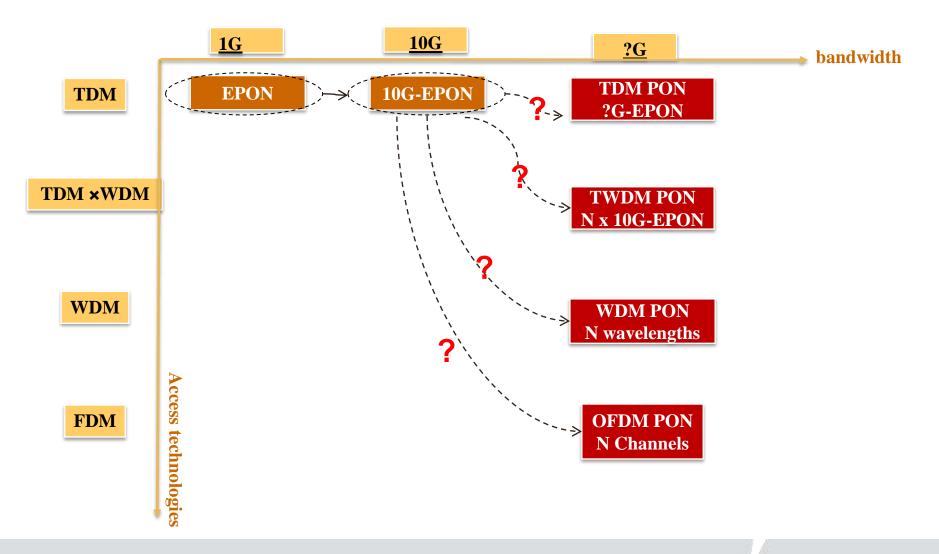
Four Candidate NG-EPON Solutions

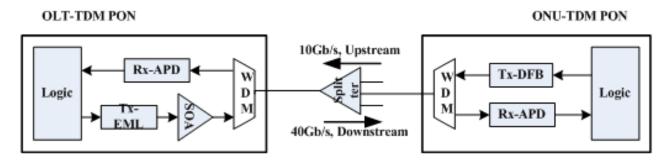
Huawei Technologies Jan., 2014

www.huawei.com

Authors: Shengping Li & Wei Lin

Presenter: Duane Remein


HUAWEI TECHNOLOGIES CO., LTD.


Content

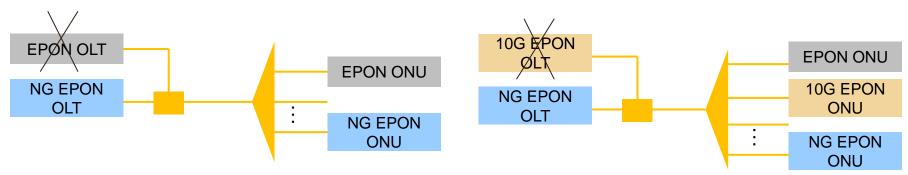
- > Evolution Roadmap Overview all possibilities
- Candidate A: TDM-PON
- Candidate B: TWDM-PON
- Candidate C: WDM PON
- Candidate D: OFDM PON
- Discussion and Summary

All possible directions

Candidate A: TDM-PON

40G/10G TDM-PON reference architecture

♦ 40Gb/s D/S


- > 40Gb/s based on 25G optical components (25G EML TOSA and 25G APD ROSA)
- ➤ with complex modulation (PAM-4 or Duo-binary).

♦ 10Gb/s U/S

- ➤10Gb/s, re-use commercial 10G-EPON optical component
- >TDMA, with NRZ modulation.

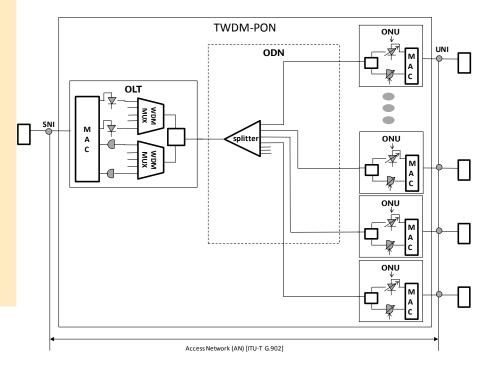
Candidate A: TDM-PON (cont.)

Smooth migration: replacing the EPON, 10G-EPON OLT and ONU optical modules by NG-EPON

Pros

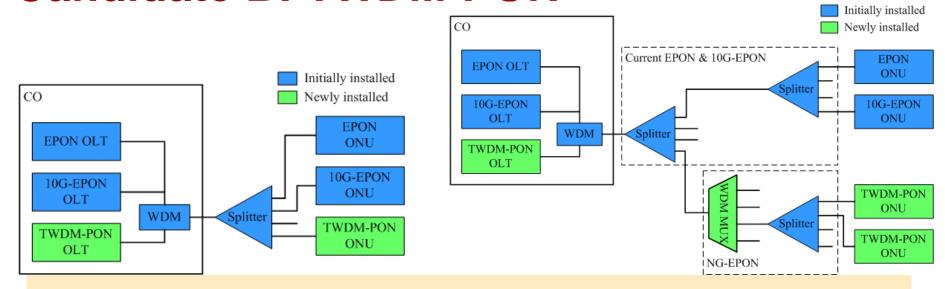
- > Compatible with power-splitter based ODN
- > Smooth migration from 1G/10G-EPON
- ➤ No complex wavelength configuration
- ➤ Coexistence with legacy 1G/10G-EPON, WDMA for D/S, TDMA for U/S

- > At 40Gb/s, chromatic dispersion (CD) is a critical issue. 16x CD and 4x PMD larger than 10G for NRZ.
- Low power budget
- High peak data rate per ONU and low date efficiency.


