Claude Gauthier Ph.D.,

Nick Hsia

November 8, 2016

claude.gauthier@omniphysemi.com

- Previously considered 15m PHY technical feasibility
 - Based on anticipated design changes, we estimated relative power, area, pin-count
- Industrial PHY is broader than Automotive PHY in scope
 - Process automation
 - Industrial automation
 - Building
 - Lighting
 - •
- Cables, topology, power, disturbances, intrinsic safety, diagnostics

- A generic list of constraints
 - Our industrial focus is on long-haul point-point PHY's
 - 1000m trunk, 200m spur, 12 connectors
 - Echo-cancellation to 300m
 - Programmable swing
 - Fixed (and minimal) latency
 - Supply-disturbance / tolerance, noise immunity
 - Power constraint is important
 - Helps with powering, helps with intrinsic safety
 - Diagnostics
 - Tell me when performance may be degrading
 - Multiple configurations
 - PHY, PHY+MAC
 - Flexibility regarding power (don't preclude people from doing what they need for relevant applications)

- Relevant Technology Base
 - Consumer 100Base-TX
 - Separate TX/RX pairs (4 wire)
 - MLT3 coded signaling, +1,0,-1V
 - DSP and ADC/DAC'S
 - 4B/5B encoding, Point to point
 - Multiprotocol Industrial 100Base-TX
 - Same basic function as 100Base-TX, but for industrial environment
 - Deterministic (and minimized) latency
 - Diagnostics broken cable, distance estimation, link quality estimate, register read access
 - "Industrialized" 10/100/1000 PHY
 - Bidirectional communication
 - Echo cancellation, NEXT/FEXT
 - New encoding and DSP schemes
 - Automotive 100Base-T1
 - Leveraged advanced and proven communication techniques
 - Multi-level, Echo cancellation, DSP, PSD-shaping for automotive emissions

- Several technology options are possible
 - Our goal is to grasp the constraints and demonstrate feasibility, and report the results - not to find an optimum
 - Use a simple cable model based on equations presented
 - Developed a baseline from basic PHY
 - Hybrid
 - VM DAC, 4B3T
 - ADC, CTLE, DSP, Echo
 - DFE w/ Floating taps

- Dedicate an ADC for real-time diagnostics
 - Monitor power supply and critical nodes/currents
 - Additionally allow read-out of DSP, CTLE, AGC settings

- There are in fact many possible solutions, but that's for discussion later
 - A basic PHY architecture can suffice for feasibility
- Data-rate, insertion loss are very manageable
- A 2-port PHY can be area-optimized
- Estimated power dissipation <50mW
- Diagnostics and tuning options exist
- Need to refine cable models and impedances

10Mb/s SPE PHY Feasibility Summary

- We looked at the implementation aspects of Long-Reach 10Mb/s SPE PHY to establish technical feasibility
 - Captured a list of constraints that we'll refine down the road

We concluded that the Industrial 10Mb/s SPE is technically feasible

