D1.2 Comments Discussion Document

Chris DiMinico
MC Communications/
LEONI Cables \& Systems
cdiminico@ieee.org

OIF-Min Mated HCB-MCB SDD21, SDD12 $<-0.08 \sqrt{\mathrm{f}}-0.2^{\star} \mathrm{f}$ dB for $\mathrm{f}<28 \mathrm{GHz}$

OIF-Max
Mated HCB-MCB SDD21, SDD12> $-0.12-0.475 \sqrt{\mathrm{f}}-0.221^{*} \mathrm{f} \mathrm{dB}$ for $\mathrm{f}<14 \mathrm{GHz}$
Mated HCB-MCB SDD21, SDD12 $>4.25-0.66^{\star} f \mathrm{~dB}$ for $14 \mathrm{GHz}<\mathrm{f}<28 \mathrm{GHz}$

Comment\#228 D1,2
ILMTFmin=(0.08*sqrt(f)+0.2*f) for 0.01 to 25.78 GHz
ILMTFmax $=\left(-0.114+0.45^{*} \operatorname{sqrt}(\mathrm{f})+0.21^{*} \mathrm{f}\right)$ for 0.01 to 14 GH $=4.5-0.66^{\star f}$ for 14 to 25.78 GHz

100GBASE-CR4 D1.2 - November 2012

GHz	HCB	MCB	HCB+MCB
12.8906	1.8732	1.1708	3.0440

FREQ(GHz)	ILMTFmin-AG	ILMTFmax-AG	ILMTFmin-OIF	ILMTFmax-OIF
12.8906	2.8653	4.4366	2.8653	4.6742

100GBASE-CR4 D1.2 - November 2012

\#165

Frequency ranges of s-parameter specifications
-Tx/Rx specifications
-Cable assembly specifications
-Test fixture specifications

The frequency range has been debated during each ballot cycle. The Tx/Rx RL max frequency represents current consensus. Stakeholders in the Tx/Rx RL specifications have expressed interest in specifying $T x / R x R L$ as well as test fixtures for $T x / R x$ at the baud rate.

Cable assembly manufactures have resisted extending the frequency range beyond what's absolutely necessary so not to impose unnecessary measurement requirements both equipment and the time to perform measurements. Many VNAs used by cable assembly manufacturers are specified to 20 GHz . The 18.75 Ghz was derived as follows $18.75 \mathrm{GHz}=(7.5 / 10.3125) * 25.78125$. From 802.3 ba , the 7.5 GHz is the 3 dB reference receiver bandwidth and 10.3125 is the signaling rate, per lane. From 802.3bj, the 3 dB reference receiver bandwidth is set to 18.75 GHz .

\#256,\#219,\#319

Frequency ranges of s-parameter specifications

-Tx/Rx specifications
-Cable assembly specifications
-Test fixture specifications

Cl 92	SC 8.3 .2	P153	L33	\# 256
Shanb	Megha	TE Connectivity		
Comment Type T Comment Status X		Comment Status X		
In equation (92-1) Maximum frequency for Tx Output RL is defined as 25 GHz . But IL in equation (92-4) is defined up to a maximum frequency of 18.75 GHz				
SuggestedRemedy				
Change Equation (92-1) to reflect a maximum frequency of 18.75 GHz				
Propos	esponse	Response Status 0		

Cl 92	SC 8.4.1	P160 Ghiasi, Ali	Broadcom

Comment Type TR Comment Status X
Traditionally we have used 0.05 GHz for low freq RL measuremnts and in some case 0.01 GHz is used as in the case of Eq 92-5
SuggestedRemedy
Please change 0.01 GHz limit with 0.05 GHz
Proposed Response Response Status O

Cl 92	SC 92.11	P173	L4
Dudek, Mike	QLogic	\# 319	

Comment Type T Comment Status X
Allowing the test boards to have un-restricted performance above 18.75 GHz could significantly degrade system performance, resulting in good devices failing. OIF has continued the specifications up to Baud Rate for the equivalent test boards. I hope to have a presentation on this for the San Antonio meeting. OIF has also adopted complete specifications for these test boards in their VSR specification. It would be good to have the same specifications for these two standards so that the same test boards could be used for both, and most of the specifications are already identical.
SuggestedRemedy
Increase the frequency range for the test boards to 25.9 GHz for all the equations in this section.
Adopt other specifications from the OIF document for these test boards to fill in any TBD values or missing specifications.(eg Mated MDNEXT $=1.8 \mathrm{mV}$ Mated MDFEXT $=4.8 \mathrm{mV}$
Proposed Response Response Status O

