Contributing to 802-COM by creating Feature
Branches and Merging —v1.1

Adam Gregory, Samtec
Richard Mellitz, Samtec
Kent Lusted, Synopsys

IEEE 802.3 Channel Operating Margin (COM) Open Source Project Ad Hoc

Revision History

Version # Notes

1.0 Original release — May 2025 interim

1.1 Added details to step 5 on file modification and creating the release file

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 2

https://www.ieee802.org/3/ad_hoc/COM/public/2505/gregory_COM_02_2505.pdf

Summary

* The mainideais to work within a Feature Branch of a Forked Repository instead of working on
the main code branch. This allows the developer to make any change they want without
affecting the stable main branch

* Note that if you are not a Maintainer of 802-COM, it is only possible to work on a Forked
Repository

 Summary of steps to work in a branch:

Create a Fork repository of 802-COM into your name space

Create a new branch on your Forked repository

GIT: clone the repository

GIT: Checkoutthe new branch

Proceed with normal code updates: commits, pushes, etc...

When finished, do a Merge Request from the COM Open-Source IEEE page

After the Merge Request is approved, update your Fork

N oo h~wbd -

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 3

Step 1: Fork 802-COM into personal namespace

* A project can be Forked to a user’s personal space. Then the user can create branches on their
pe_rsonleal repository. After finishing, a Merge Request is submitted FROM the forked repo TO the
original repo

* Note that creating the Fork is a one-time process. For future contributions, continue using the
same fork repository

* Navigate to 802-COM website
* https://opensource.ieee.org/802-com/com_code

* Select com_code under project
* Click the Fork button. Follow steps on the next slide.

Project

' C com_code & Q v || s str

& Pinned v

Issues 0 ¥ main v com_code | | 4+ ~ History Find file Edit ~ m Project information
|

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 4

https://opensource.ieee.org/802-com/com_code

Step 1: Fork 802-COM into personal namespace

After clicking Fork, the dialog shown here will

Project name
a p p e a r com_code
. . . Must start with a lowercase or uppercase letter, digit, emoji, or underscore. Can also contain dots, pluses, dashes, or spaces
The mainideais to select the namespace for
h Project URL Project slug
t e C u rre nt u S e r hitps://opensource.ieee.org/ | Select a namespace v com_code
L4 FO r th e exam p l_e h ere: a d am. grego ry Want to organize several depenf yonocoacee ace? Create a group

Project description (optional)

This creates an entirely new project that can be
cloned as normal to your computer

802-com/compliance

802-com
The fork caninclude all branches or just the Branches to include acam gregory
. () Al branches
m a In b ra n C h * \ © Only the default branch main
* Thisis a user choice. The typical flowis to iy el
include only the main branch since the O @ rivate
. . Project access must be granted explicitly to each user. If this project is part of a group, access will be granted to members of the group.
idea is to work on a completely new 0 Qinterna
b ra n C h afte r fO rkl n g. o éit;ltﬂ can be accessed by any logged in user.

The project can be accessed without any authentication.

It is strongly recommended to keep the Fork at
Public Visibility Cancel
e Setting to Private could create problems
with submitting Merge Requests

IEEE 802.3 Channel Operating Margin (COM) Open Source Project

Step 2: Creating a New Branch

* Open the forked repository in your personal namespace
* Inthe left panel, expand the Code option and select Branches

* Clickthe New Branch button in the top right

& : %s opensource.ieee.org/adam.gregory/com_code/-/branches) -

—== This is the Adam.Gregory Fork
IEEE SA) [Adam Gregory com_code Repository Branches .
PEN 0 + & - Not the 802-COM repository
Issues a
Merge requests 4] Overview Active Stale Al Filter by branch name ‘ Q | View bran
@8 Manage ? @ See all branch-related settings together with branch rules X
E Pl You can now find an overview of settings for protected branches, merge request approvals, status checks, and security approvals conveniently in one spot.
an »
|| Dismiss
<[> Code v
|
Merge requests 0

Repositor

IEEE 802.3 Channel Operating Margin (COM) Open Source Project

Step 2: Creating a New Branch

* Give the branch a name. Usually a description of the feature or bug fix the branch is
addressing.

