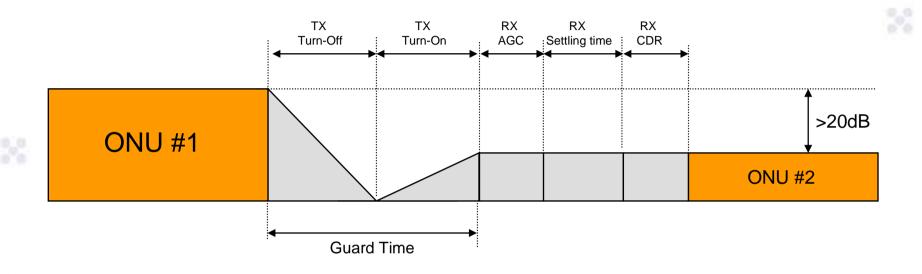
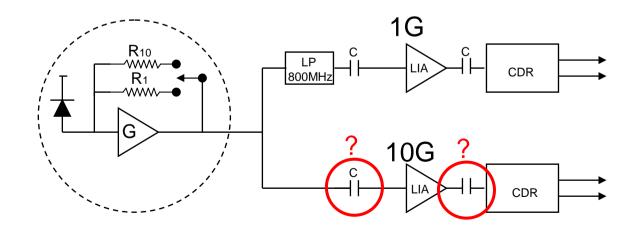


Timing Considerations for 10GEPON Burst Receiver

IEEE 802.3av November 2007 Haim Ben-Amram


Outline


- Burst Mode Receiver Timing
- Settling Time
- AC DC coupling
- Summary

November 2007

Burst Receiver Timing

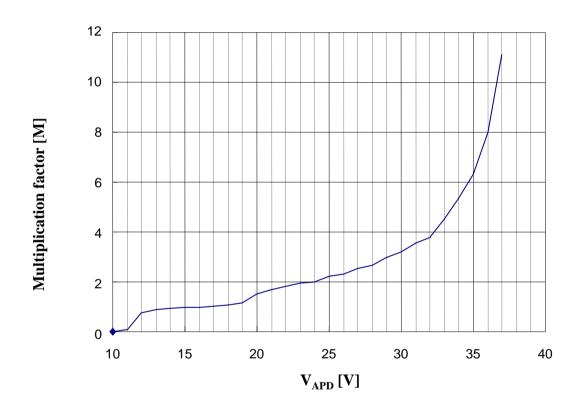
November 2007

Additional functions of Guard Time in mixed 10G/1G uplink

In a mixed 1G and 10G Uplink, the Guard time must enable the following functions that are not present on a 1G uplink:

- Adjusting the APD Adaptive Bias
- Adjusting the TIA gain to compensate for a change in data rate

Working with "Non-Optimized" APD


- Dual rate receiver has an optimized APD for 10G *only*, this leads to performance degradation in GEPON
- APD gain varies as a function of the reverse bias
- Noise penalty

$$\frac{S/N(m)}{S/N(m_0)} = \frac{r^2(1+x/2)}{r^{2+x}+x/2}$$
 Where:
 $m = \text{non-optimum gain}$
 $m_0 = \text{optimum gain}$
 $m = n_0$

- Non-optimized Gain could cause *1dB* Penalty and could be solved by *Adaptive Bias*
- Adaptive Bias changing could be long time µs

Multiplication Factor vs. APD Bias

November 2007

TIA – Settling Time

- To support Dynamic Range, AGC Time constant should be much greater (~10x) than the worst-case CID
 - CID is 64bits (64/66)
 - AGC time constant should be 640bits \rightarrow 64ns
- In transition to/from 1G and 10G, there is (assuming serial design) additional overhead needed for dynamically selecting the appropriate resistor : <u>roughly 10ns</u>
- Total TIA Settling Time: 64ns + 10ns = 74ns

Burst Receiver – AC or DC Coupled?

AC

- AC coupling significantly simplifies the design of the Analog Front End
- Two major problems using conventional AC coupling
 - Guard Time and power variations between bursts can lead large
 DC offset
 - Long Threshold Acquisition time Line Code dependent
- GEPON (8B/10B) allows using of short time constant AC coupled
- Capacitor coupling size is linearly to CID
- CID worse case grows to 128 from 64 due to FEC

DC

- DC coupled receiver quickly extracts the decision threshold
- Needs to deal with DC Cancellation mechanism

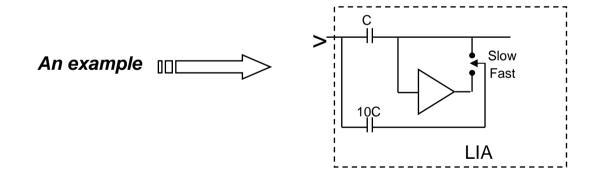
LIA Settling Time – AC Coupled

AC Coupled

• The coupling capacitor value is dominant in LIA Settling Time

$$C = \frac{7.8 * N *_{t_W}}{R} = \frac{7.8 * 64 * 100 \, ps}{50} = 1nF$$
$$\tau = R * C = 50 * 1nF = 50 ns$$

• At least 5τ to maintain Dynamic Range


$$50ns*5 = 250ns$$

LIA Settling Time – DC Coupled

• DC Coupled

- Threshold Acquisition time could be short by adding "DC loop" inside the LIA
- "DC loop" avoids 5τ "wait" for LIA stabilization
- Settling Time can be reduced to 25ns

CDR

• Typical CDRs (AC-coupled) are not suitable for burst traffic due to the inherent long lock time

• PLL Lock Time is about 25ns, regardless AC or DC coupled

- In AC Coupled
 - Time constant is long as the LIA

Summary

- Minimum values for guard time and sync time upper bound parameters were presented
- 1G-EPON should remain AC coupled
- Further study required to determine if 10GEPON should be AC or DC coupled
 - •DC coupling is generally used in "Burst mode"-type applications
 - AC coupling ICs (TIA, LIA and CDR) are "off the shelf" components. DC ICs have a more complex design
 - AC coupling results in longer threshold acquisition times than DC
- APD Adaptive Bias should be considered