EPoC DownstreamRate Adaption

Ed Boyd, Xingtera
December 2013

Overview

- This presentation describes the PCS & PMA to support a sub-rate downstream channel and downstream rate changes.
- A simple method to stream data from the PCS to PMA is considered.
- A modified IDLE deletion method is considered.
- Disclaimers
 - For simplicity, this presentation uses 256 symbols for the number of symbols in a PLC cycle (assuming 20us symbol duration). It is easy to replace 256 symbols with 128 symbols or a different symbol size.

EPoC PCS Overhead

- Because of the fixed overhead 64/66 and single LDPC FEC code, the PCS has a known overhead from the input to the output.
 - Averaged over a single FEC block: 14080 bits into PCS produces 16140 bits out of PCS (87%)
- Data should be streaming at a constant rate from the PCS to the PMA.
- If the rate of PCS to PMA is known, the data rate at the XGMII can be determined for the IDLE deletion function.
- What is the streaming data rate at the PCS/PMA interface?

- Downstream MAC/PHY needs to have a known constant data rate.
 - Data Rate is averaged over PHY Link Cycle to absorb Pilots and cyclic prefix. (requires 1 symbol of delay)
 - Symbol Mapper will need to buffer 1 symbol worth of data to spread out over PLC cycle.
 - Pilots at the start of PLC cycle to avoid underrunning from streaming constant data.
 - Need to understand the implications of scattered pilots. Do we need to scatter the pilots? Do we need rules to avoid underrunning?
- Distribution of bits in sub-carriers or number of sub-carriers doesn't change Data Rate.
 - Only the total bits in symbol and the symbol/cyclic prefix size matter.
- PCS/PMA Data Rate is calculated...
 - PLC-Cycle-Capacity = Total-Bits-in-Symbol*(256-1)
 - PCS-PMA-Rate = PLC-Cycle-Capacity/PLC-Cycle-Time

	PLC_Cycle_Capacity=5,000,000 bits	PLC_Cycle_Capacity=5,000,000 bits	PLC_Cycle_Capacity=5,000,000 bits
	PLC Cycle=256x20us=5.12ms	PLC Cycle=256x20us=5.12ms	PLC Cycle=256x20us=5.12ms
Data[64:0]	Data Bits Data	Data Bits Data Bits	Data Bits Data Bits
Data_Bits_VId[6:0	# of # of Bits	# of Bits # of Bits	# of Bits # of Bits

- PCS Streams data in 65 bit blocks to PMA.
 - Based on 204.8MHz clock, maximum data rate of 13.312 Gbps
- Data is spread evenly across entire PLC cycle.
 - PMA is responsible for buffering and smoothing data for Pilots

Configuration Switchover Review

Goals

- As CNUs register, the EPoC downstream maybe required to lower the bit loading to achieve a good BER.
- During normal operation, interference may require the EPoC system to adapt the bit loading.
- In both cases, it is important that EPoC provide a method to modify the bit loading table during normal operation and desirable that it be hitless (no packet loss) and non-service interrupting to the subscribers.

Coordinating Switchover between MAC and PHY

- MAC and PHY are not required to match transmit rates exactly.
- The MAC TX rate must be equal to or less than PHY TX rate.
- By selecting a proper order of operation, the TX can be safely changed
 - For decreasing rates: The MAC rate should be decreased before the PHY rate can be decreased.
 - For increasing rates: The PHY rate must be increased before the MAC rate is increased.

Coordinating Switchover between CLT PHY and CNU PHY

The PLC Configuration ID allows for changing configuration at PLC Cycle boundaries.

See boyd_3bn_02a_0313.pdf from the Orlando March 2013 meeting for additional details

- PLC Cycle is a fixed duration and aligns with configuration boundaries.
- PLC Cycle Bit Capacity is based on configuration and could change over time.
- CLT PHY passes the configuration ID to the remote CNU PHY through the PLC Msgs.
- PLC Msgs block also passes the Configuration ID and bit capacity to the IDLE Deletion.
- PLC Cycle Start and Configuration ID are passed through the PCS to the PMA to clearly indicate the switchover between configurations on a PLC cycle boundary.

