
MMSE FOM Speed Up commit request
COM Commit Request 4p8_9

Adam Gregory, Samtec

IEEE 802.3 Channel Operating Margin (COM) Open Source Project

Purpose

2IEEE 802.3 Channel Operating Margin (COM) Open Source Project

❑ Improve COM runtime in MMSE_FOM

❑ Since MMSE_FOM is the inner most piece of the optimization loops,
any small improvement can have drastic impact on overall runtime

❑ Observed up to 25% runtime improvement with these changes
• Actual improvement depends on many factors, but the 2 most impactful are:

1. Length of pulse response

2. RxFFE Floating taps

Commit request: 3 changes to speed up MMSE_FOM

3IEEE 802.3 Channel Operating Margin (COM) Open Source Project

❑ MMSE.m: Remove trailing zeros from H
• The size reduction makes the Toeplitz and many operations in MMSE_FOM

faster

❑ MMSE_FOM.m: Compute w transpose once instead of 3 times

❑ MMSE_FOM.m: Reduce runtime of wbl calculation by using linear
algebra simplifications

MMSE.m: Remove trailing zeros from H

4IEEE 802.3 Channel Operating Margin (COM) Open Source Project

❑ If h has length less than num_ui, trailing zeros are added that have
no effect on computations used for H

❑ MMSE_FOM.m contains a multiplication of H * transpose(H).
Reducing the size of H significantly speeds up this operation

MMSE_FOM.m: Compute w transpose 1 time

5IEEE 802.3 Channel Operating Margin (COM) Open Source Project

❑ w transpose is used 3 times in the calculation of sigma_e

❑ Save time by pre-computing once

❑ This seems trivial, but this can easily reduce the number of
transposes called by millions.

MMSE_FOM.m: Reduce wbl runtime

6IEEE 802.3 Channel Operating Margin (COM) Open Source Project

❑ The nature of the wbl
calculation allows for some
linear algebra manipulations
that reduces the size of the
matrix inversion needed

❑ See explanation on
following slides

❑ It is important to keep the
original form of wbl
documented since the final
simplification bears little
resemblance to the original.

Wbl Explanation

7IEEE 802.3 Channel Operating Margin (COM) Open Source Project

❑ Represent wbl as inverse(X)*Y

❑ Divide X into 4 blocks which are
themselves matrices

❑ A is NxN square matrix

❑ C is 1xN

❑ B is the negative transpose of C
(Nx1)

❑ D = 0

❑ The zeros highlighted in red can
be vectors of zeros. Doesn’t
change any of the calculations.

𝑋 =
𝑅 −𝐻𝑏

𝑇 −ℎ0
𝑇

−𝐻𝑏 𝐼 0
ℎ0 0 0

𝐴 =
𝑅 −𝐻𝑏

𝑇

−𝐻𝑏 𝐼
𝐵 = −ℎ0

𝑇

0
= −𝐶𝑇

𝐶 = ℎ0 0 𝐷 = 0

𝑋 =
𝐴 𝐵
𝐶 𝐷

= 𝐴 −𝐶𝑇

𝐶 0

𝑤𝑏𝑙 = 𝑋−1𝑌

𝑌 =
ℎ0

𝑇

0
1

Divide X into Blocks

Wbl Explanation

8IEEE 802.3 Channel Operating Margin (COM) Open Source Project

❑ Use the block matrix inversion
formulas for the case where A is
invertible
• https://en.wikipedia.org/wiki/Block_

matrix#Inversion
• S is the inverse of the Schur

complement

❑ The final form of the inverse of X
is shown

❑ Note that S involves the
multiplication of (1xN)(NxN)(Nx1),
so it is scalar

𝑆 = (𝐷 − 𝐶𝐴−1𝐵)−1= (𝐶𝐴−1𝐶𝑇)−1

𝑋−1 = 𝐴−1 + 𝐴−1𝐵𝑆𝐶𝐴−1 −𝐴−1𝐵𝑆
−𝑆𝐶𝐴−1 𝑆

𝑋−1 = 𝐴−1 − 𝐴−1𝐶𝑇𝑆𝐶𝐴−1 𝐴−1𝐶𝑇𝑆
−𝑆𝐶𝐴−1 𝑆

Replace with B with -𝐶𝑇

Block Matrix Inversion Formulas (when A is invertible)

https://en.wikipedia.org/wiki/Block_matrix#Inversion
https://en.wikipedia.org/wiki/Block_matrix#Inversion

