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1. Mode coupling coefficient with an arbitrary polarized input beam

Under a weakly-guiding approximation for the electromagnetic filed in optical fi-

bers, the longitudal components of the electric and magnetic fields are negligible and the

fields are polarized in the fiber cross section plan. Due to the circular symmetry, the solu-
tion to the Maxwell equations is given in a separable form [1]:

F=Y(r)exp(lq)exp(ib z- iwt) (1.2)

where r,q, zare the triple of cylindrical coordinates and | is an integer describing the

azimuthal dependence of the field and b is the propagation constant. The radial part

Y (r) iscalculated from:
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Take into account two orthogonal polarization state, we construct a set of vector fields

Em ={XY 1 (1) exp(ila), 9Y i, () exp(ilq)} (13)
which we use for the decomposition of the input field.

The input field which has an arbitrary polarization can be written as
E, = f(ra)lcx +c,9) (14)
where the parameter ¢, andc, are complex numbersand c; +c; =1.

The mode coupling coefficient can be calculated by the overlap integrals of the input
field and the modal field. We obtain the modal coupling coefficient as

aIm = (\]\ﬁin >4EImrdrdq
e (15)
= ae« f (r.a)Y i (r) exp(ilg)rdrdq + gge, f(r,q)Y,(r)exp(ilg)rdrdg

The two terms at the right hand side are corresponding to the mode coupling coefficient
at two orthogonal polarization directions, respectively. To ssmplify the following discus-

sion and to maintain the generality, we assume that ¢, =exp(if ) andc, =0, which case

is equivalent as rotating a linearly polarized light . Then the mode coupling coefficient
can be written as

a,,, = aEpxp(f ) f (r,q)Y,(r)exp(ilq)rdrdag
= @& f(ra)Y,,(r)exp(ilg +f )rdrdg

(1.6)



From (1. 6), we can see that rotating the polarization state of the input beam will
change the relative location of the input beam and the modal field. If we use the input
beam as the reference, it is equivalent as rotating the modal field by an angle of - f .
Similarly, if we use the modal field as the reference, it is equivalent as rotating the input
beam by an angleof f .

2. Modal power coupling coefficient and the power transfer between modes
Let’s use the modal field as the reference. From (1.6), if the input beam is symmet-
ric around the fiber core, the rotation of polarization will not change the mode coupling
coefficient. Assume an off-center input Gaussian beam, linearly polarized and rotated by
anangleof f , the dectrical field of the input beam can be written in the cylindrical co-

ordinate system as:
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where r, andf define the center of the Gaussian beam.

Let us consider one of the LP mode LP(I,m), | and m are angular index and radium
index respectively. The modal field of this mode can be written as:

E,, =Y (r)exp(ilg) andqT [0,2p) (2.2)

The mode coupling coefficient is the overlap integral of (1) and (2), which is
C = @F.Enrdrdq (2.3)

Substitute (1) and (2) to (3), we obtain
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Let A(r) = exp§ () (2 ) ZY (r), which isindependent of q .
@
We can rewrite (2. 4) as:
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cos(lq)rdrdq +i A(r) expg +sin(lq)rdrdq

= (‘!‘)A(r)exp ae%

(2.5)
Thefirst term in (2. 5) corresponds to the field coupling coefficient of the degener-
ated cos mode and the second term in (2. 5) corresponds to that of the degenerated sin

mode. It is clear from (2. 5) that the electrical field coupling coefficients of both degener-
ated mode are function of f , given r,.

Now let’s consider the intensity of this L P(l,m) mode.

C#A(r)ex &' Cos(q f)—cos(lq)

=P +P,
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(2. 6)
Given r,and at afixed radius r, the intensity coupling coefficient of cos mode P, (r)isa

function of f , so does P,,(r). This indicates the energy transfer between these two
modes. However, the total intensity of these two modesis a constant.

In area fiber link, modal selective loss may exist at the connectors or the fiber it-
self due to different reasons (this statement needs to be verified by more work and ex-
periment, hopefully) [2]. For instance, the cos mode experiences more loss than the sin
mode. In this case, the total intensity of this LP (I,m) mode is not a constant anymore and
depends on the relative location of the input beam and the modal field. In addition, if the
modal selective lossisfixed, lower order mode (smaller ) will suffer more variation.

3. Impact of connector and the ssmulation approach
It is known that a perfect multimode fiber transmits its guided modes without en-
ergy conversion to the other possible guided modes or continuous spectrum. However,
the perturbation to the index profiles and imperfections introduce the power coupling
among different modes. In the previous TIA work, one of the assumptions is the mode
coupling between mode groups is completely absent and that coupling within a group is
100%. Therefore, the coupling amplitude from input mode Y, . (mode from the first

fiber) to the output mode Yoy (mode in the second fiber) is calculated as [ 3]:

am ()= Qd*XY L (Y, g (X- 1) 3.1)
wherer isthe offset vector. The power coupled into output mode is calculated by:
Wiris = 8 Wi fal T QN (3.2)




where W', is the power in mode |,mv. Based on the assumption that the modes within

one modal group have 100% mode mixing, the power in mode |,m,v can be written as:

n

in \Nlu
Wimy = N (3.3)

u

where N, isthe number of modes present in that modal group.

