6dB Extinction Ratio for 10GBASE-PR-U

Hiroki Ikeda Hitachi

Takeshi Nagahori NEC

Sosaku Sawada Eudyna Devices

Hiroshi Hamano Fujitsu Labs.

Supporters

Ken-Ichi Suzuki NTT

Mitsunobu Kimura Hitachi Comm. Tech.

Kengo Hirano NEC

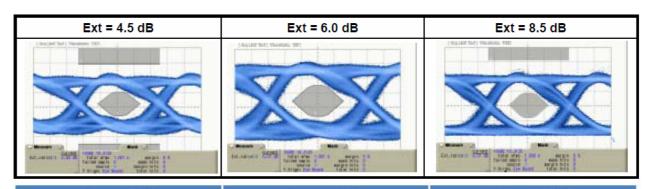
Akio Tajima NEC

Hiroshi Hara Eudyna Devices

Hao Feng Eudyna Devices

Tetsuya Yokomoto Fujitsu Telecom Networks

Overview

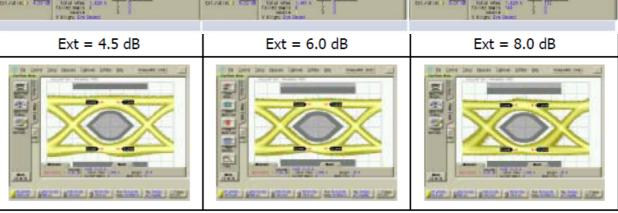

In the IEEE Seoul interim meeting in Sep. 2007, current 10G-EPON power budget has been agreed in the TF.

- Allocation for penalty is still challenging, due to burst-mode, and moreover, dual-rate operation, especially for PR30 U/S tight budget requirement.
 - DML power relaxation is still the main concern in the TF.
- ITU-T standard specifies 6dB-ER DML TXs for similar tight budgets.
 - Reasonable and practical reference, compared to IEEE specs. for rather moderate applications.
 - 6dB ER is achievable without difficulty, with current 10G DML technology.

10G DML Output Waveform

Ext = 4.5dB

Vender A



Ext = 6.0dB

Vender B

ESTABLISCO STATE S

Vender C

3av_0809_kozaki_2.pdf

Ext = 8.0dB

Some DML Speed Problem

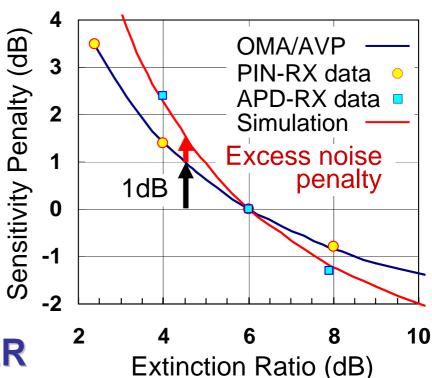
- Significant ER dependency indicates its ON/OFF speed problem, and narrow ER tolerance window.
 - Complicated ER control individually over temperature and deviation is necessary, and yet, lifetime waveform stability cannot be guaranteed for reliability and interoperability.
- ER relaxation should be introduced only for yield, not for salvaging wrecked components.

DML optical output power

Lifetime ageing

Low-ER

High-ER


??-ER

DML Power and ER

Drive current

Sensitivity Degradation at Low-ER

- Due to APD-RX excess noise, sensitivity degradation increases significantly at low-ER signal inputs.
- All TX and RX power budget levels should be changed, and the power increase cannot be illustrated in a simple OMA/AVP model.
- DML output power range decrease, from 5dB to some 3.4dB at 4.5dB ER, causes a problem without introducing an expensive temperature control.

