How a Linear Filter Could Be Added to COM Based on Hegde_3bs_01_0715

Richard Mellitz, Intel Corporation

08-11-2015

Review

From hegde_3bs_01_0715.pdf

2

COM implementation

Parameter	Symbol	Value	Units
Signaling rate	t _b	26.5625	GBd
Maximum start frequency	fmin	0.05	GHz
Maximum frequency step	Δf	0.01	GHz
Device package model Single-ended device capacitance Transmission line length, Test 1 Transmission line length, Test 2 Single-ended package capacitance at package-to-board interface	Cd ZR ZR CQL	TBD 12 30 TBD	oE. mm. mm. oE.
Single-ended reference resistance	Ro	50	Ω
Single-ended termination resistance	Rd	TBD	Ω
Receiver 3 dB bandwidth	fr	0.75 × fb	
Transmitter equalizer, minimum cursor coefficient	c(0)	0.60	-
Transmitter equalizer, pre-cursor coefficient Minimum value Maximum value Step size	c(-1)	-0.15 0 0.05	=
Transmitter equalizer, post-cursor coefficient Minimum value Maximum value Step size	c(1)	-0.25 0 0.05	=
Continuous time filter, DC gain Minimum value Maximum value Step size	groc.	-15 0 1	4B. 4B. 4B.
Continuous time filter, zero frequency	t.	te/4	QMZ
Continuous time filter, pole frequencies	fp1 fp2	te / 4	OHz
Transmitter differential peak output voltage Victim Far-end aggressor Near-end aggressor	Ax Ata. Aos.	0.4 0.4 0.6	v v v

 Cascade a crossover filter with same pole zero with the original COM continuous time filter

→						
	Crossover Filter DC Gain Min Value Max Value Step	gxo _{dc}	-7 0 1	dB dB dB		
	Crossover filter pole and zero	f _{xo}	1	GHz		

For 50Gb/s per Lane

 Response of crossover liner filter for dc gains for 0dB to -7dB

•
$$H_{xo}(f) = \frac{(10^{\frac{gxo_{dc}}{20}} + j\frac{f}{f_{xo}})}{(1+j\frac{f}{f_{xo}})}$$

For 50Gb/s per Lane

Annex 93A.1.4

93A.1.4 Filters

The voltage transfer function for each signal path $H_{21}^{(k)}(f)$ (see 93A.1.3) is multiplied by a set of filter transfer functions to yield $H^{(k)}(f)$ as shown in Equation (93A–19).

$$H^{(k)}(f) = H_{ffe}(f)H_{21}^{(k)}(f)H_r(f)H_{ctf}(f)$$
(93A-19)

The receiver noise filter $H_r(f)$ is defined in 93A.1.4.1, the transmitter equalizer $H_{ffe}(f)$ is defined in 93A.1.4.2, and the receiver equalizer $H_{ctf}(f)$ is defined in 93A.1.4.3.

The filtered voltage transfer function $H^{(k)}(f)$ is used to compute the pulse response (see 93A.1.5).

- For 50Gbs: $H^{(k)}(f) = H^{(k)}(f)H_{xof}(f)$
- Annex 93A1.6 for 50Gb/s per lane:
 - COM is a function of the variables c(−1), c(1), and g_{DC}

Becomes

• COM is a function of the variables c(-1), c(1), g_{DC} , and gxo_{DC}

Aggregate linear filter response for $G_{DC}=0$ to -15 dB and $Gxo_{DC}=0$ to -7 dB