Cl 92A	SC 3	P281 Bhiasi, Ali	Broadcom

Comment Type TR Comment Status X

Equation 92A-1 is not consistant with the TP0 to TP2 loss where coefficent SQRT(F) and f
are about the same, but equation 92A-1 linear term is twice the SQRT term. Propose to
use scale version of equation 92-4

SuggestedRemedy

If equation $92-4$ is multipled by 0.7 then loss at 12.89 Ghz will be 6.8 dB
IL_Prop $=0.0565+0.4263^{*}$ sqrt $(\mathrm{f})+0.4045^{*}$ f where f is from 0.01 to 18.75 GHz
ghiasi_01_1112 will compare these two graphs
Proposed Response Response Status O

coef	0.05649	
	0.4044684	sqrt(f)
	0.4263112	f

92.8.3.5 Insertion loss TP0 to TP2 or TP3 to TP5

Transmitter measurements and tests defined in Table $92-5$ are made at TP2 or TP3 using the test fixture of Figure 92-13, or its equivalent. The recommended maximum insertion loss from TP0 to TP2 or TP3 to TP5 including the test fixture is given by Equation (92-4). Note that the insertion loss from TP0 to TP2 or from TP3 to TP5 is 10 dB at 12.8906 GHz .

$$
\text { Insertion_loss }(f) \leq\left\{\begin{array}{ll}
1.076(0.075+0.537 \sqrt{ } f+0.566 f) & 0.01 \leq f<14 \\
1.076(-18+2 f) & 14 \leq f \leq 18.75
\end{array}\right\} \quad \text { (dB) }
$$

for $0.01 \mathrm{GHz} \leq f \leq 18.75 \mathrm{GHz}$
where

```
f is the frequency in GHz
Insertion_loss(f) is the insertion loss at frequency f
```


$$
\begin{equation*}
I L_{\mathrm{PCB}}(f) \leq I L_{\mathrm{PCB} \max }(f)=0.5(0.0694+0.4248 \sqrt{f}+0.9322 f)(\mathrm{dB}) \tag{92~A-1}
\end{equation*}
$$

for $0.01 \mathrm{GHz} \leq f \leq 18.75 \mathrm{GHz}$.
where

```
f is the frequency in GHz
IL PCB}(f)\quad\mathrm{ is the insertion loss for the transmitter and receiver PCB
IL (PCBmax }(f)\quad\mathrm{ is the maximum insertion loss for the transmitter and receiver PCB
```


\# 314

Cable Assembly IL - 5 m - 24 AWG

Cl $92 \quad$ SC 92.10 .2
Dudek, Mike
Comment Type T Comment Status D
Having these fitted co-efficients exactly matching the maximum loss at Nyquist heavily
constrains the channel fit so that it is likely that many channels that pass the maximum loss
at Nyquist will fail one or other of these fint parameters. (It also removes the need for the
footnote which should be deleted if the suggested remedy is not adopted)
In Table 92-10
Change a2 from 0.326 to 0.70
Change a4 from 0.0185 to 0.02

SuggestedRemedy
Increase the maximum insertion loss parameters by 20%.

Proposed Response Response Status W
PROPOSED REJECT
See diminico_1112.pdf for development of cable assembly insertion loss.

Table 92-10-Maximum and minimum cable assembly insertion loss characteristics

	Description	Value	Unit
	Maximum insertion loss at 12.8906 GHz	22.64^{a}	dB
	Maximum fitted insertion loss coefficient a_{1}	4.28	$\mathrm{~dB} / \mathrm{VGHz}$
0.70	Maximum fitted insertion loss coefficient a_{2}	0.326	
0.02	Maximum fitted insertion loss coefficient a_{4}	0.0185	$\mathrm{~dB} / \mathrm{GHz}$
	Minimum insertion loss at 12.8906 GHz	8^{b}	$\mathrm{dB} / \mathrm{GHz}{ }^{2}$
	Maximum fitted insertion loss coefficient a_{1}	0.7	dB
	Maximum fitted insertion loss coefficient a_{2}	0.3	$\mathrm{~dB} / \mathrm{VGHz}$
	Maximum fitted insertion loss coefficient a_{4}	0.01	$\mathrm{~dB} / \mathrm{GHz}$
			$\mathrm{dB} / \mathrm{GHz}{ }^{2}$

${ }^{\text {a }}$ The limit on the maximum insertion loss at 12.8906 GHz precludes the coefficients a_{1}, a_{2}, and a_{4} from simultaneous maximum values.
${ }^{6}$ The limit on the maximum insertion loss at 12.8906 GHz precludes the coefficients a_{1}, a_{2}, and a_{4} from simultaneous maximum values.

