Addressing possible 800G copper cable objective

Adee Ran, Cisco

Supporters

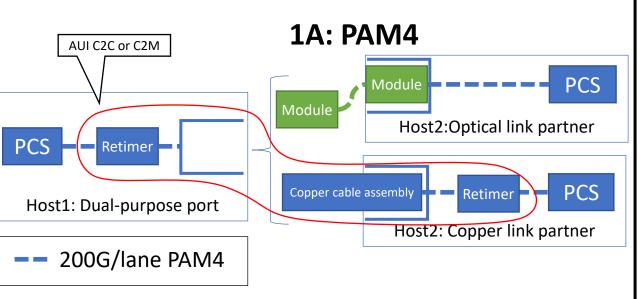
- Chris Cole, II-VI
- Itamar Levin, Intel
- Howard Heck, Intel
- Sam Kocsis, Amphenol
- Chris DiMinico, PHY-SI
- Ali Ghiasi, Ghiasi Quantum LLC

Goal of this presentation

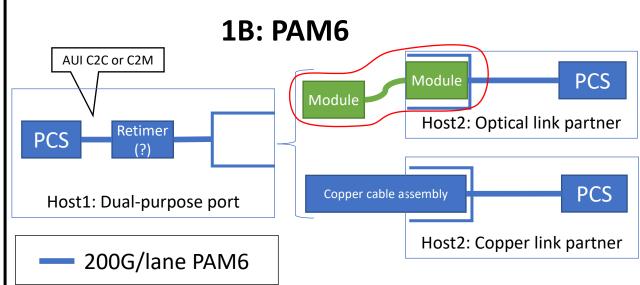
- Lay out architecture options for supporting optics and copper ports, including both 100 and 200 Gb/s per lane electrical interfaces.
- Examine technical feasibility of dual-purpose (optics and copper) ports
 - Combining technical feasibility of AUIs, optics, and copper cables, including interoperability and implementation flexibility.
- We don't need to select a solution at this point!
 - ... but show that there are solutions we can choose from.

Background

- The market need for 800G-by-4 Ethernet over various optical media has been shown in multiple contributions and is established
 - Presentations addressed technical feasibility: <u>kuschnerov b400g 01 210503</u>, <u>mi b400g 01a 210517</u>, <u>lam b400g 01a 210720</u>
 - 800G-by-4, 1.6T-by-8, and also 400G-by-2 and 200G-by-1 objectives have been adopted
 - Architecture is expected to be similar for PHYs with different number of lanes; similar signaling
- Objectives for Electrical interfaces (AUIs) for 200 Gb/s per lane have been adopted
 - Technical feasibility has been discussed (lu b400g/01/210329) with techniques including PAM4 and higher order modulations
 - Related discussions about possible FEC enhancements with some architecture options (e.g. he b400g 01 210426)
 - Commonality with optical signaling and existing architecture is preferable
- We also have objectives for 100 Gb/s per lane versions of 800G and 1.6T PHYs and AUIs
 - Objectives for 8x100 Gb/s copper cable and backplane have been adopted (kocsis b400g 01a 0812)
 - These will likely be extensions of PHYs and AUIs being defined in 802.3ck

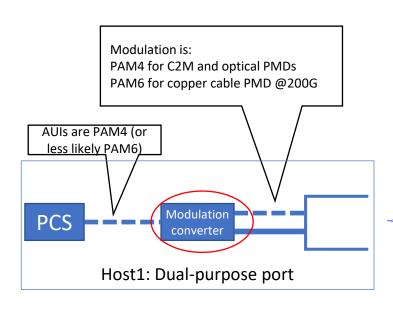

200G Copper cable

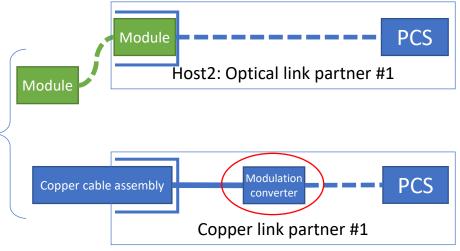
- 200 Gb/s per lane copper cable PHYs at 200, 400, 800, and 1600 Gb/s have recently been proposed objectives as based on market needs (tracy b400g 01a 210729)
 - Technical feasibility was discussed in <u>lu b400g 01b 210729</u>,
 <u>noujeim b400g 01 210517</u> suggesting signaling methods other than PAM4.
 - Other approaches may enable using PAM4 over copper cables with reaches of 1.5 m or higher.
 - Technical discussion should continue in the task force.


