

WDM PICs for Optical Interfaces

Integrated Photonics for 100G Interfaces

IEEE Next Gen Optics, 2012 Jul 16-20

Contributors and Supporters

Contributors:

- Randy Perrie (OneChip)
- Andy Weirich (OneChip)
- Valery Tolstikhin (OneChip)
- Fang Wu (OneChip)

Supporters:

- Arlon Martin (Kotura)
- Samir Desai (Kotura)
- Mehdi Asghari (Kotura)

Why Integrate?

- History of electronics shows that integration reduces cost
 - Reduces manual assembly cost
 - Improves manufacturing yield and uniformity
 - Improves robustness
- Functions that are presently expensive benefit most from future cost reduction through integration
 - Computers were once expensive, are now pervasive and cheap... and even contained in the least expensive PON transceivers
 - The largest future cost reduction due to integration will likely be enjoyed by more feature-rich blocks, e.g. WDM vs. single-λ interface

Photonic Integrated Circuits (PICs)

- Much has been presented to the Task Force about using PIC architectures:
 - Palkert_01_1111
 - 2. Palkert_01c_0312
 - 3. Palkert_02b_0312
 - 4. Palkert_03b_0312
 - 5. Palkert_01_0512
- To date, the predominant architecture presented has been a parallel fiber architecture utilizing silicon photonics.

PIC structures in InP

WDM PICs

 Providing multi-channel WDM functionality in planar devices has been well-demonstrated in the industry using either Arrayed Waveguide Grating or Echelle Grating structures.

WDM Receiver PICs

Key performance features

- FC responsivity: 0.25 A/W
- Adjacent (non-adjacent) xtalk: -30 dB (-35 dB)
- Polarization dependent λ (FC responsivity): 0.03 nm (0.3 dB)
- 3-dB BW: 21 GHz (>25 GHz in Phase 2)

WDM PICs

IC (CMOS)	PIC (MGVI)
Standard material: Si/SiO ₂	Material: InP and related compound semiconductors on Fe:InP substrate
Standard device design / processing	Devices : design / fabrication building blocks
Standard design rules for building the circuit out of individual devices	Circuits : functional integration – vertical, parallel integration – at the same vertical level
Standard process flow and wafer fabrication steps	Fabrication : generic processes, e.g. dry / wet etch, passivation, planarization, metallization
Standard (s/w) design tools for converting the circuit design into photomasks compatible with standard fabrication process	Design tools: some commercial (e.g. BPM) but mostly in-house, still long way to go towards automated computer-aided design toolset
Standard on-wafer testing techniques and procedures	Testing: once PICs have on-chip active devices, automated wafer probing is a very real option
Standard pin layout and packaging	Packaging: application driven, on a Si bench
Fabless model that enables for ASIC design to be decoupled from the device design at one end and wafer fabrication – at the other	Fabless model that <i>potentially</i> allows for ASPIC design to be decoupled from both the device design and wafer fabrication

Conclusions

- End user comments (in palkert_02b_0312) that users are looking for the lowest cost connectivity solution:
 - Medium sized data center: I don't like parallel fiber because I
 have to carry spares in the data center, however, cost is
 absolutely king and I will deploy the lowest cost technology.
 - Very Large data center: I will deploy the lowest cost solution regardless of the fiber type. If PSM4 is not standardized I encourage the formation of an MSA outside the IEEE.
 - Large MSO: We deploy only SMF in our data centers.

Conclusions

- As noted in Kolesar_01b_0112 8-lane cabling is 4x to 5x more expensive than 2-lane cabling
- As noted in Kipp_01_0112 there is only a 20% cost premium nR4 (with WDM) versus nR4 (without WDM).
- The additional cost of parallel fiber in PSM4 will be greater than a WDM module implemented with PICs.
- A duplex fiber nR4 could be compatible with existing LR4 implementations.