Sensitivity Penalty and ER

Co-ex RX implementation

Requirement for APD/TIA for US burst mode receiver

	PRX-30	PR-30	PR-30/PRX-30 Coex	
			Split in the optical domain	Split in the electrical domain
Sensitivity	-29.78dBm	-28.0dBm	-31dBm(*1)	-29.78Bm
Overload	-9.38dBm	-6dBm	-9dBm(*1)	-6dBm
treceiver_sett ling for TIA AGC	<<400ns	<<800ns	<<800ns	<<400ns(*2)
Dynamic Range	20.4dB	22.0dB	22.0dB	23.38dB

(*1)Using 1:2 splitter with 3.0 dB loss. Using optical amplifier is not practical because of 100nm (1260nm-1360nm) bandwidth. (*2)treceiver_settling for PRX-30 is required for Dual Rate TIA.

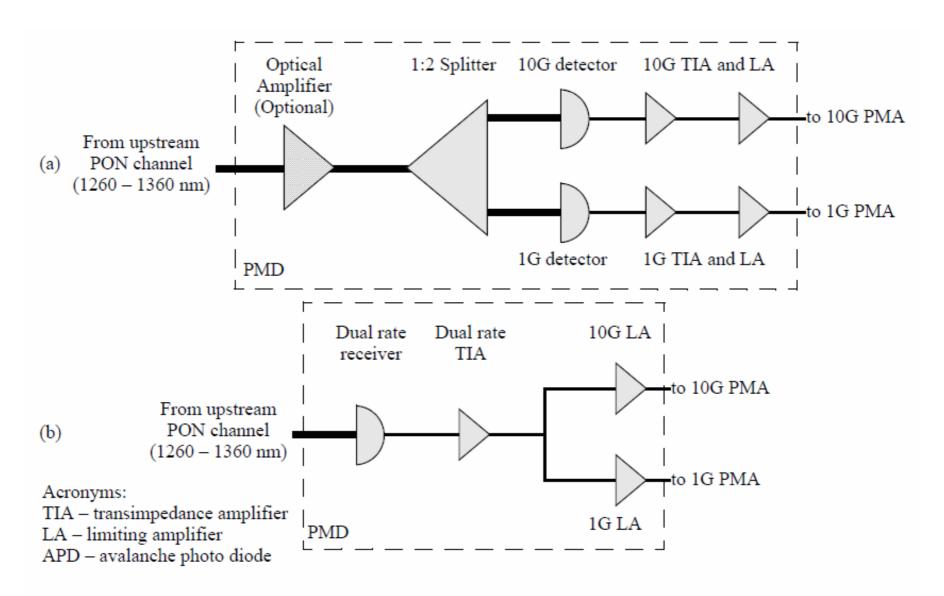


Figure 75A–1—Dual–rate PMD topologies with the split in the (a) optical domain, (b) electrical domain

3av_D2_1_plain.pdf

Co-ex RX Difficulties with Low-ER

- PMD spec. should be determined with considering sensitivity, dynamic range and timing in Dual-rate operation in detail, although it is not mandatory.
- Dual-rate PMD topology with the split in the optical domain is not practical in receiver sensitivity. The split in the electrical domain is the only solution.
- Tighter timing and larger dynamic range are required for Dual-rate APD/TIA than that for 10G single-rate APD/TIA. The ER must large enough to allow a wide variety of TIA AGC architecture for faster response and larger dynamic range of 802.3ah, G-EPON.
- 6dB ER, same as 802.3ah, is a reasonable choice for dual-rate operation.

Conclusion

ER relaxation may have an impact to yield and cost, but...

- Some DML speed problem is a different argument, which should not be discussed here as a relaxation.
- No big room remains for practical ER relaxation for PR30.
 - APD-RX sensitivity degradation due to excess noise increases significantly at low-ER.
 - 1G-similar or higher 10G ER is significant for practical Dual-rate RX to achieve co-existence.

At this time and stage of the standardization, current power budget and ER 6dB should be determined.

- Current technology already shows it is feasible.
- Good development target for component suppliers.
- Further production data will show how it can be in future.