Dual-purpose ports

- Having dual-purpose or universal ports (pluggable form factor supporting both copper cables and optical modules of various types) is highly desirable.
 - For short-reach links, this has been the norm for several generations, providing flexibility to users.
 - Expands market potential for both optics and copper.
- In 802.3ck (100 Gb/s per lane) we are getting to the limit of host loss for CR ports...
 - In switches, some ports may be unable to support CR without an external retimer.
 - Expect more pain with 200 Gb/s per lane!
 - Better start thinking sooner than later
- What paths do we have to enable universal ports?

Path #1: common signaling method


 Short-reach copper cable channel may be enabled by low-loss designs or using retimers

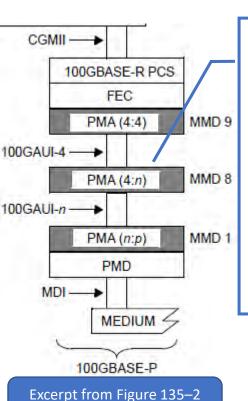

Optical channel feasibility with PAM6 unlikely

Note: Further considerations for 200G/lane PMDs with 100G/lane host IO should be considered due to inclusion of necessary gearbox functionality but not shown in this presentation for simplicity

Path #2: different signaling for optics and copper, dual-purpose ports

PAM4 or PAM6 depending on media

Optimize modulation independently for optical and copper PMDs


- Modulation converter on host (or included in ASIC)
- Common FEC?

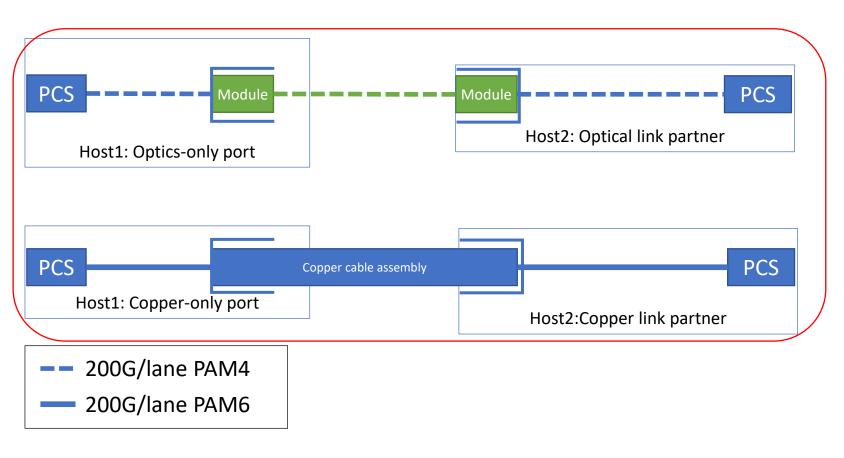
200G/lane PAM6

What is a "modulation converter"?

