WAN Interface Sublayer (WIS) Update

IEEE P802.3ae La Jolla **July 2000**

Norival Figueira, Paul Bottorff, David Martin, Tim Armstrong,	
Bijan Raahemi:	Nortel Networks
Richard Dugan:	Agilent
Tom Palkert:	AMCC
Juan Pineda, Bill Rivard:	Bravida Corporation
Howard Frazier:	Cisco Systems
Steve Haddock:	Extreme Networks
Nan Chen:	Force10 Networks
Michael McDonald:	Galileo Technology
Kevin On:	Infineon Technologies
Pankaj Kumar, Bradley Booth, Bob Grow:	Intel
Bjørn Liencres:	Juniper Networks
Nader Vijeh:	Lantern Communicatio
Enrique Hernandez (Bell Labs), Nevin Jones (Microelectronics):	Lucent
Iain Verigin, Stuart Robinson, Tom Alexander, Farzin Firoozmand:	PMC Sierra
Lee Yong-Hee, Won Jonghwa:	Samsung Electronics
Shimon Muller:	Sun Microsystems
Frederick Weniger:	Vitesse

etworks ommunications Electronics systems

Agenda

• WIS

- $-x^7+x^6+1$ scrambler
- SONET framing
- overheads
- frame synchronization

• How to write the WIS Clause by cross-referencing ANSI T1.416-1999

- Defining required changes and additions
- Keeping SDH compatibility

UniPHY Components

WAN-PHY and UniPHY Layer Model

WIS x⁷+x⁶+1 Scrambler

Provides high randomization

 Assures adequate number of transitions for line rate clock recovery at the receiver

State is Periodically Resynchronized

Bit Order of Scrambling/Descrambling

• Most significant bit (MSB) first

WIS SONET Framing

- SONET frame with minimum overhead support
 - Overheads are out of band management used to control SONET networks
 - While the WIS frame is compatible with SONET, it does not provide full SONET management
- Sequence of 155520 octets (125 μs)

WIS Frame: Viewed as 9×17280 Octets

STS-192c = Synchronous Transport Signal – level 192, c = concatenated.

Transmission order: top to bottom, row-by-row, left to right.

Payload Capacity (9.58464 Gb/s)

STS-192c = Synchronous Transport Signal – level 192, c = concatenated SPE = Synchronous Payload Envelope

WIS Overhead Layers

Transport Overhead

Section Overheads

• A1 and A2 ("Framing octets")

- Fixed value: A1 = 11110110, A2 = 00101000
- A1/A2 transition is used for WIS frame synchronization

• J0 ("Section Trace")

- Allows a receiver to verify its continued connection to the intended transmitter
- Provisioned Value

- when no value is provisioned, J0 shall be set to 0000001)

Z0 ('Section Growth")

— Fixed value: 11001100

Section Overheads (cont.)

B1 ("Section BIP-8")

- Used as a Section error monitoring function
- Calculated value:
 - BIP-8 code (using even parity) over all the bits of the last transmitted WIS frame <u>after</u> scrambling

Even parity over the bit 7 of all the octets of the WIS frame

BIP-8 (Bit-Interleaved Parity-8) with even parity: The ith bit of the code provides even parity over the ith bit of all the covered octets.

BIP-8of the bit sequence 11110000 00001111 is 1111111.

Line Overheads

• First H1 and H2 ("Payload Pointer")

- 16-bit word containing 10-bit pointer in the range of 0 to 782
- Transmits fixed values: H1 = 01100010 and H2 = 00001010 (i.e., pointer = 522)
- Receiver 10GE WAN PHY shall be able to process arbitrary pointer values (which may be changed by a transport network)

• Second to last H1 and H2

— Fixed Values: H1 = 10010011 and H2 = 11111111

NDF (new data flag) field

H1/H2 Pointer and SPE Position

Line Overheads (cont.)

- H3 ("Pointer Action Bytes")
 - Allows an LTE to have slightly different clocks at the receiver and transmitter paths
 - Carries 192 extra SPE (payload) octets in the event of a "negative pointer adjustment," which may be required when the receiver clock is faster than the transmitter clock
 - Set to zero when not used

Line Overheads (cont.)

