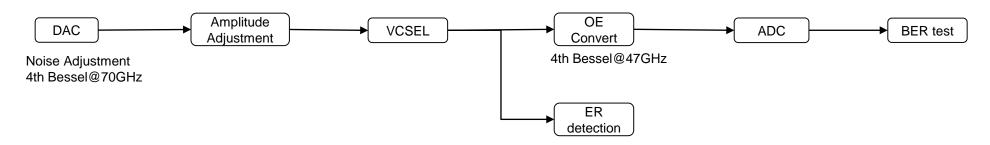
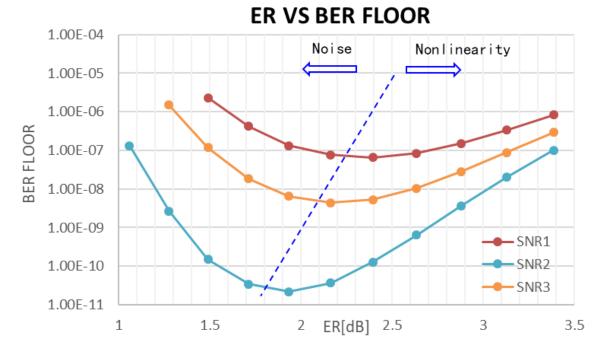
200 Gb/s over 30 m OM4 Objective: BER Floor Optimization and Baseline Link Update

Eric Bernier, Lemon Geng, Helen Xu, Affiliated with Huawei

November 12th, 2025

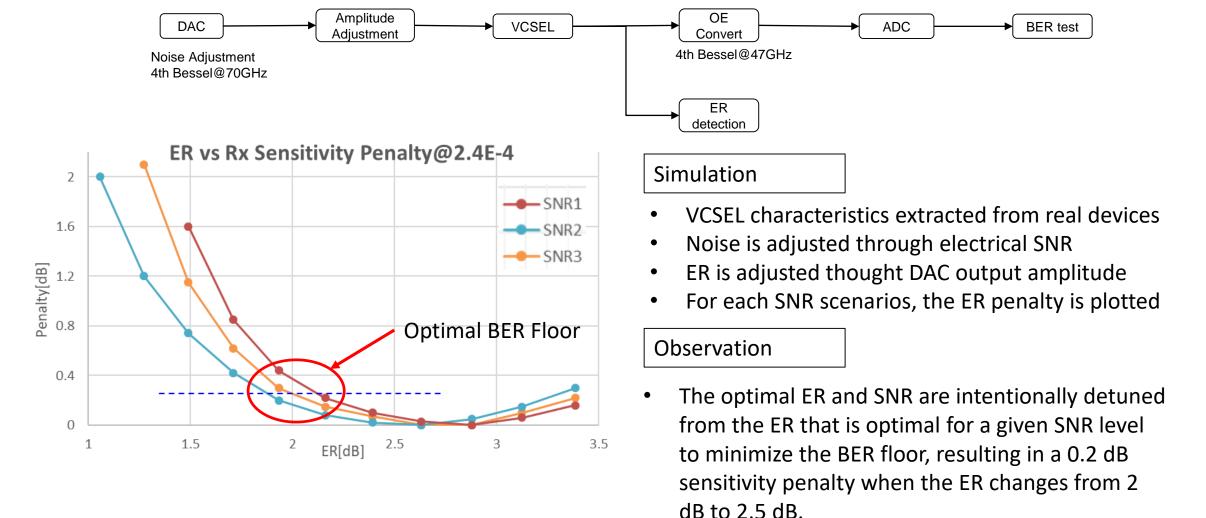

Supporters


- Haojie Wang affiliated with CMCC
- Wenxiong Xu affiliated with HG Genuine
- Mingwang Mao affiliated with Meituan

The Importance of BER Floor minimization

- The Bit Error Floor is an important metric to optimize.
- Hyperscalers are supportive of any efforts to improve performance margins of future PMDs.
- Hyperscalers already impose additional minimum error floor and FEC bins beyond what's required in current IEEE specs. It is necessary to ensure robust performance on AI backend networks.
- Some transceiver technologies have more margin that others. Typical error floors for SiP or EML-based DR transceivers are orders of magnitude better than those of VCSEL-based.
- It is critical for a future VCSEL based solution to optimize toward a lower error floor.

ER VS BER Floor


Simulation Process

- VCSEL characteristics extracted from real devices
- Noise is adjusted through electrical SNR
- ER is adjusted thought DAC output amplitude
- Ber floor is measured and plotted for different SNR and ER

Observation

- As SNR decreases, the degradation of the BER floor is more driven by nonlinearity
- For BER optimization ER decreases from 2.5 dB to 2 dB.

ER VS Rx Sensitivity Penalty and Impact on Error Floor

ERROR FLOOR OPTIMIZATION RESULTS IN AN ADDITIONAL LINK PENALITY

ER Optimization at 200 Gb/s MMF

We observe a tendency for ER to decrease with higher performance devices

- As the bandwidth of VCSEL chips increases, the ER will gradually decrease.
- 200G bit/s system tend to employ larger pre-emphasis, which reduces the ER.

