IEEE 802.3 Study Group SPE point-to-point Enhancement Long Term – Process Industry

Harald Mueller, Endress + Hauser, 2021-04-23

IEEE 802.3 "Enhancements to Single Pair Long Term

Bandwidth is always a limitation for future use-cases!

Source: CFI George Zimmermann March 2021

Why is there a great market potential for bandwidth extension !!!

- **Building Automation**
- **Factory Automation**
- Renewable energy industry
- **Process Automation**
- and more ...

Ethernet-apl Group activities

Document Source: LINK

APL Project Phase1: 10 Mbps Project Phase 2: 100 Mbps Bandwidth Enhancement use Case in Standard and EX-area

2-wire Ethernet to the field

Summary: Ethernet-APL as single physical layer for top performance and IIoT

Slide 10

11/04/2020

Endress+Hauser

Endress+Hauser 🖾

2-wire Ethernet to the field

Digital Services for Increased Efficiency in Operation

- → Ethernet-APL as enabler for real-time access to data in the field level
- → Access in parallel to process control
- → Hardly any limits for processing of the data within IIoT applications
- → fulfillment of second channel approaches, e.g. NAMUR Open Architecture (NOA)

Slide 9 11/04/2020

Endress+Hauser

Endress+Hauser 🖾

2-wire Ethernet to the field

General Timeline

IEEE 802.3cg task force: Enhancements to IEEE completed

IEC: New work item proposals for TS

Foundations: Industrial Ethernet specification updated

Field device vendors: Infrastructure and devices expected

2019 2020 2021

Slide 11

11/04/2020

Endress+Hauser

Endress+Hauser 🖾

2-wire Ethernet to the field

Endress+Hauser Industrial Ethernet Journey

Harad Mueller, Endress + Hauser

IEEE SPE long term Bandwidth Enhancement

Non-Ethernet fieldbuses still required to complete communications to the edge

- Cable lengths > 1km
- 1200 baud to hundreds of kb/sec
- Challenges: Combined reach & rate, special environments, cost of operation

Bandwidth limitation

Ethernet Gap at the 'Edge'

Credit: Dr.Raimund Sommer, Endress+ Hauser, ODVA Industry Conference, Oct. 2014.

From https://www.ieee802.org/3/cfi/0716 1/CFI 01 0716.pdf

IEEE SPE Bandwidth Enhancement

IEEE SPE point-to-point Bandwidth Enhancement

Bandwidth Enhancement use Case in Standard and EX-area!

Trunk (300...500m max. cable length TBD) and Spur (200 m max. cable length)

IEEE SPE Bandwidth Enhancement

APL Phase 1: 10 Mbps

APL Phase 2: 100 Mbps Example HW- Blockdiagram

Only IEEE PHY depends on 10 Mbps or 10/100 Mbps, EMC Parts, and Ex Field Switch Power Supply Port *: 0.5W (Resistive), 1 W, 2W (Rectangular) or more

Bandwidth Enhancement use Case in Standard and EX-area!
=> External termination resistor, limited voltage transmit level,
DC free modulation, Auto negotiation (similar to IEEE802.2cg: 10BASE-T1L PHY)

IEEE SPE Bandwidth Enhancement - Cable

Parameter	Cable Category			
	1	П	III	IV
Cable length trunk [m]	≤ 250	≤ 500	≤ 750	≤ 1000
Cable length spur [m]	≤ 50	≤ 100	≤ 150	≤ 200
Coupling attenuation [dB]	≥ 60 (f is frequency in MHz; 0,1 ≤ f ≤ 20)			
Return loss [dB]	≥ 15 + 8 x f (f is frequency in MHz; 0,1 ≤ f ≤ 0,5)			
	≥ 19 (f is frequency in MHz; 0,5 ≤ f ≤ 20)			
Insertion loss [dB] / 100 m (f is frequency in MHz; $0.1 \le f \le 20$)	$\leq 4.92 \times \sqrt{f} \\ + 0.04 \times f \\ + 0.8/\sqrt{f}$	$\leq 2,46 \times \sqrt{f} \\ + 0,02 \times f \\ + 0,4/\sqrt{f}$	$\leq 1,64 \times \sqrt{f} + 0,0133 \times f + 0,267/\sqrt{f}$	$\leq 1.23 \times \sqrt{f} + 0.01 \times f + 0.2/\sqrt{f}$
	0,1 ≤ f ≤ 20; f is frequency in MHz			
Cross talk [dB], (PSANEXT/PSAFEXT wire pair to wire pair) for multi core cables	≥ 60 (f is frequency in MHz; 0,1 ≤ f ≤ 20)			

NOTE 1 The values in Table 16 apply for single pair and multi pair cables.

NOTE 2 Insertion loss and return loss shall be measured with a reference cable length of 500 m.

NOTE 3 The AC link segment requirements may also be verified using TIA SP1-1000 and ISO/IEC T1-A-1000 channel definitions, which might exclude IEC 61158 type A fieldbus cables from being compliant to these definitions.

10BASE-T1L

APL cable specification, according IEEE802.3CG

Re-Use existing Fieldbus Type A cable!

SPE Bandwidth Enhancement: APL Project Phase 2:

For this purpose, detailed cable measurements of Fieldbus Cable Type A cables, which are already widely used in the industry, were first carried out. Figure 3 shows the results of insertion loss measurements for various shielded twisted-pair cables.

Figure 3: Insertion loss measured at different temperatures for various Fieldbus Type A cables

Technical Feasibility Implementations

APL Phase2 Project:

Working Prototype 200 m Fieldbus Type A Cable @ 100Mbps / PAM 3

Harad Mueller, Endress + Hauser

Technical Feasibility Implementations

Concept check

10 Mbps: 10BASE-T1L

Backward compatibly with 10 Mbps at least 800 m using 0.5 V transmit amplitude (1 V pp)

100 Mbps:

TX

300 m cable by using 1 V transmit amplitude (2 V pp), without bit error 220 m cable by using 0.5 V transmit amplitude (1 V pp), without bit error 3B2T encoding was tested for 100Mbps and achieved the same maximum reach -> 4B3T is more applicable for intrinsic safety applications due to its disparity observing encoding

100Base-

TX

Summary

- Support Bandwidth 100 Mbps
- Support more than 300 m cable length, Wish length max. 500 m
- Support re-use of Fieldbus Type A cable
- Support low power consumption (less than TBD mW) (wish less than 200 mW PHY-IC consumption)
- Backward compatibly with 10 Mbps 10BASE-T1L => Support of auto negotiation IEEE802.3cg 10BASE-T1L
- Do not preclude intrinsically safety use case (use inside EX-Area)
 - DC-free signal coding 4B3T
 - optional external termination resistor
 - limitation of max. transmit voltage (1 V pp)

Thank you!