

200G per Lane for beyond 400GbE

- an update from the 7/27/2020 NEA presentation

Cedric Lam, Xiang Zhou, and Hong Liu

03/29/2021 IEEE 802.3 B400G SG Meeting

Outline

- Driver and use cases for beyond 400G
- Justification for 200G per lane
 - Lower TCO
 - Scalability to 1.6T Ethernet
- 200G optical lane technical feasibilities
 - Baseline performance for different modulation format choices
 - Key component requirements
 - 200G per lane (optical) components readiness survey

DC Traffic Continues to Grow Rapidly (Regular Servers)

> 400GbE will be needed in DCN Fabrics

Backward compatibility between generations of interconnects enables smooth upgrade of datacenter networks.

Why 200G per Lane?

- Cost efficiency for 800G
 - 4x200G
- Path to 1.6Tb & 3.2Tb per port
 - o OSFP
 - o OSFP-DD
 - o CPO

Cost/Gbps vs. Speed per Optical Lane

Faster optical lane speed is key to lower costs, but needs to align with electrical
 I/O speed for best cost & power efficiency

Implementation Comparison of 800G

	IM-DD PAM (8 lanes)	IM-DD PAM (4 lanes)	
Baud Rate (Gbaud)	56G	~112G	
Number of Lasers	8	4	
MZMs and Drivers	8	4	
PD/TIAs	8	4	
Relative DSP power	1	~1.1 (stronger FEC and DSP)	
Link distance	Limited by dispersion (2km, CWDM8)	Limited by dispersion (< 1km*, CWDM4)	
Fan out granularity	100Gb/s	200Gb/s	
Scale to 1.6Tb/s and beyond	No	Yes	

^{*} Reach may be extended by more powerful DSP such as MLSE (Ilya Lyubomirsky, IEEE 2020 summer topical talk)

Necessity of 200Gbps Electrical Lanes

- Scalability and visibility into 1.6T Ethernet
 - OSFP defined 8 electrical lanes
 - 8x 200G gives us 1.6Tb capacity
- Enable 100Tbps Switch ASIC
- Matching the electrical lane speed w/ optical lane speed
 - Simplifies module architectures
 - Reduces overall power consumption
 - Keeps the cost down in the long run
- Support for C2M, C2C and CR
 - Flexible, heterogeneous interconnects @lower cost
 - Better flexibility, serviceability and manufacturability in deployment

100Tbps Switch ASIC in 3 to 4 Years?

- Switch ASIC capacity growth slowed down but the demand is not.
 - New applications are emerging.
- It is harder to increase the number of lanes due to SI and # of packaging pins.
- Power consumption of switch ASIC is another concern

Google

200G Optical Lane Technical Feasibilities

System Model

Focus on the following Functions/Blocks

- Two candidate modulation formats: PAM4 and PAM6
- 2 types of transmitters
 - InP EML
 - SiP MZM
- PD + TIA: R=0.8A/W, IRN=16pA/sqrt(Hz), THD=3%
- Digital Electronics
 - 6-tap Tx FFE, 17-tap Rx-FFE, T-spaced
 - FEC threshold 4e-3 assumed for 200Gb/s per lane*

^{*} Ilya Lyubomirsky, "Coherent vs. Direct Detection for Next Generation Intra-Datacenter Optical Interconnects," IEEE 2020 summer topical

Overall comparison: PAM4 vs PAM6

	PAM4	PAM6
Baud rate	~113Gbuad	~90Gbaud
Rx sensitivity penalty ^A @45GHz BW	~4.9dB	~3.3dB
Rx sensitivity penalty ^A @50GHz BW	~2.3dB	~2.4dB
Rx sensitivity penalty ^A @55GHz BW	~1.6dB	~2.2dB
Support 1km O-CWDM4 CD with EML	Yes CD penalty<1.5dB@55GHz	Yes CD penalty<1dB@55GHz
DAC/ADC ENOB requirement	~5.5 (stronger EQ)	~5.5 (higher-order mod.)
Relative DSP power	1	<1 ?