Candidate B: TWDM-PON

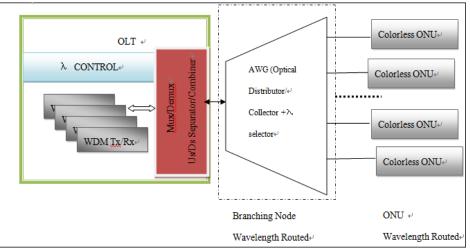
◆ 40Gb/s or 100Gb/s D/S

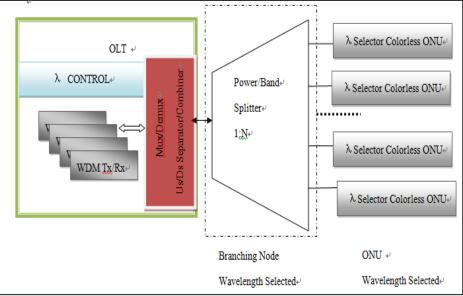
- ➤ N \(\) \
- > N DFB laser array at OLT.
- ➤ NRZ.
- RX with Tunable filter at ONU to receive the assigned wavelength.


◆ 10 Gb/s or 40Gb/s U/S

- N \(\lambda \) for 4 types of ONUs respectively operating at different \(\lambda \), 10Gbps per \(\lambda \) U/S.
- > TDMA in U/S for ONUs working at the same λ.
- > NRZ

Candidate B: TWDM-PON


♦ Pros


- > Smooth evolution from E-PON/10G-EPON, and co-existence with legacy PONs and OTDRs.
- > Dynamic bandwidth assignment.
- Mature technology
- > Low cost

- > Wavelength management issues, wavelength drifting between different type of ONUs
- Tunable laser and tunable filter are required.

Candidate C: WDM PON

Two classes of WDM PONs are defined

≻λ-routed (WR)

Wavelength is determined by its physical connectivity to the ODN;
This class of WDM PON supports filtered ODN

> **λ-selected** (WS)

The λ selector is built into the ONU; This class of WDM PON supports power Splitter based ODN

Candidate C: WDM PON

Coexistence with legacy PON

- > Power splitter ODN: suitable for WS architecture
- > Filtered PON: supported by both WR and WS architectures

♦ Pros

- > Low power budget requirement
- > Exclusive, Ultrahigh speed Access per λ per user
- ➤ High security, no Rogue ONU issue
- ➤ Low delay, low jitter


- ➤ High cost
- Wavelength drifting between different type of ONUs
- ➤ Use AWG to replace power splitter
- ➤ No statistical gain on the media resulting in better apparent performance.

Candidate D: OFDM PON

◆ 40Gb/s or 100Gb/s D/S

- ➤Intensity Modulation-Direct Detection (IM-DD)
- > DMLs/EMLs, PD/APD
- > OLT/ONU with SOA/EDFA
- ➤ OFDM+high level modulation
- > ADC/DAC
- ◆ 10 Gb/s or 40Gb/s U/S
 - > TDMA
 - OFDM+high level modulation
 - > ADC/DAC

Candidate D: OFDM PON

Pros

- > By encoding vector signals in each subcarrier, bandwidth requirement is lessened and dispersion tolerance is increased.
- Mature optical components can be reused.
- Co-existence with legacy ODNs with legacy splitting ratios.
- Flexible dynamic bandwidth access to accommodate full services.
- > Software-defined modification.

- High SNR requirement because of high level modulation and PAPR.
- ➤ High speed ADC/DAC increases the cost.
- More logic resource of DSP
- ➤ High power consumption

Summary

Candidates	Pros	Cons
TDM-PON	 ➤ Simple structure ➤ Smooth migration from EPON /10G-EPON, Coexistence with legacy EPON /10G-EPON. ➤ No complication of wavelength configuration 	 At 40Gb/s, CD is a critical issue. Low power budget High peak data rate per ONU and low efficient date 40G and 25G optical components are not mature
TWDM-PON	➤ Mature technology➤ Smooth migration from EPON/10G-EPON,Coexistence with legacy EPON/10G-EPON.	Wavelength managementTunable laser and tunable filter
WDM-PON	 ➤ Low power budget ➤ High security ➤ Per user per Λ ➤ Low delay, low jitter 	 ➤ High cost ➤ Wavelength drifting between different type of ONUs ➤ AWG is required ➤ No statistical gain on media
OFDM-PON	 ➤ High spectrum effectiveness and dispersion tolerance ➤ Low BW optical components ➤ Flexible and soft-defined modification 	 ➤ High SNR requirement ➤ High sample rate ADC/DAC ➤ DSP ➤ High power consumption

Thank you

www.huawei.com