\# 226 MTF - ICN

Cl 92 SC 11.3 .5 Ghiasi, Ali	P_{177} Broadcom	L38	\# 226
Comment Type TR	Comment Status D		
Near end and far end	cosstalk are TBD		
SuggestedRemedy			
Proposed limit for $\mathrm{NEXT}=1 \mathrm{mV} / \mathrm{RMS}$ $\mathrm{MDNEXT}=1.7 \mathrm{mV}$			
$\mathrm{FEXT}=2.6 \mathrm{mV} \mathrm{RMS}$ MDFEXT=5.2 mV R			
see ghiasi_01_1112			
Proposed Response	Response Status W		
PROPOSED ACCEP	N PRINCIPLE.		
For committee discu	n. Consider with diminico		

OIF: 2010.404.08 226
 MTF - ICN

> OIF: OIF2010.404.08

The Integrated Crosstalk Noise (ICN) as calculated using the method defined in Chapter 12 with the aggressor amplitudes a rise/fall times as listed in Table $1-3$ shall be less than 5.2 mV . MDNEXT shall be less than 1.8 mv rms . MDFEXT shall be less than 4.8 mv rms

Table 1-3. Crosstalk parameters for Host Output test and Module input test calibration at TP4

Parameter	Used in test	Target value	units
Crosstalk Amplitude differential voltage pk-pk	Host Output test and module stressed receiver test calibration	900	mV
Crosstalk transition time 20- 80%	Host Output test and module stressed receiver test calibration	9.5	ps

D1.1 Comment\#282

Mated test fixture ICN (based on SMT) MDFEXT (RMS) 3.5 mV MDNEXT (RMS) 1.0 mV

Cl 92 SC 92.10.9.4	P144	L35	\# 282
DiMinico, Christopher	MC Communications		
Comment Type TR	Comment Status D		
92.10.9.4 Mated test fixtures integrated crosstalk noise parameter values in Table 92-12 are TBD's.			
SuggestedRemedy			
diminico_0912.pdf provides the 92 .10.9.4 Mated test fixtures integrated crosstalk nois parameter values in Table 92-12.			
Proposed Response	Response Status W		
PROPOSED ACCEPT IN PRINCIPLE.			
Committee review of diminico_0912.pdf for the Mated test fixtures integrated crosstalk noise parameter values in Table 92-12.			

\#64 Channel ICN

Cl 92A SC 92A. 8	P285 \# 296
DiMinico, Christopher	MC Communications
Comment Type TR	Comment Status D
92A. 8 Channel integrated crosstalk noise (ICN) includes TBDs; Equation 92A-7 and Figure 92A-3	
SuggestedRemedy diminico_1112.pdf provides Equation 92A-7 to be used for Figure 92A-3.	
Proposed Response	Response Status W
PROPOSED ACCEPT.	
Use suggested remedy	

Annex 92A provides information on parameters associated with test points TP0 and TP5 that may not be testable in an implemented system. TP0 and TP5 test points are illustrated in the 100GBASE-CR4 link block diagram of Figure 92-2.

The TBD for channel ICN has existed for multiple drafts. A proposal to bound ICN utilizing COM has been suggested but not completed. Considering COM will be used to bound ICN a recommendation on ICN may be useful but not necessary.

Proposed response: Replace this subclause with a recommendation to meet the Channel Operating Margin (COM) between TPO and TP5.

Annex 92A

Annex 92A provides information on parameters associated with test points TP0 and TP5 that may not be testable in an implemented system. TP0 and TP5 test points are illustrated in the 100GBASE-CR4 link block diagram of Figure 92-2.