This method worked well in the study of 1Gb/s Ethernet. In previous TIA work, the
above formulas were used in the simulation of long fiber and short fiber patch core as
well. If fiber is not long enough, the equation (3. 3) is not valid any more, which causes
energy redistribution among modal groups. However, in 1Gb/s Ethernet study, using off-
set launch, the modal delay after propagation is relatively small compared to the bit pe-
riod. Hence the potential power variation between different modal groups does not intro-
duce dramatic pulse distortion in time domain. Therefore, it is reasonable to ignore the
fact that in short fiber the modes within amodal group are not mixed completely.

In 10Gb/s system, modal delay of different modal group after propagation is com-
parable to the bit period or even larger, especially for center launch case. The variation of
power coupling of different modes will introduce pulse distortion. Therefore the assump-
tion of 100% mode mixing in one modal group needs to be reexamined, depending on the
setup of MMF link. In the following paragraphs, we descript the improved method to
simulate the impact of connector offset in a 10Gb/s MMF link.
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Fig. 1. Schematic diagram of the multimode link

The proposed MMF link is shown as Fig 1. The typical length scale of mode cou-
pling within mode groups is hundreds meters. The first piece of multimode fiber in the
proposed fiber link, as shown in Fig. 1, is only 10 meters, which is much shorter than the
length scale that allows mode coupling with mode groups to happen. Therefore, every
individual mode needs to be considered separately at the connector C2.

In addition, due to different propagation constant of modes, the arriving time at the
end of the first MMF (C2) varies accordingly. The modal field (I, m) of the input fiber
can be written as:

E m =Y m(r)exp(ila)exp(ib, , z- iwt)
=[v, () cosliq) +iY, ,(r)sinlg)]expl- iw(t - t,,,)]
where t, =D, z/w, denoting the relative delay due to modal dispersion.

(3. 4)



The input electrical field profile to the second fiber can be obtained by superposing
the modal fields of the first fiber. We can write:

E1®2 = é CI,m EI ,m (3 5)
I,m

where ¢ , is the mode coupling coefficient calculated from (2. 5), taking into account an

off-centered launching condition. If substitute (3. 4) to (3. 5), one can easily find that the
electrical field profile at the end of first fiber varies with time or in other words the com-
posite electrical field of different modal group. For a given modal group, the field profile
is not symmetric around the fiber core any more. An example of output field profile is
giveninFig. 2.
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Fig. 2, an example of the output field profile after 10 m fiber with 5 um offset at the input

For a given modal group ?, the mode coupling coefficient for mode (I’,m’) in the second
fiber can be calculated from

CI',m' (tl,m) =X0) ]Fg)); EI‘,m‘rdrdq (3 6)

where E®), = & ¢ ™) (r)exp(ilq) isthe composite modal field of modal group ? and

,m

E,. .. isthemodel field of mode (I’,m’) in the second fiber.

In considering the offset at C2, one can write E,. ., =G(r,q,r,,j ), where parameters
I, andj define the offset center. For agiven ry, ¢. . (t, ,)isafunction of | . The power
coupling coefficient for mode (I',n) iscalculated by py.. ( ) =€y ( )Crm( ). There-
fore, to simulate possible impul se response due to an offsetr,,, one needs to consider
varying ] from Oto p, asillustrated in Fig. 3.

In Fig. 3, the dashed circle and the solid circle are represented two possible offset
with magnitude of r,. It is clear that the overlapping of the composite modal field from

the first fiber to these of the second fiber depends on the offset center.
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Fig. 3. lllustration of connect offset

4. Proposalsfor Simulationing 10Gb/sMM Link

In the simulation of proposed link:

1) Itispossibleto usethe result of scalar wave equation to simulate the polariza-
tion rotation in a multimode fiber link.

2) Polarization rotation of the input beam is equivalent as rotating the modal field
in the fiber. The power coupling coefficient of individual modes varies ac-
cordingly, causing the energy transfer among the two degenerated modes.

3) The pulse variation due to the change of polarization can be smulated if the
mode mixing is not completed or there is a mode selective lossin the link.

4) Dueto the short length of the first MMF in the proposed link, modes within
one modal group need to be treated individually.

5) Themodal field profile at the end of first MMF varies with time and is not
symmetric around the fiber core with an off-centered launching condition.

6) Theoverlap of modal fields at the connector depends on the relative location

of the offset center to the reference coordinates and the pulse response will
change accordingly.
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