The corresponding information length is given as k. Consequently, the code rate r equals to k/n.

Figure 2 LDPC Mother Codeword and punctured LDPC codeword
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Punctured Codeword

15.3.X.X.3.2 LDPC codes of supporting any rate and any code size

Finally, there are three steps operation as following can cover all cases.

Step 1:  Compute the expand factor according to the formula:
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Then, based on the uniform base matrix 
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LDPC mother code can be obtained, here 
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Step 2:  Add 
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 zero bits before the information bits of size K, and constitute 
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 bits information block of mother code. Perform the encode process of 
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 mother code, and 
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 parity bits can be generated.

Step 3: Delete the added zero bits in Step 2. If the number of codeword bits after the deletion doesn’t equal to N, 
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 bits in the predefined position of codeword need to be deleted.

When code rate
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Define puncture pattern vector P of size
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as following:

The elements of vector P are different integers from 
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, and the permutation order of these elements in vector P shall be predefined. Here, the size of 
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, vector P is defined as 

P=[17，19，21，23，25，27，31，29，18，24，22，28，30，20，26]。
The following parameters are defined: 
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Label the positions of the bits of the mother codeword block from 0 to
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, then the puncturing positions of y deleted bits in the mother codeword block have been defined:
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15.3.X.X.3.3 Extending operations to obtain LDPC codes of rate lower than 1/2

Extending operations to rate 1/2 LDPC mother codes are needed, while obtaining LDPC code of rate lower than 1/2. The structure of the extended parity-check is shown as follows:
Figure 3 Extended parity-check matrix structure
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There are three steps to perform the encode process of (n, k) Extended LDPC codes.
Step 1: Compute
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 is depicted by Figure 3.The whole extended base matrix 
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Step 2: Compute the expand factor
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 LDPC code. 
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