10GE WAN PHY: Physical Medium Attachment (PMA)

IEEE 802.3 Meeting, Albuquerque March 6-10, 2000

Norival Figueira, Paul Bottorff, David Martin, Tim Armstrong, Bijan Raahemi
Nortel Networks Enrique Hernandez-Valencia Lucent (Bell Labs)
Nevin Jones ... Lucent Microelectronics
Pankaj Kumar .. Level One/Intel
Bjørn Liencres .. Juniper Networks
Tom Palkert
AMCC
lain Verigin, Stuart Robinson, Tom Alexander ... PMC Sierra
Nader Vijeh
Lantern Communications
Frederick Weniger ... Vitesse

Based on Posted Document

- "Proposal for a 10 Gigabit Ethernet WAN PHY"
—http://grouper.ieee.org/groups/802/3/10G_study/public/ nov99/figueira_2_1199.pdf

Agenda

- PMA/PMD interface
- PCS/PMA interface is conceptual
- PMA frame and overheads
- PMA framing functions
- Transmit and Receive PMA frame
- PMA frame synchronization process
- $\boldsymbol{x}^{7}+\boldsymbol{x}^{6}+1$ frame-synchronous scrambler

Functional Block Diagram

Possibly Better Terminology

PMA Interfaces

- PCS/PMA \Rightarrow conceptual interface
- PMD interface
— tx_bit<15:0>
- 16-bit vector representing two octets received from the PMA
- transitions synchronously with tx_bit_clk
— tx_bit_clk
-622.08 MHz clock generated by the PMA
— rx_bit<15:0>
- Most recently received 16 bits (MSB first) from the MDI. It is a continuous and unaligned sequence of octets
- transitions synchronously with rx_bit_clk
—rx_bit_clk
- 622.08 MHz clock generated by the PMD
— all LVDS

PMA/PMD Interface

PMA Framing Functions

- Transmit PMA Frame
- PMA framing of octet stream
- Scrambling of PMA frames using the $x^{7}+x^{6}+1$ frame-synchronous scrambler
- Transmission of resulting data stream to the PMD sublayer
- depends on the PMD interface

PMA Framing Functions (cont.)

- Receive PMA Frame
- Receiving of data stream from PMD sublayer
- depends on PMD interface
- PMA frame synchronization and octet delineation
- Descrambling of PMA frames with the $x^{7}+x^{6}+1$ frame-synchronous scrambler

PMA Frame

PCS data stream

STS-192c = Synchronous Transport Signal - level 192, c = concatenated SPE = Synchronous Payload Envelope

SPE Position

Octet Transmission Order

- Top to bottom, row-by-row, left to right

Overhead Layers

Transport Overhead

Section Overhead: A1 and A2

- "Framing octets"
- Used by the PMA frame synchronization process to determine where octets and the PMA frame start
- Transition from A1 to A2 octets is used for synchronization
- Fixed value:
- A1 = 11110110
$-\mathrm{A} 2=00101000$
Transition from A1 to A2

A1...A1A2...A2...	PMA frame
Transport Overhead	Envelope Capacity

Section Overhead: J0 and ZO

- J0 ("Section Trace")
- Allows a receiver to verify its continued connection to the intended transmitter
- Provisioned Value
- When no value is provisioned, J0 shall be set to 00000001
- Z0 (‘Section Growth’)
— Fixed value: 11001100

Section Overhead: B1

- "Section BIP-8"
- Used as a Section error monitoring function
- Calculated value:
- BIP-8 code (using even parity) over all the bits of the last transmitted PMA frame after scrambling

Even parity over the bit 7 of all the octets of the PMA frame

NOTE

BIP-8 (Bit-Interleaved Parity-8) with even parity: The i^{th} bit of the code provides even parity over the $\mathrm{i}^{\text {th }}$ bit of all the covered octets.

BIP-8of the bit sequence 1111000000001111 is 11111111.

Line Overhead: H1 and H2

- "Payload Pointer"
- Allows the SPE to be dynamically aligned within the Envelope Capacity
- Values:
- All H1 octets after the first one are set to the fixed value 10010011
- All H2 octets after the first one are set to the fixed value 11111111

Line Overhead: H1 and H2 (cont.)

- First H1 and H2
- 16-bit word containing an NDF field and a 10-bit STS pointer in the range of 0 to 782
- Fixed values:
- 10GE WAN PHY transmits $\mathrm{H} 1=01100010$ and $\mathrm{H} 2=00001010$, i.e., "normal" STS pointer = 522
- Receiver 10GE WAN PHY shall be able to process arbitrary NDF and STS pointer values (which may be changed by a transport network)

First H1
First H2

Line Overhead: H1/H2 and SPE Position

Line Overhead: H3

- "Pointer Action Bytes"
- Used for SPE frequency justification
- Allows LTE to have slightly different clocks at the receiver and transmitter paths
- Content:
- Carries 192 extra SPE octets in the event of a "negative pointer adjustment," i.e., which may be required when the receiver clock is faster than the transmitter clock
- Set to zero when not used

PMA frame

Line Overhead: K1, K2, and S1

- K1 and K2
- Fixed values: $\mathrm{K} 1=00000001, \mathrm{~K} 2=00010000$
- K1 and K2 are used on the protection line for automatic protection switching signaling. Above settings indicate a working channel rather than the protection channel.
- S1
— Fixed value: 00001111
- Indicates quality clock information to receiver. Above setting indicates "don't use for synchronization"

Path Overhead and "Fixed Stuff"

"Fixed Stuff" columns
provide compatibility
"Fixed Stuff" columns
provide compatibility with SONET/SDH byte-interleaving and concatenation rules (set to zero)

