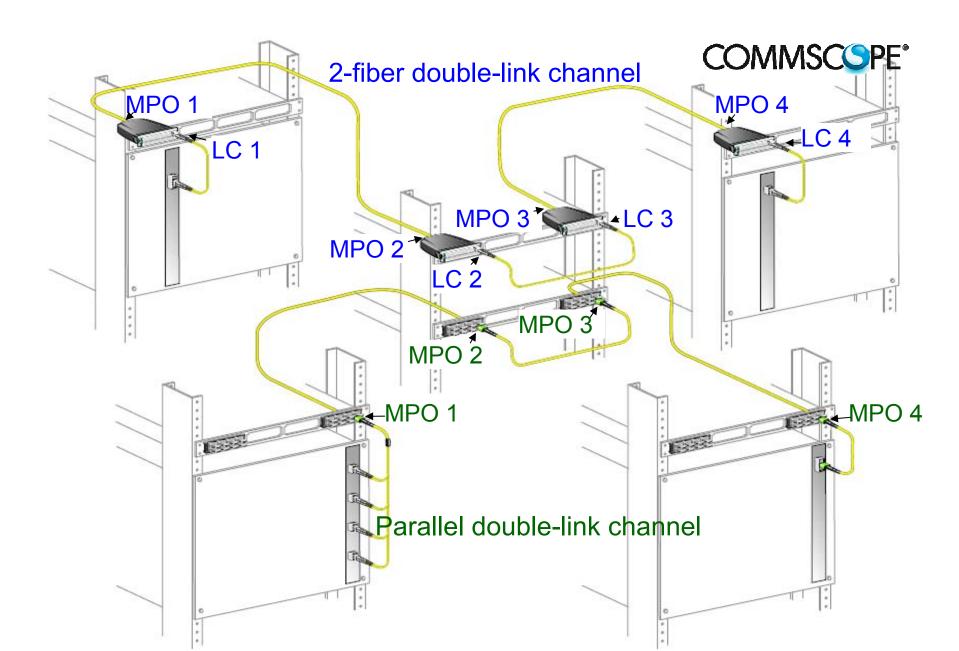


Loss Budgeting for Single-mode Channels

Paul Kolesar CommScope Feb 19, 2013 IEEE P802.3bm SMF Ad Hoc

Purpose and Approach

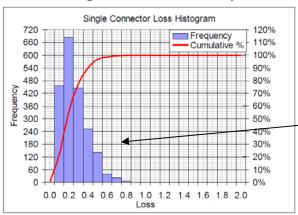

To define a loss budget that

- is appropriate for single-mode fiber data center channels up to 500 m in length
- addresses differences between 2-fiber and parallel optics connectivity
- supports double-link channels
- supports the attenuation of cable constructions used inside buildings

Use statistical approach

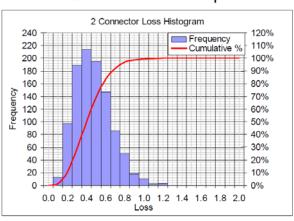
Following the lead from previous contribution to P802.3ba

Double-link cabling channels



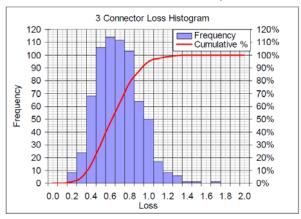
Channel Connectivity Characteristics

- Examining previous diagram we see that
 - 2-fiber channels have 8 connections
 - 4 LCs + 4 MPOs
 - Owing to the use of MPO pre-terminated cabling that employs fan-out cassettes
 - Parallel optic channels have 4 connections
 - 4 MPOs
 - Fan-out cassettes are not used

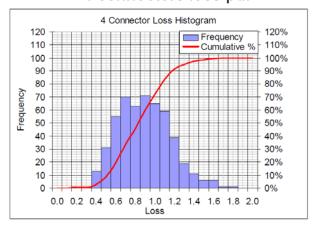

Connection Insertion Losses (1 of 5)

Single connector loss pdf

mean loss=0.22 dB, s.d.=0.134 dB


2 connectors loss pdf

mean loss=0.421dB, s.d.=0.187dB


- Contribution king_01_0508 to P802.3ba
 - Insertion loss represented by
 - Rayleigh distribution
 - Employed Monte Carlo method to sum connection losses

