The Ethernet Link Model

Piers Dawe
Agilent Technologies

Vancouver, January 2004

What is it?

- A spreadsheet with equations
- Runs quickly, in Excel
- Can be populated with parameter values to represent different fibre-optic links
- One sheet per scenario
- Equations on each sheet are identical
- Available to all on www

Why does the committee need models?

- Define a common starting area
- Document agreed physical effects
- Define common terminology
- Provide a "theory check" for new proposals
- Saves much time debating whether provably good or bad scenarios are good, or bad
- Quick "what-if"calculations
- Allows for peer review
- Some parameters may map directly onto spec items in standard
- Reduces human error
- Provides some level of audit trail: why is the spec what it is?

Purpose of the Link Model

- For developing optical spec numbers
- Portable, runs quickly
- Not intended as a transceiver design tool
- An agreed framework for comparing options
- Uses standard engineering theory, mostly available in textbooks
- Open source, open to peer review, some documentation
- Earlier, Gigabit Ethernet model was validated by experiments in multiple labs
- Tries to be abstract enough to avoid detailed implementation assumptions
- Generally used for worst case analysis

This project may need multiple models

- Could model propagation in MMF
- e.g. refractive index profile -> impulse response
- May wish to relate impulse response, bandwidth, unequalised and equalised penalty
- May wish to relate mode selective loss and delay to modal noise
- This model does none of these
- It assumes all frequency responses (Tx, fiber, Rx) have the same filter shape

History

- Late 90 's
- 2000-2001
- 2001-3 Extensions for EFM
- Latest version on the web today is

EFM0_0_2.7.xls, available from
http://www.ieee802.org/3/efm/public/tools/index.html

- Each file has detailed change notes for those used to earlier revisions

Physical effects in model $1 / 3$

- For short block codes or unbounded codes - e.g. 8B10B, SONET, 64B66B
- Multimode fibre (MMF), single-mode fibre (SMF)
- Fibre modal bandwidth (for MMF), polarisation mode dispersion (PMD) (for SMF)
- "1st, 2nd, 3rd windows"
- 850,1310, 1550 nm bands
- Fibre attenuation, connector attenuation

Physical effects in model 2/3

- Optical Modulation Amplitude OMA
- Mean power
- Extinction ratio ExR
- Duty cycle distortion DCD
- Deterministic Jitter
- Controversial
- Receiver eye opening requirement (timing)

Physical effects in model $3 / 3$ Noise effects

- Receiver sensitivity
- "thermal noise"
- Laser relative intensity noise

RIN

- Laser mode partition noise

MPN

- Modal noise (for MMF)

MN

- Interferometric or Reflection noise

RN

- Baseline wander

Methodology: How does it work? What you see

- Each loss or penalty is calculated separately
- Results displayed
- Losses, and penalties plotted against link length
- Overall losses and penalties calculated together
- Margin plotted against link length
- Example eye diagram drawn

What it does $1 / 2$ Deterministic

- Fibre attenuation and dispersion calculated according to standard formulae
- All risetime, bandwidth, chromatic distortion calculated as Gaussian impulse responses
- DCD, DJ and receiver eye opening requirement determine timing pulse edges and/or "decision point"
- Eye closure is calculated
- Result: effective signal strength

What it does $2 / 2$ Noise, margin

- Almost all noises combined as variances
- Effective signal/noise ratio related to target
- Determines margin
- Interactions of impairments (cause of error floors) are predicted
- Exceptions
- Mode partition noise calculated by textbook formula
- Reflection noise is more like a bounded noise or "deterministic" effect - like crosstalk

What it doesn't do

- Not a time-domain simulator
- Not well suited to iterative calculations or large numbers of scenarios
- Doesn't deal with Tx or Rx CDR "random" jitter
- Assumes that this is less important than receiver random noise - I think that's true in most usable links
- Doesn't really model the fiber
- Doesn't do waveguide calculations
- Doesn't understand laser chirp for chromatic dispersion (CD)
- Treats all CD, PMD and DMD as Gaussian filters
- Doesn't do modal noise theory
- Doesn't yet know about equalisation

Advantages of Ethernet link model

- Trusted and familiar
- Mostly
- Seen as Official
- Source code can be inspected
- Clean, not over complicated
- but growing
- "Fit for purpose" (1/10 Ethernets)
- Each physical effect can be turned on or off independently

Disadvantages of Ethernet link model for 10G MMF project

- All bandwidth, risetime, DMD effects modelled as Gaussian risetimes
- Too simple for the variety of impulse responses we see with MMF
- Does not consider the variety of equalised response shapes
- Assumes fixed input-referred receiver noise
- Set by basic receiver sensitivity and BER limits
- Equalising receiver noise can vary
- Bandwidth penalty Pisi goes to infinity in area of interest
- Spurious accuracy
- Some areas need experimental verification

Can Ethernet link model be extended 10G MMF project?