Path Overhead: J1, B3, and C2

- J1 ("Path Trace")
— Fixed value: 00000000
- B3 ("Path BIP-8")
— Used as a Path error monitoring function
- Calculated value: BIP-8 code (using even parity) over all the octets of the last transmitted SPE before $\left(x^{7}+x^{6}+1\right)$ scrambling
- C2 ("Path Signal Label")
- Identifies the contents of the STS SPE (i.e., 10GE WAN PHY)
- Fixed value: 00011010 (provisional value assigned to 10 GE)

Path Overhead: G1

- "Path Status"
- Conveys the Path terminating status and performance back to the transmitter (i.e., a PTE)
- Calculated value:
- REI-P field = number of bit errors detected with the B3 octet of the last received SPE
- RDI-P field = Detected defects on the received signal (values are TBD)
- Propose to support:

Loss of Packet Delineation (LPD-P)
Loss of Pointer (LOS-P)
Payload Mismatch (PLM-P)

G1

REI-P = Path Remote Error Indication RDI-P = Path Remote Defect Indication

REI-P field
0000 to $1000=0$ to 8 errors when received, $1 \times x 1=0$ errors

Reference Diagram: Transmit PMA Frame

- Functional View
- PMA frame formation (stages)
- (1) Path Overhead and fixed stuff columns
- (2) Line Overhead
- (3) Section Overhead
- (4) Scramble with $x^{7}+x^{6}+1$ (first row of Section Overhead, i.e., $\mathrm{A} 1 / \mathrm{A} 2, \mathrm{~J} 0$, and Z 0 , is not scrambled)
- (5) 16-bit words are transmitted to PMD (depends on PMD interface)

Reference Diagram: Receive PMA Frame

- Functional View
- PMA frame processing (stages)
- (1) "Serialize" received PMD signal
- (2) PMA frame synchronization and octet delineation
- (3) Descramble with $x^{7}+x^{6}+1$ (first row of Section Overhead is not descrambled)
- (4) Extract Section Overhead, Line Overhead, Path Overhead, Fixed Stuff columns
- (5) Remaining octets = payload

Reference Diagram

PMA Frame Synchronization

- Uses A1/A2 transition (i.e., frame marker) for frame and octet delineation
- Looks for the A1/A2 framing pattern consistently
- Expects it to appear once every 155520 octets (155520 = length of the PMA frame)
- When the framing pattern appears in the right place enough times, correct frame synchronization is assumed

PMA Frame Synchronization (cont.)

- Posted document
- Provides a set of rules to be satisfied by a PMA frame synchronization process
- Does not provide specific details on how a PMA frame synchronization process works
- Does not imply any specific implementation. Any PMA frame sync procedure that complies with the defined set of rules is acceptable
- This presentation shows the state diagram of a frame synchronization processes similar to the ones used in typical OC-192 equipment

PMA Frame Sync: START State

PMA Frame Sync: A1_ALIGN State

- Confirms byte alignment
- Moves to PRESYNC state on at least j correct A1 octets followed by k correct A2 octets
- Moves to START state if pattern is not found

PMA Frame Sync: PRESYNC State

PRESYNC

[octet by octet]

- Checks frame for correct A1/A2 transition pattern at correct place
- Moves to SYNC state on " n " correct A1/A2 transition patterns
- Moves to START state on an incorrect A1/A2 transition pattern

Incorrect A1/A2 transition pattern

PMA Frame Sync: SYNC State

m consecutive incorrect A1/A2 transition patterns

PRESYNC
[octet by octet]

- Checks frame for A1/A2 transition pattern at correct place
- Moves to START state with " m " consecutive frames with incorrect A1/A2 transition patterns

PMA Frame Sync: State Diagram

PRESYNC

[octet by octet]
$\geq j$ correct A1s followed Pattern not by k correct A2s
n correct A1/A2 transition patterns

Incorrect A1/A2 transition pattern

PMA Frame Sync. Performance

- Example for $\mathrm{m}=4, \mathrm{~A} 1 / \mathrm{A} 2$ transition pattern $=2 \mathrm{~A} 1 / \mathrm{A} 2 \mathrm{~s}$
- Probability of frame loss $\approx 1.049 \times 10^{6} \times B E R^{4}$
$=1.049 \times 10^{-42}$ ($@$ BER = 10 0^{-12})
- Average interval to frame loss
$-\approx 3.7 \times 10^{30}$ years $\left(@ \operatorname{BER}=10^{-12}\right)$
(> estimated age of observable universe, i.e., ~ 10^{10} years)
- More robust implementations are possible, e.g., see
— "10GE WAN PHY Delineation Performance"
— http://grouper.ieee.org/groups/802/3/10G_study/public/ email_attach/delineation_perf.doc

$x^{7}+x^{6}+1$ Frame-Synchronous Scrambler

- Purpose
- Assures that the optical interface signal has an adequate number of transitions for line rate clock recovery at the receiver
- Scrambles
- All the octets of the "PMA frame" with the exception of the first row of the transport overhead
- State is periodically resynchronized
- Scrambler state is reset to 1111111 on the most-significant bit of the octet following the last ZO octet

Use of $x^{7}+x^{6}+1$ Scrambler

PMA frame

\square Not scrambled

$x^{7}+x^{6}+1$ Scrambler/Descrambler

Scrambler/descrambler state $=$ content of the 7-bit shift register

Bit Order of Scrambling/Descrambling

- Most significant bit (LSB) first

Summary

- PMA/PMD interface
- 16-bit LVDS
- PMA frame and overheads
- Described proposed minimum set of overheads
- PMA framing functions
- Described Transmit and Receive PMA frame processes
- PMA frame synchronization process
- Described a typical frame synchronization process
- $\boldsymbol{x}^{7}+\boldsymbol{x}^{6}+1$ frame-synchronous scrambler
- Described functional diagram and resynchronization scheme

