Category 6 Alien Crosstalk Measurements

IEEE Next-Generation Enterprise Access BASE-T Study Group

Pete Cibula, Intel Corporation

Berlin, Germany - March 2015

Purpose

 Measure alien crosstalk of Cat6 cabling in what are believed to be "worst-case" 6around-1, 4-connector channel configurations

 Characterize Cat6 alien crosstalk to support NGEABT link segment definition and specifications

Channels Used in this Investigation

- Eight channels from 30m to 135m are evaluated
 - 30m, 55m, 60m, 80m, 90m,100m, 110m, 135m
- Four-connector channels are constructed using off-the-shelf patch cords, modular jacks and cabling ("vintage" c.2006)
- Seven channels are arranged in a six-around-one configuration with ~100% of the patch cord and cable length bundled
- Testing performed to TIA Cat6a channel (10GBASE-T) limits

Channel Configurations

			Link		Link	
Total Length	Equipment		Segment	Consolidation	Segment	Work Area
(m)	Cable	Patch Cord	#1	Point Patch Cord	#2	Patch Cable
30	4	3	15	0	5	3
55	4	3	30	0	15	3
60	0	3	15	4	35	3
80	0	3	65	4	5	3
90	0	3	65	4	15	3
100	4	3	65	0	25	3
110	0	3	65	4	35	3
115	0	3	90	4	15	3
135	4	3	90	0	35	3

PS ANEXT, 30m-80m

PS ANEXT, 90m-135m

Average & Worst-Case PS ANEXT

- Plots show average and worst-case pair (maximum measured PS ANEXT) for all channels
- Measured PS ANEXT is relatively consistent for ~100% bundling with some slight variation with length between ~1MHz and ~300MHz

PS AACR-F 30m-80m

PS AACR-F 90m-135m

Average & Worst-Case PS AACR-F

- Plots show average and worst-case pair (maximum measured PS AACR-F) for all channels
- Between ~7dB and ~10dB difference between 30m and 135m channels up to ~300MHz; more variability between 300MHz and 500MHz

Summary

- Channel measurements are presented for Cat6 cords, cabling and interconnects configured in a "worst-case" 6around-1 configuration (~100% bundling)
 - Measured PS ANEXT is relatively length-independent for 100% bundling, suggesting that an upper bound for this parameter may be established
 - Measured PS AACR-F varies with channel length for 100% bundling, with longer channels demonstrating ~10dB more crosstalk as compared to shorter channels
- These characteristics should be considered when defining NGEABT link segment specifications

Thank You!

Average PS AACR-F, all channels

Worst-Case PS AACR-F, all channels

Average PS ANEXT, all channels

Worst-Case PS ANEXT, all channels

