# 100GBASE-KP4 Training Frame Update for Draft 1.2 

Kent Lusted, Intel<br>Adee Ran, Intel

## Supporters and Contributors

- Matt Brown, AppliedMicro
- Arash Farhood, Cortina Systems
- Andre Szcepanek, Inphi
- Dave Chalupsky, Intel


## Training Pattern Update

- Applies to comments \#163, 147, 149, 148
- Reviewed in 100GBASE-KP4 transmitter characteristics ad hoc on 24 October, 2012
- Attendees:
- Matt Brown, Charles Moore, Megha Shanbhag, Piers Dawe, Rick Rabinovich, Wheling Cheng, Adee Ran, Kent Lusted, Beth Kochuparambil, Mohammad Kermani, Vasu Parthasarathy, Rich Mellitz, Will Bliss, Zhongfang Wang, Beth Kochuparambil, Stephen Alie, Mike Dudek, Walter Katz


## 100GBASE-KP4 Training Frame Update Goals

- Use full-state pinning termination in Draft 1.2
- 1 PAM4 symbol (termination) with bits taken from known PRBS sequence
- 45 PAM4 symbols precoded
- Enable locking on termination PRBS during training
- Essential for data decoding
- Make training frame same size as PMA frame
- Simplifies implementation
- Use PAO for EEE ALERT frame only
- Maintain spectrally rich, DC balanced and uncorrelated lane sequences


## 100GBASE-KP4 Precoding changes from D1.2

- Training frame word (TFW) is still 46 UI
- Now TFW is same size as D1.2 termination block
- In D1.1, 1 TFW = 2 TB46
- TFW is now created from 92 bits of PRBS13 at a time (instead of 45 bits at a time in D1.1)
- Gray coding results in 46 bit-pairs
- First bit-pair is used for initializing the precoder state
- As per 94.2.2.6
- The remaining 45 bit-pairs fed through the precoder
- As per 94.2.2.6


## Training Frame size changes from <br> D1.2

- Propose to increase training pattern length to 338 TFWs
- Requires 338*92=31096 bits from PRBS13
- PRBS13 full cycle is 8191 bits
- Use 3 full cycles $+4^{\text {th }}$ cycle truncated to 6523 bits
- Bits from $2^{\text {nd }}$ and $4^{\text {th }}$ cycles are inverted
- Added to marker and control channel (10 TFW together), the new training frame is 348 TFWs, which is equal to the PMA frame size


## PRBS generator change

- Modified Fibonacci polynomial: $G(x)=1+x+x^{2}+x^{12}+x^{13}$
- Old one was $G(x)=1+x+x^{2}+x^{11}+x^{13}$
- Required to enable creating 4 DC balanced, quasiwhite, non-correlated sequences


PRBS13 pattern output

## Initial outputs

- The initial outputs of the PRBS13 generator, right after the control channel transmission, shall be different for each of the PMD lanes, as follows (LSB transmitted first)
- PMD lane 0: 0xCD92
- PMD lane 1: 0x2AFB
- PMD lane 2: 0xC3D3
- PMD lane 3: 0xE2F6
- Generator is re-seeded to same values at the beginning of every training frame pattern


## Transition from training to data

- Training frame is always aligned with the PMA frame; last training frame is immediately followed by 40-bit overhead of data
- No need for PAO field in training (only in EEE alert)
- Countdown field still used to signal transition
- 40-bit overhead must start with a termination symbol to be consistent
- Bit-inversion of PRBS13 is removed (present in $2^{\text {nd }}$ and $4^{\text {th }}$ PRBS cycle)
- PRBS13 is re-seeded at the beginning of each training sequence during training mode, but keeps running freely in data mode
- Termination bits get synced during training
- PRBS always advances 92 bits per TFW in training and by 92 bits per term block in data mode
- Do not reseed first PMA frame after training ends
- Do not reseed in data mode at start of each PMA frame


## Training to Data Transition



- Notes:
- PRBS13 bit inversion ends with transition to data mode


## Initial sequences

| Lane | Output of | Contents of first 2 TFWs (from left to right) |
| :---: | :---: | :---: |
| LO | PRBS | 01001001101100111100010101011000010010011101111001110100000111010011011101001110011001010111 0001111110101110110111110100010110111101001110110010101100111001001110000111100001101011 |
|  | Gray code | $\begin{aligned} & 1031320220111130103121231210012102121023131112 \\ & 0122211213222101132233123203320231023012301332 \end{aligned}$ |
|  | Precoder | 1301200200101031003201123322233220110021032320 <br> 0111101103333223211121021130331123112233001211 |
| L1 | PRBS | 11011111010101000000100100110110011110001010101100001001001110111100111010000011101001101110 10011100110010101110001111111010111011011111101000101101111101001111011001010110011100100111 |
|  | Gray code | 2122111000310213123033320031023220233002331323 <br> 3120203323022233232122330321221022131113120312 |
|  | Precoder | 2333232222100230112212113123112022030002123021 3200221203111121120111213023332202301012331233 |
| L2 | PRBS | 11001011110000111110111011101100110011001110001110001100001100001110111000001100110000001110 00110110000110001010110001100100111010101000110010010000111001111011101010110011001001010101 |
|  | Gray code | 2032200223232320202023023020020023230020200023 0213013033201310233330203100231232333202031111 |
|  | Precoder | 2211131112033022002203112200022203300022000021 0230012212001231121213312313301120303311301010 |
| L3 | PRBS | 01101111010001111011111010110011011111100011110110101110111100100001011000101100101011111000 10010110101111001010010110001001111100001010110101100100111111000101011011101001000101111100 |
|  | Gray code | 1322101232233202122302213323220301130320332230 3113322033113031220033211310222011132331011220 |
|  | Precoder | 1202310211121133202133321203331223213022120213 3230333121012210200030232100202232302123101113 |

IEEE 802.3bj Nov 2012 Plenary

## ALERT Frame

- Update ALERT frame as outlined in this document:
- Keep the short frame length of 58 TFW in Draft 1.2
- 1 TFW = 1 TB92
- Use the aforementioned PRBS13 generator, polynomial, seeds, etc.


## Training pattern features

- The resulting training sequences are DC balanced, quasi-white and have low correlation between lanes
- Distribution of voltage levels is nearly uniform
- Distribution of transitions between level is nearly uniform


## BACKUP

## Patterns are quasi-white and DC balanced



## Low correlation between lanes



## Level distribution



## Transition distribution



PRBS pattern portion only

