Beyond 400 GbE Project Priorities for Data Center Networks

Data Center Challenges

- Limitation in data center network power budget
- Scaling (bandwidth demand from new workloads)
- Flexibility operationally efficient backwards compatibility
 - i.e. ability to run existing devices in "downspeed" mode to connect to legacy equipment

Power Reduction Motivation

Backpack

Minipack

Co packaged optics (CPO) provides the next big step in power reduction

Data Center Challenges: Implications for B400G

Limitation in data center network power budget

Scaling (bandwidth demand from new workloads)

Flexibility

- Optimize for Efficiency
 - PCS / FEC Architectures (end end vs by segment vs concatenated)
 - Introduction of Co-packaged Optics
- New Speeds
 - MAC & PMD rates (800 GbE)
 - Lane Rate (switch ASIC wiring / escape)
- Backwards compatibility
 - Preserve ease of compatibility (e.g. retain prior generation optical wavelength grid)
- Preserve interoperability between implementations
 - Co-packaged and front-panel pluggable optics
 - Active / Passive Copper Cables (?)

Intra Data Center Network Evolution

FB Initial Deployment Year / Status	Port Speed (Gb/s)	Electrical Lane Speed (Gb/s)	Switch Silicon Bandwidth (Tb/s)	Switch System Configuration (Radix)	Major Optical PMD	Optical Lane Speed (Gb/s/λ)	Optical Module Type		
							Front Panel Pluggable Optics	On Board Optics	Co- packaged Optics
2016	40	10	1.28	128 x 40GbE	40GBASE-LR4	10	QSFP+	-	-
2018	100	50	12.8	128 x 100 GbE	100G-CWDM4 (OCP)	25	QSFP-28	Mini-Photon	-
2021	200	50	25.6	128 x 200 GbE	200G-FR4	50	QSFP-56	Next Gen OBO	-
Planning – 2023	400	100	51.2	128 x 400 GbE	400G-FR4	100	TBD	Next Gen OBO	CPO Gen 1 (XSR)
Exploration	800	200	102.4	128 x 800 GbE	800G-FR4	200	-	-	CPO Gen 2
Exploration	1600	??	204.8	128 x 1600 GbE	?				

- Goal: Preserve switch radix gen over gen while scaling port bandwidth
- Re-use existing fiber, power, cooling and physical infrastructure to enable "rolling upgrade" with minimal disruption

Backwards compatibility

- Not a typical IEEE objective, but required for operational reasons
- Tiers / regions of network may be upgraded at different times
- Example operation of a 400GBASE-FR4 capable transceiver as 200GBASE-FR4 (400GAUI-4 \rightarrow 200GAUI-4)
- Ideal Outcome:
 - Preserve optical link budgets and wavelength plan for B400G PMDs
 - Consider ease / relative cost of multi-rate serdes compatibility (i.e. PAM4 vs PAM6..)

Co-packaged Optical Switch - Quick Recap

Conventional Fixed Box Switch System

CPO Switch System

Move optics closer to switch \rightarrow shorter electrical channels, less serdes power

Co-packaged Optics - Architectural Considerations

Switch using AUI (i.e. retimer within module - CPO / FPP)

- PMD (and by extension PCS) interoperability at TP2 is required for CPO and FPP modules
 - Need to account for additional intra-box connector(s) (as compared to FPP based optics)
 - Compatibility between CPO and FPP based systems is required
- Interoperability of PPI approaches (optics, serdes) is required for deployment at scale
 - Need multi-vendor interoperability to preserve supply chain robustness
 - Specifications will need to be developed for PPI channel, serdes and optics (see Annex 86A for example)
- Note: end-end FEC shown here for simplicity, but many options to be considered see wang b400g 01 210208.pdf for example

Summary

- We need to optimize for efficiency!
 - Both power, and operational
- 200G Electrical signaling looks to be required to support efficient 102.4T generation switch systems (wiring / ASIC escape limitations)
- 800GBASE-FR4 is the next required major optical PMD for Facebook applications
- New architectures such as CPO are emerging to support higher efficiency designs
 - These need to be compatible with current approaches (i.e. pluggable modules)
 - Serdes interoperability will continue to be critical
 - Electrical Serdes (XSR, VSR, MR, LR)
 - Optical (i.e. serdes capable of supporting "direct drive" / PPI)

Thank you!