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1. Summary

This note summarizes one approach to estimating the modal power Pm in a
multimode �ber from the measured near �eld intensity I(r), measured at the
end of a length of �ber.

The goal of the method is to give a robust estimate of Pm which is not over-
sensitive to noise in the measurement, but which is internally consistent and
a clear improvement over existing techniques (references [1]-[3]).

The purpose of estimating Pm is to better explain the performance of di�erent
laser sources in high bit rate MM applications, and to improve the design of
the sources.

2. Background/Assumptions

The measured near �eld intensity I(r) of a multimode optical �ber which
has been excited by a laser source is assumed to be given by

I(r) =
MX

m

Pm 
2

m(r) [1]

Here

1. I(r) is the near �eld intensity.

2.  m(r) is the modal function for mode m.

3. Pm is the power in mode m.

It is assumed to be adequate to calculate  m(r) for a reference pro�le and
not for the exact pro�le in the measurement. This is because the propagation
parameters and mode delays �m and �m vary to �rst order with any index
perturbation, while the eigenfunctions  m(r) vary to 2nd order. It is further
assumed, for computational convenience, that the individual modes in a so-
called mode group can be combined, so that  2m(r) represents the sum of
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the squares of all individual modal functions in group m. This assumption
is most valid if the length of �ber is long enough for full coupling within a
mode group or if the launch puts nearly equal power into all modes within a
mode group.

It is assumed that the measured I(r) is indeed the intensity of light in the
�ber, which is related to the electric �eld as outlined in Snyder and Love
Optical Waveguide Theory[4] pp. 210-217. Although it is true that
I(r) = Pm 

2
m(r) if there is power in only a single mode, when there are

multiple modes one must assume the interference or cross terms are zero in
order for equation [1] to be valid. This is rather rigorously true if the source
is incoherent, and becomes increasingly suspect under some conditions.

Equation [1] is consistent with the historic conceptual picture of the mode
power distribution (MPD), and if the weight of all individual modes is equal
(giving twice the weight to azimuthal modes with � > 0 to account for both
sine and cosine modes), then I(r) will sum to a parabola. Figures 1 and 2
demonstrate this for the standard 62.5um 2%� MM �ber at 1300nm and
850nm respectively. Note that it is a wiggly parabola and becomes smoother
as the number of modes increases. For 850nm there are approximately 289
modes and 33 mode groups (the outer groups likely having negligible power
because of bend losses due to �ber perturbations).

Finally, it should be noted that the power in each mode Pm must be greater
than or equal to zero, and cannot be negative. Note that even if equation [1]
is rigorously true, one can obtain the same I(r) from more than one source
because each source determines a unique electric �eld given by

E(r) =
MX

m

am m(r) [2]

where m denotes an individual mode (not a mode group). Pm = a2m and
hence even if one knows Pm exactly one cannot deterimine am, since it can
be positive or negative. It is not yet clear whether this presents any di�culty
for us.

3. Approach for Estimating Pm
There are a number of approaches to estimating Pm. A preliminary step
which applies to any proposed approach is to gain familiarity with equation



Modal Excitation by Laser Sources 3

[1] and calculate the predicted Ipred(r) for various Pm's. One example is
the uniform power mentioned above; another is to calculate Ipred(r) for an
o�set gaussian spot [5] and compare that to the measured Imeas(r) after
propagation down a �ber of signi�cant length to allow mode coupling.

The approach which we will use will be to identify numerical procedures for
solving for Pm such that Ipred(r) is as close to Imeas(r) as possible. That is,
we want to minimize �2

1
where

�2
1
=
X

r

(Imeas(r)� Ipred(r))
2 [3]

Here Imeas(r) is the I(r) in equation [1] and Ipred(r) is simply
P
Pm 

2
m(r)

We might ask that this least squares criteria be modi�ed to make the estimate
of Pm more robust to measurement variation in Imeas(r). One way to do
this is to append a smoothness criterion (as is done with splines) and to
simultaneously minimize �21 and

�22 =
X

m

(
d2P

dm2
)2 [4]

(One could choose other �gures of merit as well, but this is computationally
convenient).

Then the full minimization equation we will use is

�2tot = �21 + �a�
2

2 =
X

r

(Imeas(r) � Ipred(r))
2 + �a

X

m

(
d2P

dm2
)2 [5]

In the limit that �a goes to zero, the smoothness criterion is not used at all.
In practice, we will make �a as small as possible so that the solution does not
look excessively noisy. In the limit that �a gets large enough, it will force all
the Pm's to be nearly equal and will return an Ipred(r) like a parabola.

4. Computation of P
m

We write equation [1] as a matrix equation of the form b = Ax:

Ir = CrmPm [6]
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Here Crm is an r x m matrix, Ir is a known vector, and Pm is the vector of
unknowns. If r = m this is a standard set of linear equations in m variables
and can be solved by standard methods. If general what we would like is
that r >> m so that there is more measurement data than parameters which
need to be estimated, so that we can solve this in a least squares sense. In
the case of 289 modes and even in the case of 33 mode groups and a core
radius of 31.25 microns, this is hard to achieve. The portion of the near �eld
pattern I(r) which is repeatable will tend to be smooth and will not consist
of 33 useful degrees of freedom. This is why the extra smoothness criterion
�2
2
in equation [4] is helpful. There is a second matrix equation

0m = �aDmmPm [7]

where Dmm is a matrix with �2 on the diagonal and 1 on the o�diagonal so
that DmmPm gives an approximation to d2Pm=dm2. Then we can augment
equation [6] by extending both the left hand size vector Ir to include an
m-vector of zeros 0m, and augment the matrix Crm to include the matrix
�aDmm. This gives the matrix equation

br+m = Fr+m;mPm [8]

This matrix equation is equivalent to the least squares statement in equation
[5]. One can now invert (in a least squares sense) equation [8] using singu-
lar value decomposition techniques (See for example, sections in Numerical

Recipes) [6] to get the equation

Pm = Gm;r+mbr+m = AmrIr

where the �nal formula of course needs only the �rst r non-zero entries of
br+m, which is Ir. Note Amr depends on �a and must be calculated for a few
�a's to see how it works.

5. Results/Discussion
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