Considerations on the "10km @ 800Gb/s" objective

Tingting ZHANG, Sen ZHANG, Yan ZHUANG Huawei Technologies

Motivation

As summarized in the Chair's report in April, <u>dambrosia_b400g_02_210426</u>, the group has adopted the below objectives of physical layer specification.

Adopted by B400G SG, Apr 2021

Approval by 802.3 WG Pending

- Support a MAC data rate of 800 Gb/s
- Support full-duplex operation only
- · Preserve the Ethernet frame format utilizing the Ethernet MAC
- Preserve minimum and maximum FrameSize of current IEEE 802.3 standard
- Define a physical layer specification that supports 800 Gb/s operation over 8 pairs of MMF with lengths up to at least 50 m
- Define a physical layer specification that supports 800 Gb/s operation over 8 pairs of MMF with lengths up to at least 100 m
- Define a physical layer specification that supports 800 Gb/s operation over 8 pairs of SMF with lengths up to at least 500 m
- Define a physical layer specification that supports 800 Gb/s operation over 4 pairs of SMF with lengths up to at least 500 m
- Define a physical layer specification that supports 800 Gb/s operation over 4 pairs of SMF with lengths up to at least 2 km
- Define a physical layer specification that supports 800 Gb/s operation over 4 wavelengths over a single SMF in each direction with lengths up to at least 2 km
- Define a physical layer specification that supports 800 Gb/s operation over a single SMF in each direction with lengths up to at least 10 km
- Define a physical layer specification that supports 800 Gb/s operation over a single SMF in each direction with lengths up to at least 40 km

Observations

- Need to draft responses to criteria and ensure all claims can be supported
- 10 km / 40 km @ 800 Gb/s Objectives
 - Technical feasible?
 - Economical feasible?
 - Supporting presentations?

This contribution discusses several feasible schemes, targeting at technical feasibility for the objective:

800Gb/s over a single SMF in each direction with length up to at least 10 km.

Option 1 for 10km @ 800Gb/s

800G LR8 using 8 wavelengths over a single SMF in each direction with lengths up to at least 10 km:

- Low-cost and energy-efficient direct detection solution, reusing the 50GBaud optics;
- Preferring LWDM over CWDM due to smaller chromatic dispersion for the edging wavelengths at O Band;
- Leveraging the FEC and DSP of 400GE;
- Requiring 8×cooled lasers.

Item	Parameter	
Modulation format	PAM4	
Symbol rate	53GBaud	
The number of DAC/ADC pairs	8/8	
The number of lasers/transceivers	8	
Wavelength	1273.54nm, 1277.89nm, 1282.26nm, 1286.66nm, 1295.56nm, 1300.05nm, 1304.58nm, 1309.14nm	

Option1: 800G-LR8

^{1.} http://100glambda.com/.

^{2.} Shigeru Kanazawa et al., "High Output Power and Compact LAN-WDM EADFB Laser TOSA for 4× 100-Gbit/s/λ 40-km Fiber-Amplifier-Less Transmission," 2020 OFC.

Option 2 for 10km @ 800Gb/s

800G LR4 with 4 wavelengths over a single SMF in each direction with lengths up to at least 10 km:

- Halved optoelectronic components compared with Option 1;
- Preferring the use of LWDM due to increased chromatic dispersion penalties at higher symbol rate;
- Requiring larger bandwidth components and stronger FEC than KP4.

ltem	Parameter
Modulation format	PAM4
Symbol rate	112.5GBaud
The number of DAC/ADC pairs	4/4
The number of lasers/transceivers	4
Wavelength	1295.56nm, 1300.05nm, 1304.58nm, 1309.14nm.

Option2: 800G-LR4

^{1. 800}G Pluggable MSA: https://www.800gmsa.com/

^{2.} J. Zhang et al., "280 Gb/s IM/DD PS-PAM-8 transmission over 10 km SSMF at O-band for optical interconnects." 2020 OFC.

^{3.} Shigeru Kanazawa et al., "Transmission of 214-Gbit/s 4-PAM signal using an ultra-broadband lumped-electrode EADFB laser module." 2016 OFC.