* Choose what this branch is based on. In most cases, it will be based on “main” branch. Itis
possible to base the branch on other commits or branches though.

New Branch

Branch name

Create from

main v

Existing branch name, tag, or commit SHA

Create branch Cancel

IEEE 802.3 Channel Operating Margin (COM) Open Source Project

Step 3: Clone (or Pull) the remote repository

* |f the repository hasn’t been cloned yet, do a git clone

Open git bash

Navigate to the folder where the repository will be cloned
Run: git clone

Note that the path shown here is for the adam.gregory Fork. Your Fork will be based on
your name.

* |[f you have instead made the branch on a repository that has already been cloned, just do a
git pull to retrieve the branch.

§ git pull|

IEEE 802.3 Channel Operating Margin (COM) Open Source Project

Step 4: Checkout branch

* From the git bash terminal, run the following command:
* git checkout <branch name>
* Forabranch named My_Feature:
* git checkout My_Feature
* This will change all files in your working directory to match the data in the current branch.
Run this command to go back to the main branch:
* git checkout main
* Runthis command to see all branches that are available. (Note that you need to check out a
branch before it is listed)
* gdit branch

Current branch
List of all available branches

§ g1t branch

MMSE_Speedup

; Current branch
main

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 9

Step 5: Working on a branch

* Oncethe branchis checked out, files can be modified, and git commits/pushes can be done
without having any effect on the main branch.

* This means you can do a git checkout to swap between different working states. Git
checkout modifies the files on the disk of your working area to match the state of the chosen
branch.

* Important: Make sure you have checked out the intended branch before modifying files!

* Forthose not familiar with using Git, there are a few tutorial slides at the end of this
document.

* Note: Any tracked file that is modified must be committed or stashed before changing to a
different branch. See slides at the end of the presentation regarding Git Stash.

* Anewfile that has not been committed doesn’t need to be stashed. Stashing only
applies to files whose contents would be modified by changing branches.

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 10

Step 5: Working on a branch
(Instructions on file modification)

* Only modify the functions in the “src” folder

* Never modify or create functions in the “release” folder

* The “release” folder contains the release .m files which contain all subfunctions in a single
file. These files are auto-generated using the “make_release” function.

* |tis notrequiredto run the make_release function, but it will allow users to run your branch
updates without downloading the entire git repository.

* See the next slide for instructions on running make_release.

IEEE 802.3 Channel Operating Margin (COM) Open Source Project

11

Step 5: Working on a branch
(Making a release file)

* Command line for running make_release:
* Management.make release('com leee8023 .m', "<NAME>");

* <NAME> = the string that will be appended to the end of com_ieee8023_. If <NAME> =
‘TEST’, then the output file will be “com_ieee8023_TEST.m”

* The recommendation is to follow this syntax for <NAME>:
* '<NextVersion> beta <BranchName or FeatureDescription> <ReleaseNumber>’
* <NextVersion> = the version number following the current release
*» <BranchName or Feature Description> = identification string for this test release
* <ReleaseNumber> = start with “01”. Then increment if more releases are created 02, 03,

etc...

* Example:
* Management.make release('com leee8023 .m', "4p9pl beta Feature ABC 017);
* This will create “com_ieee8023_4p9p1_beta_Feature_ABC_01.m”

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 12

Step 5: Working on a branch

* After finishing the work on the branch, the recommendation is to write some tests to validate
the completed work. This will make the process of merging into the main branch much
faster.

