

Application Requirement for Beyond 400GE from Telecom Operators' Perspective

——IEEE 802.3 Beyond 400 Gb/s Ethernet Study Group

Haojie Wang, Weiqiang Cheng, Ruibo Han, Wenying Jiang

China Mobile Communication Corporation

March 1, 2021

Outline

1 New Services Demands in 5G Era

2 IP Backbone Network of China Mobile

3 Deployment Advantages of High-Rate Ports

4 Summary and Proposal

New Services Demands in 5G Era

Diversified Services

eMMB

mMTC

VR & AR

Mobile Game

Live Streaming

Smart Home

ITS

Network Traffic Increases Sharply

Source: Based on the Research and Prediction of the Authors from China Mobile.

IP Backbone Network of China Mobile

Network Architectures

- Chine Mobile builds two backbone networks to underlay diversified services with different requirements
- According to the network structure and traffic flow, the architectures of these backbone network are optimally adjusted
- meanwhile the bandwidth of the links is expanded, in order to meet the diverse demands of the carried services

Allocation of Aggregation Links in CMNet

The bandwidth growth rate of China Mobile's backbone network will stay around over 30% in the next two years

LAG Links Distribution in IP Backbone Network

- There are about 70% of LAG links with 4 ports, the equivalent bandwidth of which is 400 Gb/s due to the 100 Gb/s member links in current CMNet
- Note that although the present proportion of the LAG links with more than 8 ports is less, it will grow rapidly driven by massive services

Pros and Cons of Link Aggregation

Grouping multiple link or port resources into a single logical unit for a higher aggregate bandwidth

Example: for the same aggregation group, its member links may be with different lengths, delays, and QoS

Pros:

- Bandwidth expansion & Link standby
- Achieve Equal-Cost Multipath Routing: traffic can be distributed across multiple links
- Economize IP addresses: multiple aggregation ports share an IP address
- Adding a link or port to the aggregation group will not cause the routing oscillation

Cons:

- Hard to operate & administrate: when one link of the group is broken, the aggregation port is still running and cannot sense the fault
- Layer-2 Technology, and Layer-3 routing policy cannot be applied to carry out the flow optimization
- The same path, the different quality of service, since the transmission distances of these links are different in practice

Replacing the aggregation links by employing the higher-rate ports (eg. 400 Gb/s)

Advantages of 400Gb/s Interfaces Deployment

400Gb/s single port for traffic load balance and the simplification of OAM

Advantages:

- Addressing the issues of load imbalance in LAG links: when multiple links are bundled, the traffic may not be evenly carried by these links
- **Simplifying OAM**: the topology and the network configuration can be simplified
- Saving resources: optical fiber (75%), IP address, and so on, can be reduced in proportion
- Enhancing reliability: the number of fault points (eg. transceiver module, etc.) is reduced

Deployment:

- From 2021, China Mobile is going to deploy 400Gb/s ports in IP backbone network step by step
- 400Gb/s ports with 10 km and 40 km reach will be considered firstly to be deployed, and the configuration location will be in the cities

Summary and Proposal

Summary:

- ✓ At present, the LAG links in CMNet First Plane and CMNet Second Plane are **predominantly** with 4×100Gb/s bandwidth. After the LAG links are unbundled, there are large demands for 400 Gb/s ports
- CMNet First Plane: LAG links with 4 ports make up 34%

- CMNet Second Plane: LAG links with 4 ports make up 37%
- ✓ Considering that the average usage of the links in backbone network is about 60%, 400Gb/s ports cannot cover all the aggregation ports when the LAG links are unbundled totally

Proposal:

✓ Meanwhile, the requirement for 800 Gb/s and 1.6 Tb/s ports is also potential, in order to meet the traffic growth of IP backbone network at the annual average rates of over 30%

Thanks!