- Address variety of pulse shapes
- Variety is not good for a quick, portable model
- If we knew what the few "worst" case(s) were, we could revisit the Gaussian pulse-shape assumption
- Address variable input-referred receiver noise
- Seems feasible - when we know how it varies!
- Can work on an alternative Pisi definition if necessary
- New understanding
- e.g. may wish to refine the Modal Noise calculation if it becomes significant
- Some areas need experimental verification

Relation of link model to other items

- Channel (fiber)
- Measured results
- Model (e.g. waveguide)
- Spec limit
- Signal at input to receiver
- Stressed eye generator
- Test procedures
- New info or theory
- Noises, equalisation, ...
- Terminology and definitions
- ISI penalty with an equalising receiver?
- What is a good metric of channel response?

References 1 of 2

Latest model file http://www.ieee802.org/3/efm/public/tools/ EFM0 0 2.7.xls
Cunningham and Dawe, Review of the 10Gigabit Ethernet Link Model http://literature.agilent.com/litweb/pdf/5988-5908EN.pdf

Cunningham

"10 Gb/s Ethernet: from standards to applications", ECOC 2002 Tutorial 1
Hanson and Cunningham, http://www.ieee802.org/3/10G_study/public/email_attach/All_1250.xls
Petrich, "Methodologies for Jitter Specification" Rev 10.0, ftp://ftp.t11.org/t11/pub/fc/jitter_meth/99151v2.pdf
Hanson, Cunningham, Dawe, http://www.ieee802.org/3/10G_study/public/email_attach/All_1250v2.xls
Hanson, Cunningham, Dawe, Dolfi,
http://www.ieee802.org/3/10G_study/public/email_attach/3pmd046.xls
Dolfi, http://www.ieee802.org/3/10G_study/public/email_attach/new_isi.pdf
Cunningham and Lane, "Gigabit Ethernet Networking", Macmillan Technical Publishing, ISBN 1-57870-062-0
Pepeljugoski, Marsland, Williamson, http://www.ieee802.org/3/ae/public/mar00/pepeljugoski_1_0300.pdf
Dawe, http://www.ieee802.org/3/ae/public/mar00/dawe_1_0300.pdf
Cunningham, Nowell, Hanson, "Proposed Worst Case Link Model for Optical Physical Media Dependent Specification Development", http://www.ieee802.org/3/z/public/presentations/jan1997/dc_model.pdf
Nowell, Cunningham, Hanson, Kazovsky, "Evaluation of Gb/s laser based fibre LAN links: Review of the Gigabit Ethernet model", Optical and Quantum Electronics, 32, pp 169192, 2000
Gair D. Brown, "Bandwidth and Rise Time Calculations for Digital Multimode Fiber-Optic Data Links", JLT, vol. 10, no. 5, May 1992, pp. 672-678
Dawe and Dolfi, http://www.ieee802.org/3/ae/public/jul00/dawe_1_0700.pdf
Dawe, Dolfi, Pepeljugoski, Hanson,
http://www.ieee802.org/3/ae/public/sep00/dawe_1_0900.pdf

References 2 of 2

- http :www.ieee802.org/3/ae/public/adhoc/serial_pmd/documents/10GEPBud3_1_14.xls
- Dawe, "Link Model Update" http://www.ieee802.org/3/ae/public/oct01/dawe_1_1001.pdf
- Dawe, "The 10G Ethernet Link Model", http://www.ieee802.org/3/efm/public/sep01/dawe_1_0901.pdf
- References on Reflection Noise

Fröjdh and Öhlen, http://www.ieee802.org/3/ae/public/mar01/ohlen_1_0301.pdf Pepeljugoski and Öhlen, http://www.ieee802.org/3/ae/public/mar01/pepeljugoski_1_0301.pdf Pepeljugoski and Sefler, http://www.ieee802.org/3/ae/public/mar01/pepeljugoski_2_0301.pdf
Fröjdh and Öhlen, http://www.ieee802.org/3/ae/public/jan01/frojdh_1_0101.pdf
Pepeljugoski,
http://www.ieee802.org/3/ae/public/adhoc/serial_pmd/documents/interferometric_noise3a.xls
Pepeljugoski,
http://www.ieee802.org/3/ae/public/adhoc/serial_pmd/documents/useful_IN_formulas.pdf
Fröjdh and Öhlen,
http://www.ieee802.org/3/ae/public/adhoc/serial_pmd/documents/interferometric_noise3.pdf
Fröjdh,
http://www.ieee802.org/3/ae/public/adhoc/serial_pmd/documents/interferometric_noise3.xls
Sefler and Pepejugoski,
Interferometric noise penalty in $10 \mathrm{~Gb} / \mathrm{s}$ LAN links, ECOC 2001 We.B.3. 3
-This presentation to be filed as dawe_1_0104.pdf within http://www.ieee802.org/3/10GMMFSḠ

- More references listed at
http://www.ieee802.org/3/10G study/email/msg01127.html