* Forexample, if the update is to fix a bug that causes COM to crash in some specific scenario,
the tests generally demonstrate 2 things:
1. The scenario that crashes will now run successfully after the update
2. Other scenarios that did not crash continue to produce the same output as they did
before the update

* The ability to switch back and forth between the Feature Branch and the Main Branch
simplifies the testing. Results can be stored by running the code on each branch and doing
comparisons.

* Note: the Maintainers of 802-COM have a responsibility to provide a general test suite that
contributors can run to help validate updates. This has not been completed yet.

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 13

Step 6: Merge Requests

* When a branch is finished, it must be merged into the main branch

* To create a Merge Request, open the project in your personal workspace:
* Inthe left panel, expand the Code option and select Branches

* Clickthe New button on the target branch. This will open a new dialog for setting up the
specific Merge Request

 See next slide

88 Manage »

@ See all branch-related settings together with branch rules X
B Plan 2 You can now find an overview of settings for protected branches, merge request approvals, status checks, and security approvals conveniently in one spot.
> w
Merge requests a
Repository

Active branches
‘ Branches
i Optimize_FOM_Reduce [
Commits p _Fom_ [°' _ ola 19 New h ¥
25f510462 - Merge branch 'Optimize_FOM_Reduce' of... - 1 hour ago

Tags

Repository graph MMSE_Speedup [3} Tl 191 New | | &
eb5e2800 - Merge branch 'MMSE_Speedup’ of https://opensource.ieee.org/802-com/com_code into MMSE_Speedup - 1 hour ago

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 14

Title (required)

Step 6: Merge Requests

[Mark as draft
Drafts cannot be merged until marked ready.
* In the Merge Request dialog, fill out the following Description
ﬁeldS. Prvew B I § 1=« @ = =:=%89 H @
° Title 3 updates to speed up MMSE_FOM: 1) remove trailing zeros from H matrix 2)

matrix inversion cancellation

* Description
* Assignee
* Reviewer

Add description templates to help your contributors to communicate effectively!

* The Assignee must be one of the maintainers of 802- Assignee
COM P Richard Mellitz v | Assignto me
Reviewer
* The options to “Delete source branch” and “Squash Adam Gregory .
commits” should both be enabled Miestone

Select milestone

* Enable the option to “Allow commits from members
who can merge to the target branch”

* This increases the likelihood of the Merge Request S
being accepted S|nce Ma|nta|ners Of 802_COM Delete source branch when merge request is accepted.
. . . Squash commits when merge request is accepted. (3)
can add additional commits before the merge.

Labels

Select label

Contribution

Allow commits from members who can merge to the target branch. About this feature.

° Cl.iCk the Create Merge Req uest button Please review the contribution guidelines for this project.
IEEE 802.3 Channel Operating Margin (COM) Open Source Project - 15

Viewing Merge Requests

* Onthe main 802-COM page, select Merge Requests

* The different categories of Merge Requests can be selected on the top panel: Open, Merged,
Closed, All

* If you have recently submitted a Merge Request, it will be listed under Open

IEEE SA O PE 0o + 802-COM | com_code | Merge requests

o 1 51 Open 0O Merged 1 Closed 1 All 2

Q) Search or go to...

| Recent searches v Search or filter results...
Project

C com_code

Pinned v
Issues a

o
88 Manage >

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 16

»

<l

Step 7: Update Fork Repository after Merge Request

Project

C com_code ®

When the Merge Reccj]uest is approved and the code is merged, the Fork repository in your personal
space will be behind the main 802-COM

* The main branch in your fork reflects the state of the main branch before Merging
Go to the main page of the Fork Repository in your personal space

The section below that saKs where it was forked from will have an Update button if your Fork
repository is behind. Click the Update button

After clicking update, it will say “Up to date with the upstream repository”

This step is important because it allows the next branch you create to be synced with the main
branch of 802-COM

Pinned ~
Issues 0 ¥ main v com_code |/ | + v History Find file Edit ~ m
Merge requests 0
» Merge branch 'Validate_Merge_Request' into 'main' ===

s Ve g R ; 7Ff7b2cad | [
Manage ¥ -Z-7 Richard Mellitz authored 53 minutes ago
Plan >
Code > ¢ Forked from 802_COM /com code
Sl } . 5 behing » upstre TeluL ;

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 17

Git Tutorial

* There are many ways to use Git. The following slides contain some basic instructions for
updating a Git repository, but it is not the only workflow that exists.