Figure 92-2-100GBASE-CR4 link (one direction is illustrated)

100GBASE-CR4 D1.2 - November 2012

BACKUP

Test Fixture Crosstalk

\author{
MCB-ICN-RX1
 RX1-MDFEXT-RX2,RX3,RX4
 RX1-MDNEXT-TX1,TX2,TX3,TX4
 MCB-ICN-RX2
 RX2-MDFEXT-RX1,RX3,RX4
 RX2-MDNEXT-TX1,TX2,TX3,TX4
 ```
MCB-ICN-RX3
 RX3-MDFEXT-RX1,RX2,RX4
 RX3-MDNEXT-TX1,TX2,TX3,TX4

``` \\ MCB-ICN-RX4 \\ RX4-MDFEXT-RX1,RX2,RX3 \\ RX4-MDNEXT-TX1,TX2,TX3,TX4
}

HCB-ICN-TX1
TX1-MDFEXT-TX2,TX3,TX4
TX1-MDNEXT-RX1,RX2,RX3,RX4
HCB-ICN-TX2
TX2-MDFEXT-TX1,TX3,TX4
TX2-MDNEXT-RX1,RX2,RX3,RX4
HCB-ICN-TX3
TX3-MDFEXT-TX2,TX3,TX4
TX3-MDNEXT-RX1,RX2,RX3,RX4
HCB-ICN-TX4
TX4-MDFEXT-TX1,TX2,TX3
TX4-MDNEXT-RX1,RX2,RX3,RX4

\section*{Test Fixture Crosstalk}


100GBASE-CR4 D1.2 - November 2012

\section*{MCB side - Integrated Crosstalk Noise}

\section*{zQSFP-MCB-MDNEXT-MDFEXT-PSXT}


Molex zQSFP - S4P measurement data provided by Michael Rost - Molex

\section*{HCB side - Integrated Crosstalk Noise}

\section*{zQSFP-HCB-MDNEXT-MDFEXT-PSXT}


Molex zQSFP - S4P measurement data provided by Michael Rost - Molex

\section*{MCB side - Integrated Crosstalk Noise}


Molex zQSFP - S4P measurement data provided by Michael Rost - Molex

\section*{HCB side - Integrated Crosstalk Noise}
zQSFP-HCB-Crosstalk


Molex zQSFP - S4P measurement data provided by Michael Rost - Molex 100GBASE-CR4 D1.2 - November 2012

\section*{MCB side - Integrated Crosstalk Noise}
zQSFP-MCB-Crosstalk
28 GBd - crosstalk disturber 1200 mV P-P
Rise time (20\%-80\%) 9.6 ps 4 NEXT, 3 FEXT


Molex zQSFP - S4P measurement data provided by Michael Rost - Molex
100GBASE-CR4 D1. 2 - November 2012

\section*{HCB side - Integrated Crosstalk Noise}


Molex zQSFP - S4P measurement data provided by Michael Rost - Molex

\section*{\# 314}

\section*{Cable Assembly IL - 5 m - 24 AWG}
\begin{tabular}{|c|c|c|c|c|}
\hline Cl 92 & SC 92.10.2 & P165 & L33 & \# 314 \\
\hline Dudek & & \multicolumn{3}{|l|}{QLogic} \\
\hline \multicolumn{5}{|l|}{Having these constrains th at Nyquist wi footnote whic
\(\qquad\) cients exactly matching the maximum loss at Nyquist heavily so that it is likely that many channels that pass the maximum loss ther of these fint parameters. (It also removes the need for the leleted if the suggested remedy is not adopted)} \\
\hline \multicolumn{5}{|l|}{SuggestedRemedy} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Proposed Response \\
Response Status PROPOSED REJECT.
\end{tabular}} \\
\hline \multicolumn{5}{|c|}{See diminico_1112.pdf for development of cable assembly insertion loss.} \\
\hline
\end{tabular}


\section*{802.3bj IL Proposal = 4.28*SQRT(f)+0.325*f+0.0185*f^2 = \(22.64 @ 12.89 \mathrm{GHz}\)}
http://www.ieee802.org/3/100GCU/public/channel.html
Mark Bugg- Molex Full ZQSFP Cable Assembly, including Test Fixture(10-Feb 11)
5 m : All (40M),
P1_RX0, P1_RX1, P1_RX2, P1_RX3,
P2 RX0, P2 RX1, P2 RX2, P2 RX3
Calibration file (23-Feb 2-11 633k)
Reference (6-Jan-11 1.2M)

The max loss is a fit to the envelope of the worse case of all the measurements at each frequency...including ILD peaks. The fitting coefficients to any of the individual losses (falling under the max loss) will be less than the values of the fitted coefficients of the max loss.```