Bit mux*

Modulation converter

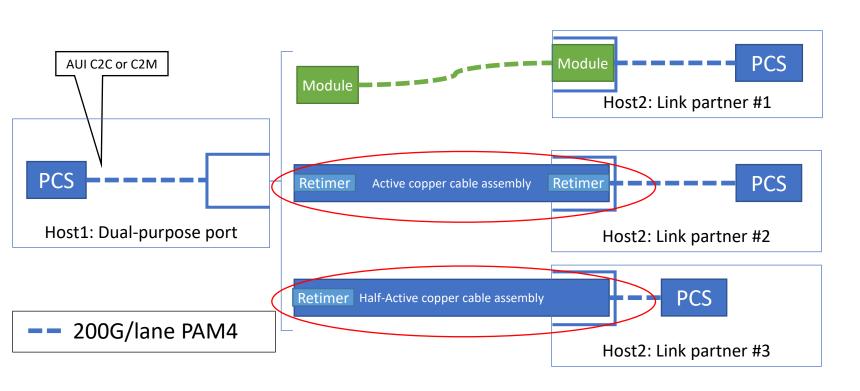
- PMA with electrical interfaces on both ends
 - 1x200 Gb/s PAM4 on one end
 - 2x100 Gb/s PAM4 on the other
- Below the FEC
 - Assuming FEC is implemented in the same device as the PCS
- Synchronous 2:1 gearbox
- "Simple to implement", protocol agnostic


- Architecturally, also a PMA
 - 200 GB/s with PAM6 modulation on one end
 - 200 Gb/s or 2x100 Gb/s with PAM4 modulation on the other
- Maps symbols (or groups) to bits and vice versa
 - More logic, power and latency than a bit mux
 - Protocol-specific
- A device may need to function as a bit mux (PAM4 to PAM4) if different modulations are used for optics and copper

(802.3ck D2.1)

^{*} Note: Not shown in the diagrams in this presentation but a bit mux would be needed for 200G/lane PMDs with 100G/lane host IO

Path #3: different signaling for optics and copper, dedicated ports


PAM4 or PAM6 depending on port

Optimize Ports for different PMDs. Could be implemented using:

- Dedicated hardware switch ports for each PMD
- Dedicated Host ASIC (or modes)
 - multiple PCS/FEC blocks
 - Dual or complicated single SerDes designs

Path #4: Optical modules and active cables

Copper Active cables allow the support of copper cables while architecture stays consistent with the optical PMD architecture

- Common host ASIC and system architecture
- In some cases, half-active cable (retimer on only one end) may work, reducing cost/power.
 Partitioning the channel's loss may allow common modulation with optics.

Architecture with active cables

- The host has a similar AUI-C2M interface to whatever is plugged in. Thus, all ports are dual-purpose.
 - FEC-encoded data over 100 Gb/s lanes can be bit-muxed together to form 200 Gb/s ports, regardless of medium
 - Simpler compatibility with 100G/lane ports and devices.
 - No need for modulation converters or retimers on the host to enable copper.
- No need to allocate loss budget for CR link.
 - BER is budgeted instead as in optics.
 - Simpler design and analysis of each component.
 - Better confidence of system performance when each component is tested for compliance separately.
- Additional advantages
 - The channel is logically segmented. Each segment has lower loss, and the cable segment can internally use several signaling solutions (PAM4, PAM4SE, PAM6), and FEC schemes (segmented, concatenated, or end-to-end) transparently.
 - Using these advantages may increase reach, enable more use cases, expand the market potential, and drive down costs.
 - Note that passive cables can only use end-to-end FEC scheme; this may affect choice for optical PMDs.
 - Lower power consumption on the big ASICs compared to end-to-end links. Host can power an optical module
 anyway. Essentially, retimers are moved from the host to the cable.

Should 802.3 standardize active cables?

- Not considered necessary in the past.
 - Requirements can be implied from AUI-C2M (electrical) and optical module (BER) specifications
- However, explicit standard specification and nomenclature are important for customers.
 - Management as an example...
- As we have done in several other "obvious" PMD types, this would be a good service to the industry.

Summary

- Dual-purpose ports are technically feasible, but copper cable and optical interfaces should be designed jointly as a system solution.
- Architectures for supporting dual-purpose ports can be defined with either all-PAM4, all-PAM6, or dual-modulation schemes.
- Active cables can help in defining a clean architecture with easy interoperability and compatibility, such that all ports support both media types.
- Passive cables with shorter reach may also have wide market potential and be technically feasible.