IEEE 802.3 Channel Operating Margin (COM) Open Source Project

18

Git Tutorial (Opening Git Bash in the repository)

* Open Git Bash and navigate to the chosen folder. There are
multiple ways to do this:

* Option 1: Right click in Windows Explorer from the target
directory and choose “Git Bash Here”

* Option 2: Open Git Bash. Type “cd <target folder>” View

Sort by
Group by
Refresh

* Git Bash has the most flexibility since it is command line driven.
You can also open Git GUI. The visual interface makes a lot of .
operations easier. Paste shortcut

Undo Rename Ctrl+Z
qu Open with Visual Studio

Git GUI Here

Git Bash Here
B Open Folder as PyCharm Community Edition Project

Copy File/Folder Path

Path Copy

Customize this folder...

Give access to
Mew

Properties

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 19

Git Tutorial (Clone)

* Cloningis the process of copying a remote repository (like on the IEEE Open-Source site) to
your local directory. Cloning is a one-time process. Once the repositoryis cloned to a
particular place, you will never run clone in that space again. The git pull command is used
to get future updates.

* The main page for a repository always has a Code button. Pressing that gives the URL
needed to clone that repository.

* Open git bash in the location where you want the cloned repository to appear. Run:
* git clone <URL>

* Forthe main 802-COM repository:
* git clone https://opensource.ieee.org/802-com/com_code.git

Project

Pinned
Issues

Merge requests
f8 Manage

Plan

> Code

C com_code @

¥ main ~ com_code [| + v History Find file Edit @

Clone with S&8H

Ak Management.compare_results: first pass code for comparing output from re

gitBopensource.ieee.orqg:802-com/ | [3
A%< Adam Gregory authored 23 hours ago

Clone with HTTPS Copy URL

. https://opensource.ieee.org/8
Name Last commit ps://op 9/ @

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 20

Git Tutorial (pull)

* To get changes made on the remote repository that the local repository doesn’t have, run this
command:

. git pull

* |f you are referencing a repository on your personal fork, you will probably only need to
execute a git pull after making a new branch. Unless there is another using making updates
on your personal fork.

* Pull will be used mostly for:

e Getting updates from the main 802-COM repository
e Getting updates from another user’s COM repository that you want to view

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 21

Git Tutorial (Checkout Feature Branch)

If this is the first time using Git in the repository, it will start on the main branch. The
guidelines set forth earlier in this document require that work is done in a different branch.
Assuming that the branch has already been created on the remote repository, use this

command to switch your working branch from main to the target branch:

e git pull
* git checkout <branch name>

* Note that the branch should be checked out BEFORE you start updating files in the
repository. The action of checking out a branch will change the files on disk to match the

state of the branch

fc/matlab_tools /OQ5C0OM/

§ g1t checkout Optimize_FOM_Reduce

Switched to branch "Optimize_FOM_Reduce’

Your branch i1s up to date with "origin/Optimize_FOM_Reduce’.

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 22

Git Tutorial (Updating Files)

* The main contribution effort is updating a file and pushing those changes to the remote
repository. There are a sequence of 3 commands to complete the update:
1. Add
* Provide Git with a list of modified files that should be staged. Staged files are those files
that will eventually be committed. A changed file that has not been staged by running
the Add command is not part of the commit.
2. Commit
* Update the local repository (on your machine) with the files that have been staged by
running Add
3. Push

* Take all commits since the previous Push, and then Push the data to the remote
repository (on IEEE Open-Source Site). Note that a Push can follow each commit, but a
Push can also wait until some number of commits are finished.