• K1 and K2

- Fixed values: K1 = 00000001, K2 = 00010000
- K1 and K2 are used on the protection line for automatic protection switching signaling. Above settings indicate a working channel rather than the protection channel.

• S1

- Fixed value: 00001111
- Indicates quality clock information to receiver. Above setting indicates "don't use for synchronization"

Path Overhead and "Fixed Stuff"

"Fixed Stuff" columns provide compatibility with SONET/SDH byte-interleaving and concatenation rules (set to zero)

Path Overheads

• J1 ("Path Trace")

- Fixed value: 00000000

• B3 ("Path BIP-8")

- Used as a Path error monitoring function
- Calculated value: BIP-8 code (using even parity) over all the octets of the last transmitted SPE before (x^7+x^6+1) scrambling

C2 ("Path Signal Label")

- Identifies the contents of the STS SPE (i.e., 10GE WAN PHY)
- Fixed value: 00011010 (provisional value assigned to 10 GE)

Path Overheads (cont.)

• G1 ("Path Status")

- Conveys the <u>Path</u> terminating status and performance back to the transmitter (i.e., a PTE)
- Calculated value:
 - REI-P field = number of bit errors detected with the B3 octet of the last received SPE
 - RDI-P field = Detected defects on the received signal

REI-P = Path Remote Error Indication RDI-P = Path Remote Defect Indication

REI-P field 0000 to 1000 = 0 to 8 errors when received, 1xx1 = 0 errors

WIS Frame Synchronization

- Uses A1/A2 transition (i.e., frame marker) for frame and octet delineation
- Looks for the A1/A2 framing pattern consistently
 - Expects it to appear once every 155520 octets (length of the frame)
 - When the framing pattern appears in the right place enough times, correct frame synchronization is assumed

Frame Sync Example: State Diagram

WIS Frame Sync. Performance

• Example for m = 4, A1/A2 transition pattern = 2 A1/A2s

— Probability of frame loss $\approx 1.049 \times 10^6 \times BER^4$

 $= 1.049 \times 10^{-42}$ (@ BER = 10⁻¹²)

- Average interval to frame loss
 - $\approx 3.7 \text{ x } 10^{30} \text{ years} (@ \text{BER} = 10^{-12})$

(> estimated age of observable universe, i.e., ~ 10¹⁰ years)

• More robust implementations are possible, e.g., see

- "10GE WAN PHY Delineation Performance"
- http://grouper.ieee.org/groups/802/3/10G_study/public/ email_attach/delineation_perf.doc

Reference Diagram: Transmit WIS Frame

Functional View

• WIS frame formation (stages)

- (1) Path Overhead and fixed stuff columns
- (2) Line Overhead
- (3) Section Overhead
- (4) Scramble with x⁷+x⁶+1 (first row of Section Overhead, i.e., A1/A2, J0, and Z0, is <u>not scrambled</u>)
- (5) 16-bit words are transmitted to PMA/PMD (for 16-bit Parallel I/F)

Reference Diagram: Receive WIS Frame

- Functional View
- WIS frame processing (stages)
 - (1) "Serialize" received signal (figure shows 16-bit Parallel I/F)
 - (2) WIS frame synchronization and octet delineation
 - (3) Descramble with x⁷+x⁶+1 (first row of Section Overhead is not <u>descrambled</u>)
 - (4) Extract Section Overhead, Line Overhead, Path Overhead, Fixed Stuff columns
 - (5) Remaining octets = payload

WIS Reference Diagram

Writing the WIS Clause by Cross-Reference

- How to write the WIS Clause by cross-referencing ANSI T1.416-1999
 - WIS Clause proposed in "IEEE P802.3ae Document Structure Update" http://grouper.ieee.org/groups/802/3/ae/public/may00/booth_1_0500.pdf
 - ANSI T1.416-1999 can be obtained at the following URL: http://www.atis.org/atis/docstore/index.asp

• WIS as described here

 With optional text to add support to B2/M1 and J1 (provisionable) and ±20 ppm reference clocks (if desired)

ANSI T1.416-1999

- Title: "Network to Customer Installation Interfaces --Synchronous Optical NETwork (SONET) Physical Layer Specification: Common Criteria"
 - Contains definitions and references to other documents providing a complete specification of network and customer installation interfaces compatibility
- Presentation provides definitions that allow for SDH compatibility