3 connectors loss pdf

mean loss=0.631 dB, s.d.=0.221 dB

4 connectors loss pdf

mean loss=0.842 dB, s.d.=0.264 dB

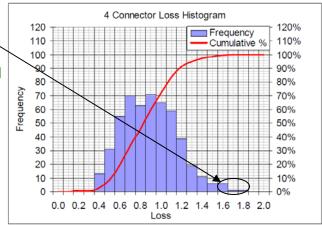
Connection Insertion Losses (2 of 5)

Statistical characteristics comparison of king_01_0508 and Normal statistics

# conn.	King_01_0508		Normal Stats	
	Mean	Std. Dev.	Mean	Std. Dev.
1	0.220	0.134	0.220	0.134
2	0.421	0.187	0.440	0.190
3	0.631	0.221	0.660	0.232
4	0.842	0.264	0.880	0.268

- Means and Standard Deviations agree to within 5%
 - Good cross-check
 - Normal statistics can substitute for Monte Carlo simulation.
- Normal statistics will be used going forward here
 - Their slightly higher values will help account for the accelerating trend of loss vs. offset not included in king_01_0508

Connection Insertion Losses (3 of 5)


king_01_0508 asserted that 1.5 dB was sufficient to support
4 multimode MPO connections

1.6% of connections would exceed 1.5 dB

Represents +2.5 std. dev. point in distribution

•
$$0.842 + 2.5 \times 0.264 = 1.5 \, dB$$

- Represents +2.3 std. dev. in Normal dist.
 - $0.880 + 2.3 \times 0.268 = 1.5 \, dB$

- mean loss=0.842 dB, s.d.=0.264 dB
- 95%<1.3dB loss, 98.4%<1.5 dB loss

Accepting Jonathan's assertions, all we need to know are the means and standard deviations for MPOs and LCs.

Sounds trivial, but...

Connection Insertion Losses (4 of 5)

- Connection loss is specified with various terms
 - Typical, average, maximum, sometimes mean & std. dev.
- And differing conditions
 - Random mate to like product
 - When mated to a reference-grade plug
 - When "tuned" (i.e. iteratively clocked for optimum alignment)

But what we need are practical values for common data center deployments.

So here goes...

Connection Insertion Losses (5 of 5)

- Connection loss should be modeled using random-mate statistics for un-tuned assemblies
 - Random-mate stats represent actual deployment conditions
 - Un-tuned terminations are lower in cost and commonly used in DCs
- Good starting place for single-mode LCs
 - Mean = 0.20 dB; Std. Dev. = 0.15 dB
- Good starting place for single-mode MPOs
 - Mean = 0.35 dB; Std. Dev. = 0.25 dB

Using these values at +2.5 standard deviations we get:

2.65 dB for 4 MPOs 3.66 dB for 4 MPOs + 4 LCs

Note: these values are ~0.1 dB higher than what I stated on the reflector because I had used 2.3 standard deviations, but should have used 2.5 as in king 01 0508

Adding Cable Attenuation

- TIA 568 and ISO 11801 (and their related data center cabling counterparts) are predominantly used for premises and data center cabling specifications
 - Both specify single-mode cable attenuation that is dependent on construction
- TIA:
 - outside plant: 0.5 dB/km max @ 1310 nm, 1550 nm
 - indoor/outdoor: 0.5 dB/km max @ 1310 nm, 1550 nm
 - indoor: 1.0 dB/km max @ 1310 nm, 1550 nm
- ISO:
 - OS1 (original spec that included inside plant): 1.0 dB/km max @ 1310 nm, 1550 nm
 - OS2 (added to support 10 km outside plant applications): 0.4 dB/km max @ 1310 nm, 1383 nm, 1550 nm
- Advisable to use at least 0.5 dB/km for cabling that will often serve indoor deployments

Adding 0.25 dB for 500 m of cable attenuation to connection loss gives:

2.90 dB for parallel optics3.91 dB for 2-fiber channels

These are recommended minimum budgets. Greater budgets will enable more flexibility in channel design regarding topologies and cable type.

10

Closing Perspectives

- The 100G-LR4 spec provides 6.3 dB of loss budget for 10 km reach
- These 500 m loss budgets are substantially smaller
 - Should enable cost reduction
- However, if trimmed further they will lose utility
 - Our efforts will be in vein
- Do not follow precedent of allocating only 2 dB connection and splice loss
 - Worked in past because substantial power was also allocated to overcome attenuation of cabling, e.g. at least 4 dB for 10 km reach
 - This attenuation budget is traded for insertion loss budget within data centers
 - This luxury will not be afforded to the short-reach solutions we are defining

Q & A