A: Compared to 106Gb/s per lane PAM4 with KP4 FEC

- If PAM6 can achieve lower power, a dual-mode PAM4/PAM6 may be considered
 - PAM4 only for difficult links (higher link loss and/or MPI)
 - PAM6 for majority of the normal links to save overall network power

Transmitter 1: InP EML

Facet power (modulated)

- Preliminary requirements guideline to support 1km 800G CWDM4 reach
 - Assume support both PAM4 and PAM6
- Prototype: 1 (new) vendor meets the preliminary guideline requirements for <u>uncooled EML</u>
 July 2020, only 2 cooled prototypes met the preliminary requirements.
 - 2-year projected: 1 2 vendors meet the preliminary guideline requirements for uncooled EML

Transmitter 1: EML Driver

State-of-the-art Projection in 2

years

Prototype

0.0

Best in Mass

Production

- Prototype: 1 vendor meets the preliminary guideline requirements
- **2-year projected**: 3 vendors meet the preliminary guideline requirements

Transmitter 2: SiP-MZM

- **Prototype:** 1 (new) vendor meets the preliminary guideline requirements for DR reach
- 2-year projected: 1 2 vendor meets the preliminary guideline requirements for DR reach

200Gb/s per lane components survey

Transmitter 2: SiP-MZM driver

Production Drive output swing Vendor 1 Vendor 2 Vendor 3 vendor 4 vendor 5 Vendor 5 Vendor 5 A Best in Mass Production Prototype Vendor 3 vendor 4 Projection in 2 Prototype Vendor 3 Projection in 2 Vendor 3 Vendor 4 Vendor 4 Vendor 5

- **Prototype**: 2 3 vendor meets the preliminary guideline requirements
- **2-year projected**: 4 vendors meet the preliminary guideline requirements

Receiver: PD+TIA

- Prototype: 1 (new) vendor meets the preliminary guideline requirements
- 2-year projected: 2 3 vendors meet the preliminary guideline requirements

Digital Electronics: CMOS DAC and ADC

- 5nm CMOS: 2 3 vendors meet the preliminary BW guideline requirements
- 3nm CMOS: main purpose to reduce power consumption

200G/s per Lane Technology Improvements

		Parameter	July 2020 Survey		March 2021 Survey	
	Vendor		Best Prototype	2-year Projection	Best Protype	2-year Projection
Tx 1 (InP EML)	2	EML 3dB BW(GHz), uncooled	60	70	65	70
	3	EML 3dB BW (GHz)	43	47	55	65
		Cooled or uncooled EML	Cooled	Cooled	Uncooled	Uncooled
Tx 2 (SiPh- MZM)	New Vendor	6dB-BW (GHz)			54.1	62
		DC Vpi (V)			9.6	7.9
		Intrinsic Insertion loss (dB)			3.6	4.5
Tx 2 MZM Driver	5	3dB BW (GHz)	45	55	60	65
Rx (PD+TIA)	3	3dB BW (GHz)	43	50	43	55
	4	3dB BW (GHz)	N.A	70	70	80
Digital	3	5nm DAC BW (GHz)	~47.5	N.A	~60	N.A

200Gb/s per Optiacal Lane Components Readiness

For 500m DR4 (3dB) and 1km CWDM4 (4dB)

		Mass Production	Prototype	2-year Projected
Transmitter 1 InP EML	InP EML	×	✓ (uncooled) July 2020: only cooled March 2021: uncooled	√ (uncooled)
	EML Driver	×	✓	✓
Transmitter 2 SiP MZM	MZM (SiPh)	×	→ Ready for DR-reach	Ready for DR-reach
	MZM Driver	×	✓	✓
Receiver	PD / TIA	×	*	✓
Electronics	CMOS DSP	✗ (7nm)	√ (5nm)	✓ (5nm/3nm)

Conclusions

- Demands for datacenter bandwidths keep growing quickly.
- It is right time to develop the next higher-speed Ethernet beyond 400GbE
- For intra-datacenter applications, 200Gbps per lane IM-DD implementation provides:
 - Lower TCO
 - Pathway to 1.6Tbps Ethernet
- Technical feasibility of 200Gbps per optical lane is within the reach in the next two years
 - Well within the time frame to complete the next higher-speed Ethernet standard