Bits

Bits

• Note: PLC_Cycle_Start and Config_ID maybe combined into a single type code for the interface.

Bits

Data[64:0]

Data_Bits_VId[5:0]

Downstream PMA Symbol Mapper (1D-to-2D)

- A single Pilot Symbol is inserted on every sub-carrier at the start of the PLC cycle.
 - NOTE: Scattered Pilots could be considered as well but the pattern must guarantee than the output doesn't underflow.
- Streaming Data from the PCS is buffered and diced in a fixed order into the sub-carriers.
 - Frequency Interleaving would specify a different order for loading the data.
- Configuration changes (bit loading) will change the capacity of the entire PLC cycle and are aligned with new sub-carrier bit loading values for the PMA.

The IDLE Deletion function should be modified to accurately match the EPoC PHY.

- State machine function for FEC and Data Rate Adaption can be combined.
- The Data Rate Adaption should be referenced to the 204.8MHz PHY clock to match PMA exactly.
- Support for configuration (bit loading) switch over should be added.

IDLE Deletion Output Rate

- PCS_Input_Rate = (64 bits/65 bits)*(FEC_Encoder_In_Bits /FEC_Encoder_Out_Bits)*PCS_Output_Rate
- PCS_Output_Rate = PLC_Cycle_Bits/PLC_Cycle_Clocks [Based on 204.8MHz clock counts]
- PCS-Input-Rate = (64*FEC_Encoder_In_Bits*PLC_Cycle_Bits) / (65*FEC_Encoder_In_Bits*PLC_Cycle_Clocks)
- PCS-Input-Rate = Rate_Numerator / Rate_Denuminator

New IDLE Deletion State Machine

- Reference to 204.8MHz PMA sampling clock
- Update Rate Changes on PLC cycle boundaries.
- Add Counter to track fractions of bits to produce accurate output rate.

IDLE Deletion Modification Summary

Rate Switchover

- Only the Rate_Numerator will change with new bit loadings.
- Rate_Numerator will only change on the PLC cycle boundary.
- The number of PLC cycles with an output rate will be the same for PCS and PMA blocks.

Determining the number of IDLEs to delete

- The streaming output rate is tracked by a summation of fractional bits on every clock.
- The number of bits over the streaming data rate that are passed through the IDLE Deletion block are tracked.
- When a non-essential IDLE character appears on the IDLE, it is dropped if excess bits are greater than the size of the IDLE character.

Timestamp Jitter

- The IDLE insertion function in the MAC should guarantee a packet payload rate less than the PCS_Input_Rate.
- The IDLE deletion function must be able to delete enough idles after a packet to make the "Excess Bits Counter" go under 64 bits.
- The start of the packet will not experience more than 64 bits of jitter. (Should we reduce this amount?)

IDLE Deletion Buffer Size

- The FIFO in the IDLE Deletion block must be able to buffer a maximum size Ethernet Frame + Preamble + IPG. (2020 Bytes)
- After buffering a single packet (worst cast rate difference), the IDLE characters will be deleted and buffer will empty.

Receiver Side IDLE Insertion State Machine

It is simple to use the same approach to create a streaming output with IDLEs inserted on the CNU side.

Downstream Data Rate Summary

PMA Symbol Mapper

- Single Symbol of Pilots is simplest approach for insertion.
- Symbol mapper should be defined to buffer 1 symbol of data to smooth data over PLC cycle.

PCS/PMA Interface

- 65 bit interface clocked at 204.8MHz (sampling clock locked)
- Configuration ID and PLC Cycle Start should be included in the interface.

IDLE Deletion

- A single function based on the output streaming rate should be used. (combine FEC and rate functions)
- The function should support rate switchover.
- It should be locked to the 204.8MHz clock to accurately stream data to the PMA.
- It is simple to use the same approach to create a streaming output with IDLEs inserted on the CNU side.