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1. Introduction
The contribution proposes the text of bit re-arrangement to be included in the 802.16m amendment. The proposed text is developed so that it can be readily combined with IEEE P802.16 Rev2/D7 [1], it is compliant to the 802.16m SRD [2] and it follows the style and format guidelines in [3]. In section 11.13.2.2 of [4], bit re-arrangement includes a bit-level interleaver and an inverter. Referring to [5,6,7,8], a scheme of a simple bit circular shifter with bit-priority mapping and a bit inverter is proposed for the bit re-arrangement. For chase combining (CC) mode, the bit circular shifter and inverter change the bit positions and bit reliabilities of a subpacket transmitted previously for retransmissions. Besides, the bit-priority mapping can improve the error rate of initial transmission and overall throughput. For incremental redundancy (IR) mode, the bit-priority mapping can protect relative significant bits in different redundancy versions more robustly and bit circular shifter can interleave the selected coded bits to achieve more diversity gain.
2. Motivation
In the legacy transmitter the CTC encoder encodes NEP bits to generate a codeword of 3×NEP coded bits. After the interleaver and the bit selection including puncturing or repetition, a subpacket is formed and then fed into the modulator. The bit selection may product several subpackets as redundancy versions for retransmission. While receiving a NACK, the transmitter retransmits the subpacket or another subpacket of the codeword to enhance the decoding ability. However, it does not satisfy the requirement of better system performance and higher throughput. The bit rearrangement can help arrange coded bits by several BitRe versions to obtain diversity gain. Fig. 1 illustrates the transmitter with the bit rearrangement block. Through the bit selection and bit rearrangement the transmitter may make several versions of subpackets.
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Fig. 1  An illustration of the transmitter with bit rearrangement

In order to improve the system performance, the diversity gain deserves attention for the bit re-arrangement. We introduce several familiar diversities.

· Constellation diversity:
The bits have different reliabilities on some constellations. Taking 16-QAM for example, four bits, 
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, are mapping into a position on the constellation to form a 16-QAM symbol. 
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 respectively modulate the phases of the in-phase and quadrature carriers. In particular, the phase is 0( when 
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 respectively modulate the amplitudes of the in-phase and quadrature carriers, where the amplitude is greater when 
[image: image15.wmf]2

b

 or 
[image: image16.wmf]0

b

 is 1 than otherwise. Thus, 
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. The diversity occurs due to different reliabilities.
· Frequency diversity:
After the modulation, the modulation symbols may be allocated into the resource units with different subcarrier indices. Over the fading channel, the bits at different subcarrier indices should suffer from different fading, as generates diversity.
· Antenna diversity:
While multiple antennas are used, the coded bits are separated into several streams. Different channels may cause different effects on the bits.

The bit rearrangement should have two properties to take advantage of diversities, which are introduced as follows.

· Bit-priority mapping:

The coded bits may be given different priority according to their relative significance, such as systematic or parity bits. More significant bits should be protected more robustly to improve the decoding performance. Therefore, more significant bits may be mapped into more reliable positions on the constellation, or mapped into streams passing better channels. The distribution of priority may change for multiple transmissions of a codeword. Especially, the bit-priority mapping can provide benefit at the initial transmission.
· Averaging reliability:
If some specific bits are always given the highest priority at multiple retransmissions, the performance improvement would degrade. Thus, we let the bits exchange the priorities or reliabilities, i.e. the bit with higher/lower reliability at previous transmission is given lower/higher reliability at current transmission. After several transmissions, the bit reliability seems to be averaged.
In the next section we propose a bit re-arrangement method which utilizes the bit-level interleaver and bit inverter to achieve the properties and advantage mentioned above.
3. Proposed bit re-arrangement method
The proposed bit rearrangement method comprises the bit-level interleaver and bit inverter. For convenience of introduction the bit-level interleaver is separated into two blocks, bit-priority mapper and circular shifter. Thus, the block diagram shown in Fig. 2 has three function blocks, bit-priority mapper, circular shifter and bit inverter. The bit rearrangement for CC-HARQ and IR-HARQ modes are respectively introduced in two sections and its operations are also described in the sub-clauses.
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Fig. 2  An illustration of the bit rearrangement method

The parameters are defined as follows.