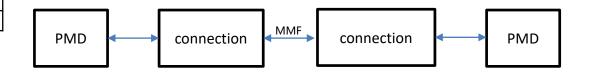
Benefits from lower ER

- Reduce DSP output amplitude to lower power consumption.
- ER can be intentionally detuned to minimize the Error floor

Re-evaluation of optimal ER is required for 200 Gb/s MMF links

Propose to reduce the ER from 2.5 dB to 2 dB for 200 Gb/s MMF.

Illustrative Link budgets


Description	200GBASE-xx1 400GBASE-xx2 800GBASE-xx4 1.6TBASE-xx8 OM4	Unit
Effective modal bandwidth at 850 nm	4700	MHz.km
Power budget (for max TDECQ)	TBD	dB
Operating distance	0.5 To 30/50	m
Channel insertion loss	1.6	dB
Maximum discrete reflectance	-35	dB
Allocation for penalties (for max TDECQ)	TBD	dB
Additional insertion loss allowed	0.1	dB

ISO-IEC 14763-3 / 11801

For installations tested in accordance with ISO/IEC specifications, the following maximum limits apply to the various cable plant components.

ltem.	Specification	
Connector loss	0.75 dB	
Splice loss	0.3 dB	
850 nm	3.5 dB/km	
1300 nm	1.5 dB/km	

Table 2, ISO-IEC cable plant specification

The channel Insertion loss=0.1(fiber)+1.5(connector)=1.6dB

The channel insertion loss is calculated using maximum distance 30m and optical fiber attenuation of 3.5dB/km at 850nm plus an allocation for connection and splice loss

Proposing to maintain 1.6dB channel insertion loss and 0.1dB additional insertion loss, the same as 100G MMF VR1

Summary

- For 200G MMF, ER will reduce due to the limited VCSEL bandwidth and more pre-emphasis compensation.
- By analyzing ER vs Ber floor and RX sensitivity, Propose to reduce the ER from 2.5 dB to 2 dB for 200G MMF.
- Propose maintain 1.6dB channel insertion loss and 0.1dB additional insertion loss.

Illustrative Baseline Preview

Illustrative Transmitter Specifications

Description	200GBASE-xx1 400GBASE-xx2 800GBASE-xx4 1.6TBASE-xx8	Unit
Signaling rate, each lane (range)	TBD	GBd
Modulation Format	PAM4	
Lane wavelengths (range)	844~863	nm
RMS spectral width	TBD	nm
Average launch power, each lane (max)	TBD	dBm
Average launch power, each lane (min)	TBD	dBm
Outer Optical Modulation Amplitude (OMA _{outer}), each lane(max)	TBD	dBm
Outer Optical Modulation Amplitude (OMA _{outer}), each lane(min)	TBD	
for TDECQ < 1.8 dB	TBD	dBm
for 1.8 dB ≤ TDECQ ≤ TDECQ (max)	TBD	dBm
Transmitter and dispersion eye closure (TDECQ), each lane (max)	TBD	dB
TECQ (max)	TBD	dB
Average launch power of OFF transmitter, each lane (max)	-30	dBm
Transmitter power excursion, each lane (max)	TBD	dB
Extinction ratio, each lane, (min)	TBD	dB
Transmitter transition time (max)	8	ps
Transmitter over/under-shoot (max)	TBD	%
RIN _x OMA (max)	TBD	dB/Hz
Optical return loss tolerance (max)	TBD	dB
Encircled flux	≥86% at 19 um ≤30% at 4.5 um	dB

Illustrative Receiver Specifications

Description	200GBASE-xx1 400GBASE-xx2 800GBASE-xx4 1.6TBASE-xx8	Unit
Signaling rate, each lane (range)	TBD	GBd
Modulation Format	PAM4	
Lane wavelengths (range)	844~863	nm
Damage threshold, each lane	TBD	dBm
Average receive power, each lane (max)	TBD	dBm
Average receive power, each lane (min)	TBD	dBm
Receive power, each lane (OMA _{outer}) (max)	TBD	dBm
Receiver reflectance (max)	TBD	dB
Receiver sensitivity (OMA _{outer}), each lane (max)		
for TECQ < 1.8dB	TBD	dBm
for 1.8 dB ≤ TECQ ≤ SECQ	TBD	dBm
Stressed receiver sensitivity (OMA _{outer}), each lane (max)	TBD	dBm
Conditions of stressed receiver sensitivity test:		
SECQ	4.4	dB
OMA _{outer} of each aggressor lane ^c	3.5	dBm

Illustrative Link Budget

Description	200GBASE-xx1 400GBASE-xx2 800GBASE-xx4 1.6TBASE-xx8 OM4	Unit
Effective modal bandwidth at 850 nm	4700	MHz.km
Power budget (for max TDECQ)	TBD	dB
Operating distance	0.5 To 30	m
Channel insertion loss	TBD	dB
Maximum discrete reflectance	-35	dB
Allocation for penalties (for max TDECQ)	TBD	dB
Additional insertion loss allowed	TBD	dB