Option 3 for 10km @ 800Gb/s

800G LR1 utilizing single wavelength over a single SMF in each direction with lengths up to at least 10 km:

- Digital coherent detection with 800Gb/s per lane;
- Preferring C band wavelength, due to the relatively low fiber loss and the effective chromatic dispersion compensation by coherent DSP;
- Requiring 100GBaud+optoelectronic components.

Item	Parameter
Modulation format	DP-16QAM
Symbol rate	116GBaud
The number of DAC/ADC pairs	4/4
The number of lasers/transceivers	1
Wavelength	C band, e.g. 1547.72nm

Option3: 800G-LR1

Option 4 for 10km @ 800Gb/s

800G LR2 with 2 wavelengths over a single SMF in each direction with lengths up to at least 10 km:

- Digital coherent detection with 400Gb/s per lane, leveraging current 400ZR ecosystem;
- The challenges of size and power consumption for QSFP-DD/OSFP;
- Requiring two narrow-linewidth ECLs.

Option	4:	800	G-L	R2
Option	т.		U -	

Item	Parameter		
Modulation format	DP-16QAM		
Symbol rate	60GBaud		
The number of DAC/ADC pairs	8/8		
The number of lasers/transceivers	2		
Wavelength	Two adjacent channels at C Band, e.g. 1547.72nm, 1548.51nm		

IEEE P802.3cw: https://www.ieee802.org/3/cw/index.html

Option 5 for 10km @ 800Gb/s (1/2)

800G LR4 with 4 wavelengths over a single SMF in each direction with lengths up to at least 10 km:

- Self-homodyne detection (SHD) with 200Gb/s per lane;
- PC (polarization controller) in receiver A can be integrated with single-polarization ICR;
- Besides receiver B, other types of SVDD receiver structure can also be used.

- 1. Y. Wen et al., Optics Express, 28(15), 21940-21955.
- 2. W. Shieh et al., APL Photonics 1(4), 040801.
- 3. S. Zhang *et al.*, "224-Gb/s 16QAM SV-DD Transmission Using Pilot-Assisted Polarization Recovery with Integrated Receiver," in 2021 OFC, paper W7F.4.

Option 5 for 10km @ 800Gb/s (2/2)

800G LR4 with 4 wavelengths over a single SMF in each direction with lengths up to at least 10 km:

- Self-homodyne detection (SHD) with 200Gb/s per lane;
- Reusing four uncooled DFB lasers (O Band CWDM4) and simple DSP;
- Newly designed transceiver architecture.

Item	Parameter
Modulation format	SP-16QAM
Symbol rate	60GBaud
The number of DAC/ADC pairs	8/8(12)
The number of lasers/transceivers	4
Wavelength	1271nm, 1291nm, 1311nm, 1331nm

Option 5: 800G-LR4

Feasible Schemes for 10km @ 800Gb/s

Scheme	8×100Gb/s Direct Detection	4×200Gb/s Direct Detection	1×800Gb/s Coherent	2×400Gb/s Coherent	4×200G SHD
Wavelength	LWDM	LWDM	Fixed λ (C Band)	Fixed λ_1 , λ_2 (C Band)	CWDM
Laser	8×Cooled DFBs	4×Cooled DFBs	1×Cooled ECL	2×Cooled ECLs	4×Uncooled DFBs
DAC/ADC pairs	8/8	4/4	4/4	8/8	8/8(12)
Symbol Rate	53GBaud	112.5GBaud	116GBaud	60GBaud	60GBaud

Summary

This contribution discusses several schemes, which are technically feasible for the objective that 800Gb/s over a single SMF in each direction with length up to at least 10 km:

- IMDD-based schemes with single lane rate of 100Gb/s or 200Gb/s coupled with LWDM is feasible for 10 km @ 800Gb/s, leveraging the low dispersion.
- 800G-LR with single lane rate of 800 Gb/s is another option and has been discussing by the industry.
- 800G-LR2 multiplexing two 400Gb/s coherent modules is also technically feasible.
- Self-coherent detection scheme, using four low-cost uncooled DFB lasers and simple DSP, can also support this objective.

Thank you.