* Note the important distinction between commit and push. Commit updates only the local
repository. Push publishes to the remote repository (on IEEE Open-Source)

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 23

Git Tutorial (add)

e Run this command to see a list of files that can be added. This includes files that have been
changed and files that are Untracked (not yet part of the repository):

* gdit status

* Run git add to add a particular file:
* git add <path to file>

§ git add src/test_file.m

* For situations where every available file that has been updated or is untracked will be added,
this shortcut command can be used to add them all:

. gitadd --all

f g1t add ——EL"|

* Run git status again to see that the files which were added have changed from red to green.
The green files are ready to commit.

IEEE 802.3 Channel Operating Margin (COM) Open Source Project

24

Git Tutorial (commit)

* After adding files, they can be committed. Run this command:
e gitcommit-m “My Commit Message”

* The commit message is what will show up on the repository website as a description for this
commit, so it is to your advantage to be descriptive. It will also help other users viewing the

update get a sense of what was accomplished before viewing the specific details of the
commit.

* When possible, doing multiple small commits makes the history easier to parse.

COm_ main)

i g1t commit -m "Updating T1 m uppurf fh1f cool feature”

* Note that after completing the commit, only your local repository has been updated.

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 25

Git Tutorial (push)

* After completing one or more commits, the push command can be run to push the
repository updates to the remote repository on your personal IEEE space.

* A message (like shown below) will be generated showing if the push was successful. A
failure to push likely means there was a conflict that must be resolved first. (Generally by
doing a git pull and a merge). But when working on a Feature Branch in your personal space,
there should never be a conflict unless other users are also contributing to the same feature.

Run this command:
* git push

§ g1t push

Enumerating objects: 9, done.

Counting objects: 100% (9,/9), done.

Delta compression wsing up to 12 threads

Compressing objects: 100% (5/5), done.

Writing objects: 100% (5/%), 504 bytes | 504.00 KiB/s,
al 5 (delta 4), reused 0 (delta 0), pack-reused 0

The reply-by-email functionality is currently

to Issues or Merge requests, please do so

IEEE 802.3 Channel Operating Margin (COM) Open Source Project

done.

via the web and not by

not working. To reply

26

Git Tutorial (Merge an update from Main Branch into Feature Branch)

* While working on a feature branch, itis possible there will be changes in the main branch
that you want to incorporate
* First use the IEEE Open-Source website to update your Fork
* See Step 7 in this presentation
» After updating, the main branch in your Fork repository will have the most recent updates in
the main branch of 802-COM
* Checkout the branch you want to update with changes in main, and run git merge
* git checkout <Feature_Branch>
* git merge main
* The merge command means to take the updates in main and merge them into your Feature

Branch. If there are no conflicts, the merge will finish automatically. If there are conflicts,
you will need to choose which code to keep in the conflicting lines.

* Before running merge, it is usually a good idea to see the details of the changes you will be
merging. You may decide to wait if the changes in the main branch conflict with lines of code
you have updated.

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 27

Git Tutorial (Deleting a Branch)

* |fyou decide that a branch in your personal space should be removed, you can delete it from
the Branches page. Choose the triple dot option beside the branch you want to remove and
select Delete Branch

* This removes the branch from the remote repository, but it should also be cleared from the
local repository. Run the following 2 commands
» git fetch --all --prune
e git branch -D <BRANCH NAME>

C com_code
& Pinned .

