101.4.4.8 Burst Markers

101.4.4.8.1 Introduction

Burst markers are used to indicate the start or end of a burst received via the PMA service interface. A burst marker is a predefined sequence of two types burst marker elements: B's and 0's, where B's represent differential QPSK (D-QPSK) modulated symbols (see 101.4.4.8.3 and 101.4.4.8.4), and 0's represent nulls (i.e., no energy being transmitted). Each burst marker element is transmitted in one resource element. B burst marker elements are boosted by 3dB. The first modulated B marker element on a subcarrier is encoded as a reference pilot. There are separate burst marker patterns for 8 and 16 symbol Resource Blocks.

Burst markers are placed by the upstream Symbol Mapper function (see 101.x.x.x).

101.4.4.8.2 Burst marker start and stop sequences

For the 8 symbol Resource Block, the start and stop burst marker sequences are defined in Figure 101-1. For the 16 symbol Resource Block, the start and stop marker sequences are defined in Figure 101-2.

Figure 101-1—Burst marker in 8 symbol resource block

50

51 52

53 54

Note: Power is constant versus time

Figure 101–2—Burst Marker example in 16 symbol resource block

101.4.4.8.3 Burst marker B element encoding

The first modulated D-QPSK symbol for each subcarrier of a start and end burst marker is a reference pilot and is modulated with value (11). This is indicated by the position of the <u>B</u> burst marker element in Figure 101-X1, Figure 101-X2, Figure 101-X3, and Figure 101-X4.

The remaining B burst marker elements are D-QPSK modulated with Information value pairs and Parity encoding value pairs. The parity encoding is a Reed-Solomon coding over $GF(2^4)$ with t = 2. The Reed-Solomon code of RS(15,11) is shortened to length 6 of 7 depending on the resource block length. The RS generator is shown in equation 101-E1 where the primitive element alpha (a) is 0x2.

$$g(x) = (x+a^{0})(x+a^{1})(x+a^{2})(x+a^{3})$$
(101-1)

The RS primitive polynomial is shown in equation 101-E2.

$$p(x) = x^4 + x + 1 ag{101-2}$$

For RB size of 8, two information code symbols designated I2 and I1 contain 8 information bits and are encoded and shortened to a length of 6:

(0 0 0 0 0 0 0 0 0 12 I1 P4 P3 P2 P1)

For RB size of 16, three information code symbols designated I3, I2, and I1 contain 12 information bits and are encoded and shortened to a length of 7:

(0 0 0 0 0 0 0 0 13 I2 I1 P4 P3 P2 P1)

Each information code symbol is represented by a pair of D-QPSK symbols. The high order pair is designated as $I_{\#N}$ and the low order pair by $I_{\#L}$, for #=1,2, or 3. For each parity code symbol high order pair is designated as $P_{\#N}$ and the low order pair by $P_{\#L}$, for #=1,2,3, or 4.

For start burst markers and RB size 8, the two information code symbols I_2 and I_1 are each set to 0xF (i.e. 0xFF, all one's in all information symbols) with the D-QPSK modulated symbol pair placement as per Figure 101-X3.

For start burst markers and RB size 16, the three information code symbols I_{3} , I_{2} , and I_{1} are each set to 0xF (i.e., 0xFFF, all ones in all information symbols) with the D-QPSK modulated symbol pair placement as per Figure 101-X4.

For end burst markers and RB size 8, the two information code symbols are set as follows: L_2 encodes the last resource block value as designated by the symbol mapper (see 101.x.x.x) as per Table 101-X1 and L_1 encodes the last fill bit position value as designated by the symbol mapper (see 101.x.x.x) as per Table 101-X2 with the D-QPSK modulated symbol pair placement as per Figure 101-X3.

For end burst markers and RB size 16, the three information code symbols are set as follows: L_3 encodes a pad value of 0x00 (i.e., not null), L_2 encodes the last resource block value as designated by the symbol mapper (see 101.x.x.x) as per Table 101-X1 and L_1 encodes the last fill bit position value as designated by the symbol mapper (see 101.x.x.x) as per Table 101-X2 with the D-QPSK modulated symbol pair placement as per Figure 101-X4.

Table 101-1—Last resource element position encoding

Last RE Position in Last RB	$\begin{array}{c} \text{MSB Pointer Bits} \\ (I_{2H})I(_{2L}) \\ (0_{MSB}\ 0)_{H}\ (0_{MSB}\ 0)_{L} \end{array}$
0	$(00)_{\rm H}(00)_{\rm L}$
1	$(00)_{\rm H}(01)_{\rm L}$
2	$(00)_{\rm H}(10)_{\rm L}$
3	(01) _H (11) _L
4	$(01)_{\rm H}(00)_{\rm L}$
5	$(01)_{\rm H}(01)_{\rm L}$
6	$(01)_{\rm H}(10)_{\rm L}$
7	(01) _H (11) _L
8	$(10)_{\rm H}(00)_{\rm L}$
9	(10) _H (01) _L
10	$(10)_{\rm H}(10)_{\rm L}$
11	(10) _H (11) _L
12	(11) _H (00) _L
13	$(11)_{\rm H}(01)_{\rm L}$

Table 101-1—Last resource element position encoding

Last RE Position in Last RB	$\begin{array}{c} \text{MSB Pointer Bits} \\ (I_{2H})I(_{2L}) \\ (0_{MSB}\ 0)_{H}\ (0_{MSB}\ 0)_{L} \end{array}$
14	$(11)_{\rm H}(10)_{\rm L}$
15	(11) _H (11) _L

Table 101-2—Last bit position encoding

Last Fill Bit Position in Last RE	$\begin{array}{c} \text{MSB Pointer Bits} \\ (I_{1H})I(_{1L}) \\ (0_{MSB}\ 0)_H\ (0_{MSB}\ 0)_L \end{array}$
0	$(00)_{\rm H}(00)_{\rm L}$
1	$(00)_{\rm H}(01)_{\rm L}$
2	$(00)_{\rm H}(10)_{\rm L}$
3	(01) _H (11) _L
4	$(01)_{\rm H}(00)_{\rm L}$
5	(01) _H (01) _L
6	$(01)_{\rm H}(10)_{\rm L}$
7	$(01)_{\rm H}(11)_{\rm L}$
8	$(10)_{\rm H}(00)_{\rm L}$
9	$(10)_{\rm H}(01)_{\rm L}$
10	$(10)_{\rm H}(10)_{\rm L}$
11	$(10)_{\rm H}(11)_{\rm L}$
12	$(11)_{\rm H}(00)_{\rm L}$
13	(11) _H (01) _L
14	(11) _H (10) _L
15	$(11)_{\rm H}(11)_{\rm L}$

Figure 101–3—Stop burst marker encoding in 8 symbol resource block

Figure 101-4—Stop burst marker encoding in 16 symbol resource block