

FSAN & ITU-T Activities on Next-Generation PON Stage-2 (NG-PON2)

IEEE 802.3 NGEPON ad hoc meeting

(Beijing, March 2014)

Authors:

Martin Carroll (Verizon), Zhicheng Ye (Huawei), Duane Remein (Huawei)

Agenda

- FSAN/ITU-T NG-PON2 Standardization Roadmap
- > TWDM-PON Baseline Architecture
- > Wavelength Plan and Coexistence
- Power Budget
- > TWDM-PON Key Features
- > Summary

NG-PON2 Standardization Roadmap

Mar. 2013 release G. 989.1 Q2-2014 G.989.2 will release Anticipated mid-2014 G.989.3

Under discussion G.multi

"40-Gigabit-capable passive optical networks (NG-PON2): General requirements"

- ✓ Architecture
- ✓ Migration
- ✓ Service requirement
- ✓ Physical layer requirements
- ✓ System requirements

"40-Gigabit-capable passive optical networks 2 (NG-PON2): Physical media dependent (PMD) layer specification"

- ✓ Architecture of the optical access network
- ✓ Common optical network requirements
- ✓X/S tolerance for NG-PON2
- √TWDM-PON PMD layer requirements

TC or MAC Layer λ control

TWDM-PON Baseline Architecture

- Time and wavelength division multiplexed PON (TWDM-PON)
- Stacked XG-PONs by multiple λs

- 4 pairs of λs, 40G (4*10G) in
 D/S, 10G (4*2.5G) up to 40G (4*10G) in U/S
- ➤ 40km passive reach, 1:64 split, ODN reuse
- ONUs tunable transmitters and receivers
- OAs at the OLT side to boost D/S and pre-amplify U/S
- > Could support 8 pairs of λs

Wavelength Plan and Coexistence

- NG-PON2 defines TWDM as the primary solution, with splitter based PtP WDM overlay
- Trade-off between coexistence with legacies and performance supporting the future
- DWDM grids with 100 GHz based on cyclic WMs

Summary of NG-PON2 Wavelength Plans*

Wavelength	TWDM		PtP WDM	
Compatible Systems	DS	US	US/DS	
GPON, RF Video, XG- PON1	1596-1603 nm	Wide Range 1524-1544 nm	Shared Spectrum 1603-1625 nm	
		Narrow Range 1524-1540 nm	Full Spectrum 1524-1625 nm	

^{*} Draft new Recommendation ITU-T G.989.2 Rev.2, 40-Gigabitcapable passive optical networks 2 (NG-PON2): Physical media dependent (PMD) layer specification

Wavelength Plan and Coexistence (cont.)

- WDM coexistence among different generations
- Coexistence with G-PON, XG-PON, RF Overlay and OTDR

Power Budget

Classes for optical path loss defined in NG-PON2*

	Class N1	Class N2	Class E1	Class E2
	(GPON B+, XG-PON N1 class compatible)	(XG-PON N2 class compatible)	(GPON C+, XG-PON E1 class compatible)	(XG-PON E2 class compatible)
Min loss	14 dB	16 dB	18 dB	20 dB
Max loss	29 dB	31 dB	33 dB	35dB

- Power budget requirement directly impacts optical component selection. It is strongly correlated to the cost of system.
- For power budget requirement, must trade-off between channel capacity, distance and cost

FSAN
Full Service
Access Network

TWDM-PON Key Features

- Pay-as-you-grow
 - Starting with a single wavelength pair
 - Upgraded by adding new wavelength pairs to increase the system capacity
 - > Expanding the data capacity on demand

Vertical Arrangement*

Horizontal Arrangement *

^{*} Pay as you grow FSAN meeting, Bad Nauheim, Joe Smith, Wolfgang Pöhlmann, Alcater Lucent, August, 2013

TWDM-PON Key Features (cont.)

- Spectral Flexibility
 - Multiple OLT arrangement
 - Each operator would have their own OLT, each of which would contain some set of wavelength channels
 - This scheme unbundles the shared infrastructure for multiple operators.

Summary

♦ NG-PON2 defines TWDM as the primary solution

- 4 pairs of λs, 40G (4*10G) in D/S, 10G (4*2.5G) up to 40G (4*10G) in U/S
- > 40km passive reach, 1:64 split, ODN reuse
- Could support 8 pairs of λs
- Wavelength plan, L+ band for D/S, C- band for U/S
- > Coexistence with G-PON, XG-PON, RF Overlay and OTDR
- 4 classes power budget requirement, i.e., 29dB, 31dB, 33dB, 35dB
- > 2 key features, i.e., pay-as-you-grow and spectral flexibility

Questions?

THANK YOU

FSAN Full Service Access Network