CDAUI-8 PAM4 Reference Receiver CDR Mark Marlett & Andre Szczepanek

Supporters

Mike Dudek, Qlogic

Background

- This presentation is an updated version of oif2015.184.01
- It was presented at the April OIF meeting as a proposed update for CEI-58G (PAM4) VSR & MR, and is therefore relevant for our CDAUI-8 baselines.

Introduction

- A proper measurement timing reference is critical for:
 - Rx jitter definitions
 - TX jitter definitions
- PAM4 adds new complexity
 - Data pattern affects transition density
 - Transitions are no longer only at 0V (differential)
- DSP CDR solutions common for PAM4 (versus analog)
 - Have Rx jitter bandwidth limited to 100(s) kHz
- Will propose test solution, and identify potential conflicts

PAM4 Transitions

6 rising edges6 falling edges4 non trans16 options

PAM4 Transition density (td) is 12/16 = 75%

JP03A is 100% td JP03B is ~100% td

QPRBS13 is 75% td

Test Pattern transition density

- JP03A (100%)
 - -03
- JP03B (97%)
 - - 100% transitions cross 0V
- Quaternary PRBS13 (75%)
 - Approximate with random transitions
 - 75% transition density
 - 50% transitions cross 0V (some early and late)
 - 25% transitions cross ±2/3
- Transmitter linearity (6.25%)
 - 6 transitions in 160 bits cross 0v
 - 4 additional transitions at ±2/3

Reference RX CDR phase detector

- Simplest (option "S")
 - 1 detector: 0V crossing
 - allow all edges that cross to be counted
- More complicated (option "A")
 - 1 detector: 0V crossing
 - Restrict data to symmetric data
 - 03--30 or 12--21 transitions
- More complicated (option "B")
 - 3 detectors: -2/3, 0, 2/3
- Full Monty (option "F")
 - 5 detector: -2/3, -1/3, 0, 1/3, 2/3

DSP based versus Analog Receiver

DSP CDR receiver:

- Uses voltage samples
- 1UI time spaced
- Can use all transitions as information
- Essentially ignores edge timing
- Requires processing time for CDR updates (160kHz for KP4)

Analog CDR receiver:

- Have limited slicing thresholds
 - Simplest is one at 0v
- Often 2x oversampling (measuring edge timing)
- Have relatively high loop bandwidths (10MHz for CAUI-4)

KP4 TX Jitter Generation HPF

- Measurement bandwidth is 2MHz and up.
- G (f) = f / (f $jf_n e^{j2\pi T}$)
- $f_n = 2.12 \text{ MHz}$
- $T = 0.0286 \, \mu s$

KP4 Rx Jitter Tolerance

Description	Point 1	Point 2	Point 3 (Implied)	Unit
Jitter Frequency	16	160	1600	kHz
Jitter Amplitude	5	0.5	0.05	UI

KP4 receiver limits jitter beyond 160kHz but only measures TX jitter beyond 2MHz

Implied specification is 0.05 UI Sinusoidal Jitter tolerance past 1600kHz (1.6MHz)

Note: only points 1 and 2 are in the compliance table.

Detailed proposal statement(s)

- Should the Tx jitter generation budget be:
 - Measured by a physical CDR with phase detector (S,A,B,F)
 - → Propose S. (simple test equipment exists)
- Should the Rx jitter tolerance calibration be:
 - Measured by a physical CDR with phase detector (S,A,B,F)
 - → Propose S. (simple test equipment exists)
- Should TX jitter generation HPF and Rx tolerance LPF be coupled?
 - \rightarrow Propose yes.
- What should the BW be?
 - Propose 320kHz at 0.5 UI (2x 160kHz).
 - Bandwidth measured with QPRBS13 pattern
 - Enables both DSP and analog CDR