[image: image22.wmf]: the subpacket index

: the number of transmission

: the number of bits in the encoding pac

ket (before encoding)

: the number of coded bits for the -th s

ubpacket

: the modulation order for the

TX

EP

k

k

k

N

N

Lk

m

 -th subpacket (2 for QPSK, 4 for 16-QAM

 and 6 for 64-QAM)

: the number of coded modulation symbols

 per subpacket

: the number of streams

: the number of data tones per RU (resou

rce unit

CMSkk

str

DT

k

NLm

N

N

º

s)

: the number of pilot tones per RU

: the number of tones per RU (=)

: the symbol time occupied per RU (6)

17,  1 

: the fundamental length of subcarriers 

for data, 16,  

PT

TDTPT

S

str

scdscd

N

NNN

T

ifN

LLif

+

=

=

=

2

14,  4

str

str

N

ifN

ì

ï

=

í

ï

=

î


3.1  CC-HARQ mode
3.1.1  Bit-priority mapper
After the bit selection, the coded bits are divided into two groups for 16-QAM and three groups for 64-QAM, and then the more/less significant bits are mapped to more/less reliable positions on the constellation as shown in Fig. 3. The coded bits of the subpacket at the initial transmission comprises systematic and parity parts, which are respectively regarded as the more and less significant parts. Assume the input is 
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 and the output is 
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Let the new address is denoted as BPM.
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 is used at the initial transmission.
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Fig. 3  Bit-priority mapping (a) for 16-QAM (b) for 64-QAM

3.1.2  Bit circular shifter

For retransmission, the bit sequence based on priority is shifted rightward by a shift value 
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, and then 
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 is fed into the next block. Or, we can circularly access the bit sequence from the new initial index given by the shift value to obtain 
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. The circular shift may change the bit reliability on the constellation, the corresponding subcarrier indices or the stream allocation to achieve diversity gain. 
Taking 16-QAM case for example, the shift value 
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 can be controlled by two parameters, q1 and q2, and can be represented as the function of them, such as 
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. q1 determines the subcarrier (or frequency) index and q2 determines the bit reliability on the constellation and antenna. Fig. 4 illustrates this example on condition of 16QAM. If a bit is located at different subcarriers at different transmissions, it may suffer from different fading. That could decrease the probability of invariant bad fading on the bit. In Fig. 4, q1 and q2 are equal to zero so that no shift occurs at the initial transmission. At the second transmission q1=2 lets the bit sequence be shift rightward about half length of the occupied subcarrier indices and q2=2 lets the bit sequence be shifted two units more across the original modulation symbols to obtain antenna diversity while multiple antennas are used. At the third transmission q1=3 lets the bit sequence be shifted rightward about three-fourths length of the occupied subcarrier indices and q2=1 lets the bit sequence be shifted one unit more to change the bit reliability on the constellation. At the fourth transmission q1=1 lets the bit sequence be shifted rightward about one-fourth length of the occupied subcarrier indices and q2=1 lets the bit sequence be shifted one unit more to change the bit reliability. 
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 represents the logically inverting of x. At the second and third transmissions, some bits are logically inverted to change the positions on the constellation, as will be introduced in the next section.
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Fig. 4  An illustration of the circular shift for 16-QAM and CC-HARQ case
The shift value is calculated by the following equations.
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where q1 and q2 can be referred to Table 1.
Table 1  The bit re-arrangement parameters for CC-HARQ
	Modulation
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	Invert pattern

	QPSK
	0
	0
	0
	None

	
	1
	2
	2
	None

	
	2
	3
	0
	None
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	1
	2
	None

	Modulation
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	Invert pattern

	16-QAM
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	None
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	[0 1]
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	None

	Modulation
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	64-QAM
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3.1.3  Bit inverter
The bit inverter is used to scramble the bit position with lower reliability on the constellation for some BitRe versions. It logically inverts bits by an invert patterns. For 16-QAM, the invert pattern is [0 1], when 
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 mod 4 = 1 or 2, otherwise the invert pattern is none. For 64-QAM, the invert pattern is [0 1 1], when 
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 mod 6 = 1, 4 or 5, otherwise the invert pattern is none. [0 1] means the last one per two bits is needed to be inverted and [0 1 1] means the last two per three bits are needed to be inverted. In other words, [0 1] represents every two bits are exclusive-ORed by the vector [0 1] and [0 1 1] represents every three bits are exclusive-ORed with the vector [0 1 1]. Besides, none means no inverting operation. The invert pattern can be referred to Table 1.
Note that Table 1 shows four BitRe versions for QPSK and 16-QAM, and six BitRe versions for 64-QAM. However, in the later amendment draft we will suggest only first four BitRe versions for 64-QAM to keep the same signaling overhead for each modulation type.
3.2  IR-HARQ mode
3.2.1  Bit-priority mapper

Due to the different redundancy versions from bit-selection, the first NEP bits of coded bits of different redundancy versions are regarded as significant bits and other coded bits are regarded as insignificant bits.
Then, the coded bits are divided into two groups for 16-QAM and three groups for 64-QAM, and the more/less significant bits are mapped to more/less reliable positions on the constellation as shown in Fig. 5. 