Wbl Explanation

9IEEE 802.3 Channel Operating Margin (COM) Open Source Project

❑ Y can be represented in terms
of transpose of C

❑ Simplify wbl from
inverse(X)*Y

❑ The final form of wbl is
significantly faster to calculate
than the original form
• Usually 10-20% faster

𝑤𝑏𝑙 = 𝑋−1𝑌 = 𝐴−1 − 𝐴−1𝐶𝑇𝑆𝐶𝐴−1 𝐴−1𝐶𝑇𝑆
−𝑆𝐶𝐴−1 𝑆

𝐶𝑇

1

𝑌 =
ℎ0

𝑇

0
1

= 𝐶𝑇

1

𝑤𝑏𝑙 = 𝐴−1𝐶𝑇 − 𝐴−1𝐶𝑇𝑆𝐶𝐴−1𝐶𝑇 + 𝐴−1𝐶𝑇𝑆
−𝑆𝐶𝐴−1𝐶𝑇 + 𝑆

𝑤𝑏𝑙 =
𝐴−1𝐶𝑇 𝐼 − 𝑆𝐶𝐴−1𝐶𝑇 + 𝑆

𝑆(𝐼 − 𝐶𝐴−1𝐶𝑇)

𝑆 = (𝐶𝐴−1𝐶𝑇)−1

𝑤𝑏𝑙 =
𝐴−1𝐶𝑇 1 − 𝑆𝑆−1 + 𝑆

𝑆(1 − 𝑆−1)
= 𝐴−1𝐶𝑇𝑆

𝑆 − 1

Substitute S and replace Identity matrix with 1 since S is scalar

𝑤𝑏𝑙 =
𝐴−1𝐶𝑇

1 −
1

𝑆

S

Impact on Output

10IEEE 802.3 Channel Operating Margin (COM) Open Source Project

❑ The changes to H and wbl both cause minor deviations in the output
structure. Usually on the order of 1e-14

❑ The change to wbl will change numerical values since a different
matrix inversion is used.

❑ The change in output due to removing trailing zeros from H is
surprising. Matlab appears to have some special operations for
runtime improvement when multiplying a matrix by its transpose.
The output of the transpose multiplication is different even though
removing zeros should not change anything
• This is tiny numerical differences on the order of 1e-18

Impact on Output

11IEEE 802.3 Channel Operating Margin (COM) Open Source Project

❑ Screenshot of results
comparison
• Only showing a small part

of the report

Runtime Comparison Example

12IEEE 802.3 Channel Operating Margin (COM) Open Source Project

❑ Showing runtime of lines that are relevant to the code update.

❑ Original on the left. Update on the Right.

❑ Total runtime for this example was 160 seconds vs. 120 seconds

❑ Note: this is for about 400K calls to MMSE_FOM. That number can grow much larger with more EQ loops.

Changes to config

13IEEE 802.3 Channel Operating Margin (COM) Open Source Project

❑ Changes to config
• None

❑ Changes to output
• Tiny numerical differences

❑ Download beta test code
• Beta Test: MMSE Speedup

https://opensource.ieee.org/802-com/com_code/-/raw/MMSE_Speedup/release/com_ieee8023_4p9p0_beta_MMSE_Speedup_01.m?inline=false

Thank You!

IEEE 802.3 Channel Operating Margin (COM) Open Source Project

	Slide 1: MMSE FOM Speed Up commit request COM Commit Request 4p8_9
	Slide 2: Purpose
	Slide 3: Commit request: 3 changes to speed up MMSE_FOM
	Slide 4: MMSE.m: Remove trailing zeros from H
	Slide 5: MMSE_FOM.m: Compute w transpose 1 time
	Slide 6: MMSE_FOM.m: Reduce wbl runtime
	Slide 7: Wbl Explanation
	Slide 8: Wbl Explanation
	Slide 9: Wbl Explanation
	Slide 10: Impact on Output
	Slide 11: Impact on Output
	Slide 12: Runtime Comparison Example
	Slide 13: Changes to config
	Slide 14: Thank You!

