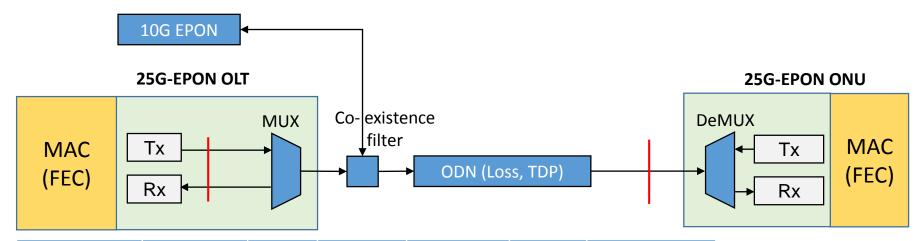
Optical source and FEC code for 25G-EPON

Hanhyub Lee, and Hwan Seok Chung

IEEE P802.3ca 100G-EPON Task Force July 09-14, 2017 Berlin, Germany


Motivation

- To satisfy 100G-EPON power budget, SOA (Booster amplifier and preamplifier) will be a good solution to support PR30 link budget with addition loss from TDP and optical filters.
 - ➤ Booster amplifier can increase a downstream power/channel over 9 dBm
 - ➤ Pre amplifier can improve a receiver sensitivity below -29 dBm

http://www.ieee802.org/3/ca/public/meeting_archive/2017/07/lee_3ca_1_0717.pdf http://www.ieee802.org/3/ca/public/meeting_archive/2017/07/lee_3ca_2_0717.pdf

- In this case, 100G-EPON can use the same FEC code of 10G-EPON.
- In the 25G-EPON case, it is not desirable to use SOAs in the OLT considering a low-cost solution.
- In this contribution, we discuss about a complementary approach to compensate an additional link loss in the 25G-EPON.

Downstream link loss and required Tx power

	Tx power	MUX	CEX	ODN	TDP	Rx sensitivity
Optimistic	6.8	0.5	0.5	29	1	-24.2
Pessimistic	7.7	0.7	0.7	29	1.5	-24.2

- Considering characteristics of ONU receiver sensitivity, link loss, TDP and extra filters the OLT Tx output power have to be 6.8 dBm or 7.7 dBm
- From the previous survey results, the EML output power will be expected 4 dBm or 4.5 dBm in 2020. There are 3.7 dB or 2.3 dB of gap.
- How to compensate the maximum 3.7 dB of gap is the question.

Enhanced FEC

Using ideal A							*) Assuming APD-based receiver with 1 dBe = (0.7-0.9) dBo		
FEC code	OH (%)	FEC Gain (dBe) @BERout =1e-12	BERin for BERout =1e-12	Optical gain delta relative to RS(255,223) (dBo)*	Length (bits)	Burst errors Capable (bits)	Power consumpti on	Compl exity	Late: cy
RS(255,223)	12.5	7.1	1.1e-3	0	2040	121	low	low	low
RS(1023,847)	17.2	8.5	4.2e-3	1-1.3	10230	871	med	low	low
RS(2047,1739)	15	8.5	4.1e-3	1-1.3	22517	1684	med/high	med	med
BCH(4095,3501)	14.5	8.5	4e-3	1-1.25	4095	49	med	low	low
LDPC(16000,13952)	13	8.9	5.8e-3	1.25-1.6	16000	?	high	high	high
LDPC(19200,16000)	17	9.6	1e-2	1.75-2.25	19200	?	high	high	high
Folded product BCH	17	9.7	1.1e-2	1.8-2.35	16384	?	?(<ldpc)< td=""><td>?</td><td>?</td></ldpc)<>	?	?
	alterna [.]	tive codes th	nat have sho	nparing FEC ga rter burst erro t turn out sma	or capabil	ities.		NOI	CIA

http://www.ieee802.org/3/ca/public/meeting_archive/2017/03/vanveen_3ca_1a_0317.pdf

- It is impossible to overcome the gap of 3.7 dB even strong LDPC code.
- There is still 1.5 dB of gap if LDPC(19200, 16000) is applied to the 25G-EPON FEC.

High power optical source

25G transmitter launch power and ER responses

	25G EML		25G cooled DML		25G uncooled DML		25G EML+SOA	
	Power (dBm)	ER (dB)	Power (dBm)	ER (dB)	Power (dBm)	ER (dB)	Power (dBm)	ER (dB)
vendor 1	3~4	8	7	4.5	5~6	4.5	7 (note 1)	8
vendor 2	3	8	5	5	4	4	7	8
vendor 3	4	6	4	4	xx	XX	6~7	6
vendor 4	2.5	8	5.8	4	xx	XX	xx	xx
vendor 5	4.3	8	5.5	4.5	4	4	7	7
vendor 6	4.5	8	6	5	4	4	Х	Х

Note 1: Proposed to add one more option 10~11dBm with the relative cost ~20 (Assuming develop a new device specially optimized in future)

HUAWEI TECHNOLOGIES CO., LTD.

 $http://www.ieee802.org/3/ca/public/meeting_archive/2017/05/liudekun_3ca_4_0517.pdf$

- It is impossible to overcome the gap of 3.7 dB by using the 25G EML+SOA only.
- If 25G EML + SOA will be used then the gap will be decreased from 3.7 dB to 0.7 dB.
- 0.7 dB of gap can be overcome by using the enhanced FEC such as RS (1023, 847) or LDPC (16000, 13952).

Conclusions

- We discussed a loss compensation option for 25G-EPON without using the SOA.
- It seems to be impossible to compensate the 3.7 dB of gap by using the enhanced FEC or EML+SOA source only.
- Hybrid approach (EML+SOA+enhanced FEC) will be needed to overcome the gap.
- RS (1023, 847) or LDPC (16000, 13952) will be a candidate as the enhanced FEC code. The RS code would be better considering their power consumption, complexity and latency.
- The other candidate is to use optical receiver with better sensitivity.
 - http://www.ieee802.org/3/ca/public/meeting_archive/2017/03/pan_3ca_1_0317.pdf