Let the new address is denoted as BPM.
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Fig. 5  Bit-priority mapping (a) for 16-QAM (b) for 64-QAM

3.2.2  Bit circular shifter

For retransmission, the bit sequence is divided into two groups based on priority and shifted rightward by a shift values 
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of different groups to obtain 
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 is fed into the next block. We can obtain the shift value in accordance with which group the index 
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 belongs to and access the bit from the position with the new index 
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. The circular shift may change the bit reliability on the constellation, the corresponding subcarrier indices or the stream allocation to achieve diversity gain. The shift value and the new index 
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Fig. 6  An illustration of the circular shift for 16-QAM and IR-HARQ case
For IR-HARQ mode, the bit inverter is not needed.

4. Simulation Results
Simulation parameters:
	Carrier Frequency
	2.5GHz

	FFT Size (N)
	1024

	Guard Interval
	1/8

	MS Velocity
	Ped-B 3 km/hr

	Permutation Type
	RB (18X6), symbol based random permutation

	Channel Coding
	CTCs with 8 iterations, Max-Log-MAP

	HARQ Type
	Chase Combining (CC), 

Incremental Redundancy (IR)

	NEP
	Chase case: 16QAM 1/2 : 480 bits * 2 FEC (5 RBs)

            64QAM 1/2 : 432 bits * 2 FEC (3 RBs)
IR case: 16QAM 1/2 : 480 bits * 2 FEC (5 RBs)
        64QAM 1/2 : 288 bits * 2 FEC (2 RBs)

	Transmission Times
	For BLER Simulation: 1TX, 2TX, 3TX

For Throughput Simulation: Maximal Trans. = 3 (including initial trans.) 

	Retransmission Delay
	2 frames (10 msec)

	MIMO Configuration
	SM 2x2
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Fig.7  BLER performance for 16QAM 1/2 CC-HARQ under 1TX and 2TX
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Fig.8  BLER performance for 16QAM 1/2 CC-HARQ under 3TX
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Fig.9  Throughput performance for 16QAM 1/2 CC-HARQ
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Fig.10  BLER performance for 64QAM 1/2 CC-HARQ under 1TX and 2TX
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Fig.11  BLER performance for 64QAM 1/2 CC-HARQ under 3TX
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Fig.12  Throughput performance for 64QAM 1/2 CC-HARQ
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Fig.13  BLER performance for 16QAM 1/2 IR-HARQ under 1TX and 2TX
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Fig.14  BLER performance for 16QAM 1/2 IR-HARQ under 3TX
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Fig.15  Throughput performance for 16QAM 1/2 IR-HARQ
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Fig.16  BLER performance for 64QAM 1/2 IR-HARQ under 1TX and 2TX
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Fig.17  BLER performance for 64QAM 1/2 IR-HARQ under 3TX
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Fig.18  Throughput performance for 64QAM 1/2 IR-HARQ
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15.  Advanced Air Interface
15.3   Physical layer
15.3.A   Channel coding and HARQ
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Figure aaa—Block diagram of channel coding supporting HARQ
15.3.A.1   Channel coding
15.3.A.1.1   Double binary turbo code
The CTC in Section 8.4.9.2.3 is adopted.

15.3.A.1.2.   Bit selection
The bit selection is performed to generate the subpacket. The puncturing block is referred as bits selection in the viewpoint of subpacket generation. Mother code is transmitted with one of the subpackets. The bits of a subpacket are formed by selecting specific sequences of bits from the interleaved CTC encoder output sequence. The resulting subpacket sequence is a binary sequence of bits for the bit re-arrangement (if supporting HARQ) and the modulator. Note that Section 8.4.9.2.3.4.4 shall be not applied.
Let

k
be the subpacket index when IR HARQ is enabled. k = 0 for the first transmission and increases by one for the next subpacket. k = 0 when IR-HARQ is not used. When there are more than one FEC blocks in a burst, the subpacket index for each FEC block shall be the same.

NEP
be the number of bits in the encoder packet (before encoding).
Lk
be the number of bits in the subpacket.
mk
be the modulation order for the k-th subpacket (mk = 2 for QPSK, 4 for 16-QAM, and 6 for 64-QAM).