Issues 0

b i s 0 Active branches

Manage »
. i e tovew | (2]
Plan » 7ff7b2c4 - Merge branch 'Validate_Merge_Request’ into 'main’ - 1 day ago)

Compare
< Code w main [default = protected
TfF7b2c4 - Merge branch "Validate_Merge_Request’ into 'main’ - 1 day ago Delete branch
Merge requests 0

erandieEE 802.3 annIal Operating Margin (COM) Open Source Project 28

Git Stash: Changing branches before it is ready to commit

* [tis possible to be in the middle of an update in a branch and need to switch back to main
before work is finished. You could commit the unfinished work, but that could put the
branch into an undesirable state

e The alternative is to stash the uncommitted data so that it can be retrieved later. Run this
command:

* git stash

* Now the files are changed back to their original state, but the change data is stored in the git
stash

» After changes are made to the main branch and you are ready to work again on the stashed
data, checkout the Feature Branch again and run this command:

* git stash pop

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 29

Git Stash: Using multiple stashes

Each git stash command saves a new stash. By default, running git stash pop reapplies all
changes in the stash. Itis possible to only apply a particular stash though

First use this command to see all stashes:
* git stash list

It will show something like this:
§f g1t stash Tist
stash@{0}: On Branch_Revert: mod d.txt

last 2 commits

Then use git stash pop with a pointer to the index of the stash you want to apply. For
example, if you want to apply stash #1:

* git stash pop stash@{1}
The default names for stashes are not descriptive. If using multiple stashes, you can use this

command to give the stash a name which makes it easy to identify when running the git stash
list command:

* git stash push-m “my_stash_name”
* This stash would then be called “my_stash_name”

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 30

Accidentally committing and pushing to Main Branch instead of
Feature Branch

This happened early on, and | needed to figure out how to revert to the previous state
* Note that this is only possible for users that have permission to push to the main branch

Run these commands to revert the last N commits:
* gitrevert --no-commit HEAD~N..
* Here N =the number of commits to remove. If it was 2 commits:
* gitrevert --no-commit HEAD~2..
* Follow that with a normal commit supplying a message that summarize the full revert. Something like:
e gitcommit-m “Reverting last 2 commits”

You can also 1-by-1 revert each commit in reverse order:
* gitrevert <commit hash>

This is easier if you only have 1 commit to undo, but the first method is better when there are multiple
commits.

If there were branches based on commits that have been reverted, follow these commands after reverting on
main:

 gitcheckout <branch name>

e git merge main

* git push

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 31

Other questions

* How can others get the code that was edited?
* Anyone can clone the forked repositories that other users have created if they are made
Public
* Multiple folks editing the same file?
* | will need to make another document covering merge conflicts.

* |[f multiple users have changed the same file, git is able to merge if the same line of code
was not touched in the 2 changes.

* |f the same line of code was updated, there is a process for managing merge conflicts. It
basically requires a manual edit to decide what is kept in the conflict block.

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 32

	Contributing to 802-COM by creating Feature Branches and Merging – v1.1
	Revision History
	Summary
	Step 1: Fork 802-COM into personal namespace
	Step 1: Fork 802-COM into personal namespace
	Step 2: Creating a New Branch
	Step 2: Creating a New Branch
	Step 3: Clone (or Pull) the remote repository
	Step 4: Checkout branch
	Step 5: Working on a branch
	Step 5: Working on a branch�(Instructions on file modification)
	Step 5: Working on a branch�(Making a release file)
	Step 5: Working on a branch
	Step 6: Merge Requests
	Step 6: Merge Requests
	Viewing Merge Requests
	Step 7: Update Fork Repository after Merge Request
	Git Tutorial
	Git Tutorial (Opening Git Bash in the repository)
	Git Tutorial (Clone)
	Git Tutorial (pull)
	Git Tutorial (Checkout Feature Branch)
	Git Tutorial (Updating Files)
	Git Tutorial (add)
	Git Tutorial (commit)
	Git Tutorial (push)
	Git Tutorial (Merge an update from Main Branch into Feature Branch)
	Git Tutorial (Deleting a Branch)
	Git Stash: Changing branches before it is ready to commit
	Git Stash: Using multiple stashes
	Accidentally committing and pushing to Main Branch instead of Feature Branch
	Other questions