Cross-References to ANSI T1.416-1999

• Section 1 "Scope"

- Applicable as is

Section 2 "Normative References"

- Applicable as is

• Section 3 "Definitions, Abbreviations, and Acronyms"

— Applicable as is

• Section 4 "Common Criteria"

- Applicable with changes to Table 1 (SONET Overheads at NIs), as indicated below
- Following "optional" overheads are not supported
 - Section: D1-D3, E1, F1 (all set to 0000000)
 - Line: D4-D12, E2, Z1, Z2 (all set to 0000000)
 - Path: Z3-Z4, J1 (all set to 0000000)
 If J1-provisionable support is added, remove J1 from the above list and define a default value, say 00000000, or a default Path Trace message

- Add that Z0 (Section Growth) is set to 11001100

Note: H1 "ss" bits do not compromise SDH compatibility, since the ITU now specifies that the receiver ignores them

• Section 4 "Common Criteria" (cont.)

- Following "required" overheads are not supported

- Section: B2 (set to 0000000), M0-M1 (set to 00000000)
 If B2/M1 support is added, remove B2 and M1 from the above list
- Line: S1 (set to 00001111, i.e., "don't use for synchronization")
- Following "application specific function" overheads are not supported
 - Line: K1 (set to 0000001), K2 (set to 00010000) -- These settings indicate a working channel rather than the protection channel
 - Path: F2 (set to 0000000), H4 (set to 0000000), N1 (set to 0000000)
- Add that C2 (STS Path Label) is set to 00011010 (This is the provisional value assigned to 10GE)
- VT Path Overheads are not applicable (not supported)

- Section 5 "Jitter"
 - Not applicable. IEEE P802.3ae defines jitter specification

Section 6 "Synchronization"

- Not applicable
- Add (not necessarily to Clause 48) that 10 Gigabit Ethernet signal is defined to be within ±100 ppm of the nominal rate (if required, replace ±100 ppm with ±20 ppm)

Section 7 "Maintenance"

- Sections that are not applicable
 - Section 7.2.2 "VT1.5 rate Electrical Interface"
 - If B2/M1 support is added: Section 7.4.2 "VT1.5 rate" otherwise: Section 7.4 "Line"
 - Section 7.6 "Performance and Failure Alarm Monitoring"
 - Section 7.7 "Performance Monitoring Functions"

• Section 7 "Maintenance" (cont.)

- Section 7.1, Table 2 "Near-end events and far-end reports", only the following is supported
 - Defects: LOS (as defined in Section 7.2.1) SEF/LOF (as defined in Section 7.3) LOP-P (as defined in Section 7.5) AIS-P (as defined in Section 7.5) ERDI-P (as defined in Section 7.5) In addition, PLM-P (which is not listed in Table 2) is supported (as defined in Section 7.5)
 - Anomalies: BIP-N(S) (as defined in Section 7.3)
 If B2/M1 support is added: BIP-N(L) (as defined in Section 7.4.1)
 REI-L (as defined in Section 7.4.1)
 BIP-N(P) (as defined in Section 7.5)
 REI-P (as defined in Section 7.5)

• Section 7 "Maintenance" (cont.)

 Sections 7.2.1, 7.3, 7.4.1 (only if B2/M1 support is added), and 7.5 are applicable with the exclusion of defects and anomalies not listed in the previous slide

— Section 7.2.1

- Make T = T' = $125 / 3 \mu s$ (i.e., three row periods)
 - Comment: Ambiguity in this value has long been an annoyance in SONET/SDH. Proposed value falls in the middle of the suggested range and gives vendors a single convenient value to implement. Removal of LOS would then take 125 μs.

• Annex A

"Normative -- SONET VT1.5 Line Interface Common Criteria"

— Not applicable

• Annex B

"Informative -- SONET maintenance signals for the NI"

- Not applicable

• Annex C

"Informative -- Receiver Jitter Tolerance and Transfer"

— Not applicable

• Annex D

"Informative -- Bibliography"

- Applicable as is

Summary

• WIS

- $-x^7+x^6+1$ scrambler
- SONET framing, overheads, and frame synchronization

• How to write the WIS Clause by cross-referencing ANSI T1.416-1999

- All required changes and additions are indicated
- Provides SDH compatibility