"Who's Afraid Of....Low Impedance?"

Rick Brooks

ribrooks@nortelnetworks.com

IEEE802.3af Plenary Meeting, March, 2001

- An Idea for IC detection using a low impedance driver (an idea from Maxim)
- Two measurements are used to subtract out constant voltages and currents, only the measured load currents are subtracted instead of the probe voltages

- Advantages:
- can subtract out very large offset currents (e.g. leakages), up to 5 ma
 - the maximum output current during discovery could then be 10ma
 - alternatively, a 1 ma maximum output current would allow for offset currents up to 500uA
- Ability to drive 1 uF or higher capacitive loads across the PD signature at a rate that is 10 to 100 times faster compared to the high impedance drive approach
- Faster Timing may allow for an effective cancellation of 50/60 Hz common mode noise
- EMI is controlled by limiting dV/dt and dI/dt
- Simulations follow, here the maximum output current was set at about 1 ma, rather than 10ma

Simulation Comparison

— top 12V, 24V, 75K, High Impedance PSE

middle
 120 uA, 240 uA current source, High Impedance PSE

bottom3V, 6V, low impedance PSE (1K output impedance)

- the load current is scaled up by a factor of 26000 for comparison purposes

- Detection Time Simulation Results, 500 nF Load Capacitance
 - yellow
 12V, 24V, 75K, High Impedance PSE: Result: 6V and 3V, with a 3V difference
 - red 120 uA, 240 uA current source PSE: Result: 6V and 3V, with a 3V difference
 - green
 3V, 6V low impedance PSE: Result: 6V and 3V, with a 3V difference

• 1% Settling Time Simulation Results, 500 nF Load Capacitance

yellow
red
Current Source
green
J% settling time is 43 ms
1% settling time is 57 ms
1% settling time is 4 ms
1% settling time is 4 ms

- Summary:
- Low Impedance can work, subtract currents rather than voltages
- I have shown that large constant leakage currents can be canceled (not shown herein)
- Detection time is greatly reduced with a capacitive load, more than a factor of 10
- One could run multiple cycles at a rate that tends to cancel out 50/60 Hz noise
- Low Z would have to be specified so as to not interfere with High Z methods
- We should consider allowing for this approach in the 802.3af spec if it can be shown to not interfere with high impedance methods which have already been demonstrated in Avaya Prototypes