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Presentation Flow

• Assumptions
• Algorithm approach
• Eye maps
• Conclusions
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Purpose
• Find Equalization For Duobinary and CENRZ For 

24 Representative IEEE Channels
• Generate Eye Diagrams

– Measure Vertical and Horizontal Eye Opening
– Set Limits and Determine Which Channels Served by 

Each Method
• Show perspectives on the relative performance of 

signaling methods
• Determine Which Signaling Method Covers 

Larger Number of Channels
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Included in Model
• Channel

– 0.4 pf added at each port (package), not IEEE model
– 7.5 GHz single pole (Tx shaping)

• Equalization
– 3-tap FFE least squares fit
– Up to 5-tap DFE

• Crosstalk
– NEXT – assumed worse case than FEXT
– 2 Aggressors, randomly phased

• Choose Worst (Highest SDD21 Magnitude) for Molex, Intel
• Match Case by Case For Tyco Channels

• Clock Recovery
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Included in Model
• Wideband Noise

– Added at Receiver
– Value = 1.46 mV RMS (per IEEE)

• Quantization
– FFE

• Duobinary Uses 8 Levels, Range Based on All Channels
• NRZ Uses 8 Levels, Range Based on All Channels
• Range for Duobinary is different from range for NRZ

– DFE
• 16 Levels Based on Post-Cursor Range For Current Channel

• Jitter
– DJ of 0.4 UI-pp Added (intent was to compensate for inability to sim RJ)
– Phase Modulation at 1.1 GHz
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Limitations

• Only 1000 Bits
– RJ not included
– Worst case events may not appear

• Wideband noise
• Crosstalk

• Iterative Adjustment of FFE and Sample Point Would make results 
more optimistic & typical in actual implementation

• Quantization effects may be larger in actual implementation
• Belief:

– We feel this evaluation is realistic, balanced and valuable, when 
viewed in total, given the limitations, assumptions and impairments.
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Math Progression
• Chapter 1 -- Determine Impulse Response of Through Channel.
• Chapter 2 -- Read in Bit Stream, Do Clock Recovery
• Chapter 3 -- Find FFE.
• Chapter 4 -- Find Tx Signal and FFE DC Gain.
• Chapter 5 -- Show FFE-Equalized Bit Streams, Eyes, by Assembling Equalized 

Impulses.
• Chapter 6 -- Find Quantized Tx FFE Tap Values.
• Chapter 7 -- Repeat (Chap 5) For Comparison.
• Chapter 8 -- Calculate DFE Taps.
• Chapter 9 -- Add DFE to Result of Chap 7, No Jitter.
• Chapter 10 -- Add DFE to Result of Chap 7, With Jitter.
• Chapter 11 -- Generate the Crosstalk.
• Chapter 12 -- Add Wideband Noise.
• Chapter 13 -- Generate the DFE Quantization.
• Chapter 14 -- Repeat Chap 7 With Xtalk, DFE Quantization, Jitter, and Noise.

NOTE:  This is not a StatEye simulator
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Comparison Approach

• Receiver performance is viewed from a similar 
complexity basis…assuming:
– 5-tap NRZ DFE is a reasonable complexity bound
– 3-tap DB DFE and 5-tap NRZ DFE are reasonably 

similar in complexity
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Duobinary 3-Tap DFE
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Intel B32

Duobinary 3FFE / 3DFE
This shows:
• that 9 of the 23 channels are 
served by Duobinary 3DFE.
•No Intel top layer channels are 
served.
•Synthesized T1 moves it 
nearer to the solution space.
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NRZ 5-Tap DFE
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Improvement from T1 
to Synthesized T1

NRZ 3FFE / 5DFE
This shows:
• that 16 of the 23 channels are 
served by Duobinary 3DFE.
•No Intel top layer channels are 
served.
•Synthesized T1 moves it 
nearer to the solution space.
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Comparison between Xilinx and IBM Simulators
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Comparison to IBM

Data from IEEE Coding Table v4-3_abler_mar05
Assumes Abler data is x% margin beyond 30mVppd

This shows:
• Comparison to another independent, 
respected simulator.
•The IBM simulator is more conservative as 
it simulates 1M bits, incorporates random 
jitter, duty cycle distortion and jitter 
amplification.
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General Eye Shapes vs. 
Trajectory

• Diagram of d-horiz / d-vert for an eye

dV > dH
Vertical Eye

Vppd

Horizontal Eye UI

dH > dV
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DB3 to NRZ5 Trajectories
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DB3 to NRZ5 Trajectories

This shows:
• The movement from Duobinary 3DFE to NRZ 
5DFE.
•In all except case T1, the movement is up and to 
the right.
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Trajectory Deltas from DB3 to NRZ5
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Intel T1:
Single situation w here NRZ 
does not follow  trajectories, 
(improving w ith NRZ)

DB3 to NRZ5 Trajectory Deltas

This shows:
• Only the delta from Duobinary 3DFE to 
NRZ 5DFE.
•In all except case T1, the movement is up 
and to the right.
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Trajectories vs. Stub Length
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Trajectories vs. Stub vs. Length
This shows:
• How progression in length affects eye 
dimensions.
•How progression in stub length affects eye 
dimensions.
•How, after a certain depth,  stub size can 
introduce a severe degrading of eye 
dimensions.
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Trajectories vs DFE Taps - Long Channels
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Trajectories vs. #-taps
Long Channels

This shows how:
• Progressive taps of DFE improve or degrade eye 
dimensions in loss-dominated channels.
•In loss-dominated channels, movement from no 
eye to some eye is relatively fast.
•Eyes that start open improve incrementally with 
DFE taps.
•Degradation can occur with too many DFE taps, 
due to tap quantization.
•Shows that 5 taps for Duobinary does not 
accelerate Duobinary’s performance beyond NRZ
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Trajectories vs DFE Taps - Stub Channels
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Trajectories vs. #-taps
Stub Channels

This shows how:
•Progressive taps of DFE improve or 
degrade eye dimensions in stub dominated 
channels.
•In stub-dominated channels, the first DFE 
tap has a significant positive effect.
•Beyond the first tap, improvement is 
incremental.
•Degradation can occur with too many DFE 
taps, likely due to tap quantization.
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DB3 Degradation due to Jitter & Xtalk
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DB3 Degradation due to 
Jitter, Xtalk

This shows:
•Progression from no Jitter and Crosstalk to 
incorporating it.
•The relative degradation for different 
channels
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NRZ5  Degradation due to Jitter & Xtalk
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NRZ5 Degradation due to 
Jitter, Xtalk

This shows:
•Progression from no Jitter and Crosstalk.
•The relative degradation for different 
channels
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DB3's Degradation/Improvement Delta due to Jitter & Crosstalk relative to NRZ5
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Relative Delta due to Jitter, Xtalk
Assuming NRZ5 is par…
This shows:
•DB3’s improvement of degradation

•For each channel
•Due to Jitter and Crosstalk
•Relative to NRZ5
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Graphical View of Channels 
Presently Solved STUB 
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Conclusions 
• Long stubs are an obstacle
• NRZ serves more channels than Duobinary

– The unsolved channels are important market applications
– Some channel improvements are possible that are 

compatible with High Volume Manufacturing techniques
– Further improvements should be considered for both 

signaling and channel in order to solve these important 
channels

• IEEE 802.3ap should be moved forward based on this 
and other data
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