Also, let the scrambled and selected bits be numbered from zero with the 0-th bit being the first bit in the

sequence. Then, the index of the i-th bit for the k-th subpacket shall be:
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The NEP, mk, and Lk are determined by the BS and can be inferred by the SS through the allocation size in the DL-MAP and UL-MAP. The first transmission includes the systematic part of the mother code. Thus, it can be used as the codeword for a burst where the HARQ is not applied or when Chase HARQ is applied.
Besides, for different MIMO-HARQ formats, rank should be feed back for adjusting the total number of encoded bits for retransmissions. So, the adaptive bit selection should be considered.
15.3.A.1.3   Modulation
Gray-mapped QPSK, 16-QAM and 64-QAM shall be supported for data modulation (referring to Section 8.3.9.4.2) as shown in Fig. bbb. The constellations shall be normalized by multiplying the constellation point with the indicated factor c to achieve equal average power.
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=10 or 00. The modulation of the quadrature carrier is similar and not explained in detail herein. 
Each M interleaved bits (M = 2 for QPSK, 4 for 16-QAM, 6 for 64-QAM) shall be mapped to the constellation bits b(M – 1) – b0 in MSB-first order (i.e., the first bit shall be mapped to the higher index bit in the constellation). The interleaved bit sequence denoted as 
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Figure bbb—Block diagram of channel coding supporting HARQ

15.3.A.2   HARQ

15.3.A.2.1   HARQ type
Incremental redundancy Hybrid-ARQ (IR-HARQ) and Chase Combining HARQ (CC-HARQ) are adopted. In IR-HARQ mode, the k-th subpacket generated by the bit selection in Section 15.3.A.1.2 is transmitted at the k-th transmission. k=0 is for the initial transmission. CC-HARQ retransmits the subpacket at the initial transmission.
15.3.A.2.2   Bit selection
The function of bit selection is described as that in Section 15.3.A.1.2. The subpacket is generated according to the number of transmission, HARQ mode and different MIMO-HARQ formats and then fed into the bit re-arrangement.
15.3.A.2.3   Bit re-arrangement
For HARQ (re)transmissions, the subpacket after the bit selection may be arranged according to different bit re-arrangement (BitRe) versions based on the changes of the significance and reliability of each coded bit. The bit re-arrangement comprises the bit-level interleaver and bit inverter shown as in Fig. ccc. In the bit-level interleaver the coded bits from bit-selection will be mapped to different bit reliabilities according to their significance, as is called the bit-priority mapping (BPM) method. In other words, the significant bits will be mapped to relatively more reliable positions and non-significant bits will be mapped to relatively less reliable positions. Then, the bit-level interleaver arranges bits in a simple manner—circular shift. A shift value is calculated in accordance with the selected BitRe version. Instead of really shifting bits, we utilize a circular buffer to register the coded bits after BPM and access them from the initial position which is given by the shift value. Finally, the bit inverter may logically invert some of the coded bits according to the selected BitRe version.
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Figure ccc—bit re-arrangement block diagram
The procedure of the bit-level interleaver can be integrated in the following equations to obtain the new address ADD(i). The parameters are defined as
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Assume the input sequence is denoted as 
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Herein, q1 and q2 can be referred to Table xxx.

Table xxx  The bit re-arrangement parameters for CC-HARQ
	Modulation
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	Invert pattern

	QPSK
	0
	0
	0
	None

	
	1
	2
	2
	None

	
	2
	3
	0
	None

	
	3
	1
	2
	None

	16-QAM
	0
	0
	0
	None

	
	1
	2
	2
	[0 1]

	
	2
	3
	1
	[0 1]

	
	3
	1
	1
	None

	64-QAM
	0
	0
	0
	None

	
	1
	2
	3
	[0 1 1]

	
	2
	3
	2
	None

	
	3
	1
	1
	None


Finally the bit inverter is used to scramble the bit position with lower reliability on the constellation for some BitRe versions in the CC-HARQ mode. It logically inverts bits by an invert patterns. For 16-QAM, the invert pattern is [0 1], when 
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 mod 4 = 1 or 2, otherwise the invert pattern is none. For 64-QAM, the invert pattern is [0 1 1], when 
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 mod 4 = 1, otherwise the invert pattern is none. [0 1] means the last one per two bits is needed to be inverted and [0 1 1] means the last two per three bits are needed to be inverted. In other words, [0 1] represents every two bits are exclusive-ORed by the vector [0 1] and [0 1 1] represents every three bits are exclusive-ORed with the vector [0 1 1]. Besides, none means no inverting operation. The invert pattern can be referred to Table xxx. It is noted that the bit inverter is not applied in the IR-HARQ mode.
After all, the rearranged coded bits will be fed into the modulator.
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